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Fatou’s Lemma in Several Dimensions

.

Theorem (Schmeidler 1970)

.

.

.

. ..

.

.

Let {fn} be a sequence of integrable functions on a measure space T
with values in Rk

+ for which
∫

fndµ → x ∈ Rk
+. Then there exists an

integrable function f : T → Rk
+ such that:

(i) f (t) is a limit point of {fn(t)} a.e. t ∈ T .

(ii)
∫

fdµ ≤ x.

When k = 1, the result is a form of Fatou’s lemma.
. It cannot be proved by a successive application of Fatou’s lemma k

times.
. For the proof, Lyapunov’s convexity theorem is effectively used for

the nonatomic parts of the measure space.

.

.

.

1 A failure of Lyapunov’s convexity theorem in infinite dimensions →
the need to strengthen the notion of nonatomicity.

.

.

.

2 In infinite-dimensional vector spaces without order structures, the
inequality must be changed into an inclusion form.
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Outline of the Talk

.

.
.

1 Fatou’s lemma in Banach spaces without order structures
. Sequence of Bochner integrable functions
. Introduction of saturated measure spaces
. Necessity and sufficiency of saturation for the Fatou property

.

.

.

2 Application to large economies: the existence of Walrasian
equilibria with an infinite-dimensional commodity spaces

. the existence result in finite dimensions

. Galerkin approximation of infinite-dimensional commodity spaces

. Fatou’s lemma in infinite dimensions
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Saturated Measure Spaces (Keisler & Sun 2009)

A measure space (T , Σ, µ) is essentially countably generated def⇐⇒
Σ is generated by a countable number of subsets of T together
with the null sets.

. (T , Σ, µ) is essentially uncountably generated def⇐⇒ Σ it is not
essentially countably generated.

. ΣS = {A ∩ S | A ∈ Σ}: the σ-algebra restricted to S ∈ Σ.

. L1
S(µ): the space of µ-integrable functions on (S,ΣS) whose

element is a restriction of a function in L1(µ) to S.

A finite measure space (T ,Σ, µ) is saturated def⇐⇒ L1
S(µ) is

nonseparable ∀S ∈ Σ with µ(S) > 0 ⇐⇒ ΣS is essentially
uncountably generated ∀S ∈ Σ with µ(S) > 0.

. Saturation involves a “rich” σ-algebra with an uncountable number
of measurable sets, which is a strengthened notion of nonatomicity.
¦ For every uncountable cardinal κ, the product spaces {0, 1}κ with the

uniform measure and [0, 1]κ with the Lebesgue measure are
saturated probability spaces.

¦ {0, 1}N, [0, 1]N: nonatomic probability spaces, but not saturated.
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Saturation and Lyapunov’s Convexity Theorem

.

Theorem (Khan & Sagara 2013)

.

.

.

. ..

.

.

Let E be a separable Banach space. If (T , Σ, µ) is saturated, then for
every µ-continuous vector measure m : Σ → E, then its range m(Σ) is
w-compact and convex. Conversely, if every µ-continuous vector
measure m : Σ → E has the w-compact convex range, then (T , Σ, µ) is
saturated whenever E is infinite dimensional.

Saturation is not only sufficient, but also necessary for Lyapunov’s
convexity theorem holds in separable Banach spaces.

a complete characterization of saturation in terms of Lyapunov’s
convexity theorem.
The result is further extended to sequentially complete, separable,
locally convex spaces by Khan & Sagara (2015, 2016), Sagara
(2017).

. Dual spaces with w∗-topology of a separable Banach space are
covered.
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Notations

L1(µ, E): the space of E-valued Bochner integrable functions on a
finite measure space (T , Σ, µ).

