An order theoretical characterisation of JB-algebras

Mark Roelands (joint work with Bas Lemmens and Hent van Imhoff)

North-West University

July 20, 2017

An order theoretical characterisation of JB-algebras

Mark Roelands (joint work with Bas Lemmens and Hent van Imhoff)

Let A be a unital C*-algebra and equip the self-adjoint part A_{sa} part with the product

$$a \bullet b := rac{1}{2}(ab+ba).$$

The norm satisfies:

$$\|a \bullet b\| \le \|a\| \|b\|, \quad \|a^2\| = \|a\|^2, \quad \|a^2\| \le \|a^2 + b^2\|.$$

This is the canonical example of a JB-algebra.

Definition

A *JB-algebra* A is a real Banach space with a commutative (not necessarily associative) bilinear product $a \bullet b$ such that

$$a^2 \bullet (a \bullet b) = a \bullet (a^2 \bullet b)$$
 (Jordan identity)

and the norm satisfies

$$\left\| a ullet b
ight\| \leq \left\| a
ight\| \left\| b
ight\|, \quad \left\| a^2
ight\| = \left\| a
ight\|^2, \quad \left\| a^2
ight\| \leq \left\| a^2 + b^2
ight\|$$

• We will only consider unital JB-algebras in this talk.

Remark

The squares form a closed cone with non empty interior.

A (1) > A (2) > A

• Finite dimensional JB-algebras were completely classified by Jordan, von Neumann, and Wigner.

Every finite dimensional JB-algebra is a direct sum of simple ones:

 $M_n(\mathbb{R})_{sa}, M_n(\mathbb{C})_{sa}, M_n(\mathbb{H})_{sa}, M_3(\mathbb{O})_{sa}, H \oplus \mathbb{R}$

Theorem (Koecher-Vinberg)

Let A be a finite dimensional real Hilbert space with a closed cone C having non empty interior. Then A is a JB-algebra for some norm with cone of squares C iff C is symmetric.

Symmetric:

- (self-dual) $\{a \in A \colon \langle a, b \rangle \ge 0 \ \forall \ b \in C\} = C$
- (homogeneous) Aut(C) := {T ∈ GL(A): T(C) = C} acts transitively on C°. (for all a, b ∈ C° there is a T ∈ Aut(C) such that Ta = b)

伺 と く ヨ と く ヨ と

Example

Let $A = M_n(\mathbb{R})_{sa}$, $M_n(\mathbb{C})_{sa}$, with $\langle M, N \rangle = \text{trace}(MN)$. We have

 $C = \{M: M \text{ is pos. semi-def.}\}, C^{\circ} = \{M: M \text{ is pos. def.}\}$

- (self-dual) $\operatorname{trace}(MN) \ge 0$ for all $N \in C$ iff $M \in C$
- (homogeneous) for $Q \in C^{\circ}$, $M \mapsto Q^{-1/2}MQ^{-1/2}$ is in $\operatorname{Aut}(C)$

(同) (正) (王) (王)

Question

Can we generalise the Koecher-Vinberg theorem to infinite dimensions?

• problem: infinite dimensional JB-algebras are generally not Hilbert spaces and therefore cannot have a self-dual cone.

Theorem (Walsh)

Let A be a finite dimensional real Hilbert space with a closed cone C having non empty interior. Then A is a JB-algebra for some norm with cone of squares C iff there is an antitone map $f: C^{\circ} \rightarrow C^{\circ}$.

Antitone:

f is a bijection, a ≤ b ⇔ f(b) ≤ f(a) and f(λa) = λ⁻¹f(a) for all λ > 0.

Remark

For JB-algebras the inversion map $a \mapsto a^{-1}$ is antitone.

伺 ト イ ヨ ト イ ヨ ト

Example (Idea)

For $A = M_n(\mathbb{R})_{sa}$, $M_n(\mathbb{C})_{sa}$ the map $M \mapsto M^{-1}$ is antitone.

$$M \le N \Leftrightarrow N^{-1/2} M N^{-1/2} \le I_n$$

$$\Leftrightarrow I_n \le (N^{-1/2} M N^{-1/2})^{-1} = N^{1/2} M^{-1} N^{1/2}$$

$$\Leftrightarrow N^{-1} \le M^{-1}$$

An order theoretical characterisation of JB-algebras

Mark Roelands (joint work with Bas Lemmens and Hent van Imhoff)

・ 同 ト ・ ヨ ト ・ ヨ ト

Finite dimensional real Hilbert spaces A with a closed cone C having non empty interior are *order unit spaces*:

- C is Archimedean
- *u* ∈ *C* is an order unit: for all *a* ∈ *A* there is a λ > 0 such that *a* ≤ λ*u*
- we can equip A with the order unit norm:

$$\|a\|_u := \inf \left\{ \lambda > 0 \colon -\lambda u \le a \le \lambda u \right\}$$

Remark

JB-algebras with their cone of squares and its unit are order unit spaces and the JB-norm coincides with the order unit norm.

Conjecture

Let (A, C, u) be a complete order unit space. Then A is a JB-algebra with cone of squares C iff there is an antitone map $f: C^{\circ} \rightarrow C^{\circ}$.

/□ ▶ < 글 ▶ < 글

Definition

Let *H* be a real Hilbert space with dim $H \ge 2$ and consider $H \oplus \mathbb{R}$ with product $(x, \lambda) \bullet (y, \mu) := (\mu x + \lambda y, \langle x, y \rangle + \lambda \mu)$ and norm $\|(x, \lambda)\| := \sqrt{\langle x, x \rangle} + |\lambda|$. This JB-algebra is called a *spin factor*.

Remark

$$C = \{\lambda(x, 1) \colon \lambda \ge 0, x \in B_H\}$$
, so C is strictly convex.

伺 と く ヨ と く ヨ と

Theorem (Lemmens, v. Imhoff, R)

Let (A, C, u) be a complete order unit space with strictly convex cone. Then A is a spin factor with cone of squares C iff there is an antitone map $f : C^{\circ} \to C^{\circ}$.

Theorem (Lemmens, v. Imhoff, R)

Let (A, C, u) be a complete order unit space with strictly convex cone. Then A is a spin factor with cone of squares C iff there is an antitone map $f: C^{\circ} \to C^{\circ}$.

Thank you for your attention!