. A sequence {fn} in L1(µ, E) is well-dominated def⇐⇒ there is an
integrably bounded, w-compact-valued multifunction K : T ³ E
such that fn(t) ∈ K (t) a.e. t ∈ T ∀n.

the weak upper limit of a sequence {xn} in E :

w-Ls{xn} =

{
x ∈ E

∣∣∣∣∣
∃ a subsequence {xni} ⊂ {xn} :
x = w- lim

i→∞
xni

}
.

Γ : T ³ E : a multifunction (with nonempty values).
. f : T → E is a selector of Γ

def⇐⇒ f (t) ∈ Γ(t) a.e. t ∈ T .
. S1

Γ : the set of Bochner integrable selectors of Γ.
¦ S1

Γ 6= ∅ if E is separable, and Γ is measurable and integrably bounded.

The Bochner integral of Γ:
∫

Γdµ :=

{∫
fdµ | f ∈ S1

Γ

}
.
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Upper Closure and Fatou Properties

.

Definition

.

.

.

. ..

.

.

Let {fn} be a sequence in L1(µ, E) with w-Ls{∫ fndµ} 6= ∅.
(i) {fn} satisfies the weak upper closure property if there exists

f ∈ L1(µ, E) such that:
(a) f (t) ∈ w-Ls{fn(t)} a.e. t ∈ T .

(b)
∫

fdµ ∈ w-Ls
{∫

fndµ

}
.

(ii) {fn} satisfies the Fatou property if:

w-Ls
{∫

fndµ

}
⊂

∫
w-Ls{fn}dµ.
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An Exact Fatou’s Lemma

.

Theorem (Khan & Sagara 2014)

.

.

.

. ..

.

.

Let (T ,Σ, µ) be a nonatomic finite measure space and E be an infinite-
dimensional Banach space. Then the following conditions are
equivalent.

(i) (T , Σ, µ) has the saturation property.

(ii) Every well-dominated sequence in L1(µ, E) has the weak upper
closure property.

(iii) Every well-dominated sequence in L1(µ, E) has the Fatou
property.

For an exact Fatou’s lemma to be true in Banach spaces,
saturation is not only sufficient, but also necessary.
The result can be formulated in dual spaces of a separable
Banach spaces with Gelfand integrals.

Khan, M. A., N. Sagara and T. Suzuki. An exact Fatou lemma for Gelfand
integrals: A characterization of the Fatou property, Positivity 20 (2016),
343–354.
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Background on Large Economies

large economies: a prototype of perfect competition with the
continuum of agents modeled as a nonatomic finite measure
space.

. Aumann (1966): the existence of Walrasian equilibria in large
economies without any convexity assumption on preferences in the
setting of finite-dimensional commodity spaces.

a failure of the Lyapunov convexity theorem in infinite dimensions.
. nonconvexity of the aggregate demand multifunction ⇒

inapplicability of fixed point theorems.
. the inevitability of the convexity assumptions on preferences.

a need to strengthen the notion of nonatomicity so that the
Lyapunov convexity theorem holds in infinite-dimensional
commodity spaces.

. Rustichini & Yannelis (1991): the assumption “many more agents
than commodities”.

. Podczeck (1997): a condition on the nonatomic disintegration of the
measure space of agents.

. Khan & Sagara (2016): relaxation and purification under saturation.
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Finite-Dimensional Truncation: Bewley (1972)

Finite agent economies with commodity space L∞ under convex
preferences.

. the first application of Galerkin approximations to GE.
the idea of the procedure:

.

.
.

1 Take a net of finite dimensional vector subspaces of L∞ directed by
set inclusion and consider a net of truncated subeconomies in
which a finite-dimensional vector subspace is a commodity space.

.

.

.

2 Each truncated subeconomy has equilibria by the classical
finite-dimensional result of Arrow–Debreu.

.

.

.

3 Take the limit of the net of equilibria. Then the limit corresponds to
a Walrasian equilibria in the original L∞ economy.

a natural approach to the existence of Walrasian equilibria also in
large economies with a separable Banach space and L∞ without
convex preferences.

. the combination of the Galerkin approximation with finite-
dimensional projections and Fatou’s lemma in infinite dimensions.

. an alternative technique to the existence result which employs fixed
point theorems in infinite dimensions (cf. Khan & Yannelis 1991).
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Galerkin Approximations

A Galerkin approximation scheme of a Banach space E is a
sequence {V n}n∈N of finite-dimensional subspaces of E such that
for every x ∈ E , there exists a sequence {xn}n∈N with xn ∈ V n for
each n ∈ N and xn → x .

.

Theorem

.

.

.

. ..

. .

Let E be a separable Banach space and {V n}n∈N be a Galerkin
approximation scheme of E such that V 1 ⊂ V 2 ⊂ · · · and⋃

n∈N V n ‖·‖ = E. If Pn is a continuous projection of E onto V n, then for
every x ∈ E the sequence {Pnx}n∈N contains a subsequence
converging weakly to x.
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Large Economies in a Banach Space

(T , Σ, µ): the set of agents.
. a finite measure space.

E : a commodity space.
. an ordered Banach space.

X (t) ⊂ E : a consumption set for agent t ∈ T .
%(t) ⊂ X (t)× X (t): a preference relation on X (t) for agent t .

. a complete, transitive binary relation on X (t).
ω(t) ∈ X (t): an initial endowment of agent t .

. ω ∈ L1(µ, E).

E = {(T , Σ, µ), X , %, ω}: an economy.
E∗: a price space.

A function f ∈ L1(µ, E) is an allocation with free disposal for E def⇐⇒
f (t) ∈ X (t) a.e. t ∈ T and

∫
fdµ ≤ ∫

ωdµ.
A price-allocation pair (p, f ) is a Walrasian equilibrium with free
disposal for E def⇐⇒ for a.e. t ∈ T : 〈p, f (t)〉 ≤ 〈p, ω(t)〉 and
〈p, x〉 > 〈p, ω(t)〉 whenever x Â(t) f (t).
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Assumption

(i) X : T ³ E+ is an integrably bounded multifunction with weakly
compact, convex values.

(ii) gph X ∈ Σ⊗ Borel(E , w).

(iii) ∀t ∈ T ∃z(t) ∈ X (t): ω(t)− z(t) ∈ int E+.

(iv) %(t) is weakly closed in X (t)× X (t) ∀t ∈ T .

(v) {(t , x , y) ∈ T ×E ×E | x %(t) y} ∈ Σ⊗Borel(E , w)⊗Borel(E , w).

(vi) If x ∈ X (t) is a satiation point for %(t), then x ≥ ω(t); if x ∈ X (t) is
not a satiation point for %(t), then x ∈ {y ∈ X (t) | y Â(t) x}w

.

Continuous preferences on the weakly compact consumption set
have a satiation point.

No monotonicity assumption on preferences.

int E+ 6= ∅ is an inevitable assumption to deal with infinite
dimensionality in general equilibrium theory.
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Existence of Walrasian Equilibria with Free Disposal

.

Theorem

.

.

.

. ..

.

.

Let (T ,Σ, µ) be a saturated finite measure space and E be an ordered
separable Banach space such that int E+ 6= ∅. Then for every economy
E satisfying Assumption, there exists a Walrasian equilibrium (p, f )
with free disposal for E with p ∈ E∗

+ \ {0}.
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An Existence Theorem in Finite Dimensions

.

Auxiliary Theorem (Khan & Yannelis 1991)

.

.

.

. ..

.

.

Let (T ,Σ, µ) be a nonatomic finite measure space. Suppose that the
economy Ek with a finite-dimensional commodity space Rk satisfies
the following conditions.

(i) X : T ³ Rk
+ is an integrably bounded multifunction with compact,

convex values.

(ii) gph X ∈ Σ⊗ Borel(Rk ).

(iii) ∀t ∈ T ∃z(t) ∈ Rk
+: ω(t)− z(t) ∈ Rk

++.

(iv) %(t) is closed in Rk
+ × Rk

+ ∀t ∈ T .

(v) {(t , x , y) ∈ T × Rk × Rk | x %(t) y} ∈ Σ⊗ Borel(Rk )⊗ Borel(Rk ).

Then there exists a Walrasian equilibrium (p, f ) with free disposal for
Ek with p ∈ Rk

+ \ {0}.

This is not covered by Aumann (1966) with monotone preferences.
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Sketch of the Proof: (Step 1)

{V n}n∈N: a Galerkin approximation scheme of E such that

V 1 ⊂ V 2 ⊂ · · · with
⋃

n∈N V n
‖·‖

= E .

Pn: a continuous projection of E onto V n.

. V n
+ = V n ∩ E+ is a positive cone of V n and Pn : E → V n is a

positive linear operator.

Construct a sequence of economies with a finite-dimensional truncation
as follows:

. X n(t) := Pn(X (t)) ⊂ Pn(E+) ⊂ V n
+: a consumption set of each

agent restricted to the finite-dimensional commodity space V n.
. %n(t): the restriction of the preference %(t) to X n(t), i.e.,

%n(t) := %(t) ∩ (X n(t)× X n(t)).
. ωn(t) = Pnω(t) ∈ Xn(t): the initial endowment with ωn ∈ L1(µ, V n).
. En = {(T , Σ, µ), Xn, %n, ωn}: a finite-dimensional truncation of

economy E with commodity space V n conformed with the Galerkin
approximation scheme.
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The finite-dimensional truncated economy En of E satisfies:

(in) X n : T ³ V n
+ is an integrably bounded multifunction with compact,

convex values.
(iin) gph X n ∈ Σ⊗ Borel(V n).
(iiin) ∀t ∈ T ∃zn(t) ∈ X n(t): ωn(t)− zn(t) ∈ int V n

+.
(ivn) %n(t) is a closed subset of V n

+ × V n
+ ∀t ∈ T .

(vn) {(t , x , y) ∈ T × V n × V n | x %(t) y} ∈ Σ⊗ Borel(V n)⊗ Borel(V n).

By Auxiliary Theorem, there is a Walrasian equilibrium
(qn, fn) ∈ ((V n)∗+ \ {0})× L1(µ, V n) with free disposal for En ∀n ∈ N.
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Sketch of the Proof: (Step 2)

By the Fatou’s lemma, there exist f , g ∈ L1(µ, E) such that:

f (t), g(t) ∈ X (t), (f (t), g(t)) ∈ w-Ls {(fn(t), ωn(t))} a.e. t ∈ T ,(∫
fdµ,

∫
gdµ

) ∈ w-Ls
{(∫

fndµ,
∫

ωndµ
)}

.

. Along a subsequence: (
∫

fndµ,
∫

ωndµ) → (
∫

fdµ,
∫

gdµ) weakly
and for a.e. t ∈ T : ωn(t) → g(t) weakly.

. For a.e. t ∈ T : ωn(t) = Pnω(t) → ω(t) weakly. ∴ g(t) = ω(t) a.e.
t ∈ T and

∫
ωndµ → ∫

ωdµ weakly.
. Since

∫
fndµ ≤ ∫

ωndµ ∀n ∈ N, at the limit:
∫

fdµ ≤ ∫
ωdµ.

. f is an allocation with free disposal for E .

Since 0 6= qn ∈ (V n)∗ ⊂ E∗, by the Krein–Rutman theorem, qn can be
extended as a continuous positive linear functional to E .

. Normalize equilibrium price for En such that:

pn = qn
‖qn‖ ∈ ∆∗ := {p ∈ E∗+ | ‖p‖ = 1}.

. There is a subsequence such that pn → p ∈ ∆∗ weakly∗.

. (p, f ) ∈ ∆∗ × L1(µ, E) is a Walrasian equilibrium with free disposal
for E .
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