Burkholder inequalities in Riesz spaces.

Kawtar Ramdane
University el Manar Tunis, Tunisia

July 21, 2017

Motivation

We are interested in one of the major inequalities in Martingale Theory, viz., the classical Burkholder's inequality. We recall some of the relevant ideas.
Let $\left\{\left(X_{n}, \mathcal{F}_{n}\right): n \geq 1\right\}$ be a martingale. Martingale increments are given by

$$
\Delta X_{1}=X_{1} \quad \text { and } \quad \Delta X_{n}=X_{n}-X_{n-1} \text { for all } n=2,3, \ldots
$$

and the Quadratic Variation Process is defined by

$$
S_{n}(X)=\left(\Delta X_{1}\right)^{2}+\cdots+\left(\Delta X_{n}\right)^{2} \text { for all } n=1,2, \ldots
$$

Roughly speaking, the Burkholder inequality stipulates that, as far as L^{p}-norms are concerned, $S_{n}^{1 / 2}$ and X_{n} increase at the same rate. More precisely, for every $p \in(1, \infty)$ there do exist positive real numbers a_{p} and b_{p} such that

$$
a_{p}\left\|S_{n}^{1 / 2}\right\|_{p} \leq\left\|X_{n}\right\|_{p} \leq b_{p}\left\|S_{n}^{1 / 2}\right\|_{p} .
$$

Notations

Let E be a Dedekind complete Riesz space with a distinguished weak unit $e>0$. Following Kuo, Labuschagne, and Watson [5]

Definition

We call a linear operator T on E a conditional expectation if the following conditions are fulfilled.
(1) $T e=e$.
(2) T is a projection,
(3) T is order continuous,
(9) T is strictly positive (i.e., $T x>0$ whenever $x>0$),
(5) The range $R(T)$ of T is a Dedekind complete Riesz subspace of E.

Notations

- Throughout this talk, T stands for a conditional expectation with natural domain $L^{1}(T)$.
- $L^{1}(T)$ is a Dedekind complete Riesz space with a weak order unit $e>0$ and $T e=e$
- For $p \in(1, \infty)$ and $x \in L^{p}(T)^{+}$, we consider the p-power x^{p} as recently defined by Grobler in [2].
- Following [1], we put

$$
L^{p}(T)=\left\{x \in L^{1}(T):|x|^{p} \in L^{1}(T)\right\}
$$

and

$$
N_{p}(x)=T\left(|x|^{p}\right)^{1 / p} \quad \text { for all } \quad x \in L^{p}(T)
$$

- $L^{p}(T)$ is a Riesz subspace of $L^{1}(T)$.

Notations

- A filtration is a family $\left\{T_{n}: n \geq 1\right\}$ of conditional expectations with $T_{1}=T$ and $T_{i} T_{j}=T_{j} T_{i}=T_{i}$ whenever $i \leq j$ [3, Definition 3.1].
- A martingale is defined in [3, Definition 3.2] to be a family $\left\{\left(x_{n}, T_{n}\right): n \geq 1\right\}$ where $\left\{T_{n}: n \geq 1\right\}$ is a filtration such that $T_{i}\left(x_{j}\right)=x_{i}$ for all i, j with $i \leq j$.
- Keeping the same notations as previously used in the concrete case, it turns out that there exist positive real numbers a_{p} and b_{p} such that

$$
a_{p} N_{p}\left(S_{n}^{1 / 2}\right) \leq N_{p}\left(x_{n}\right) \leq b_{p} N_{p}\left(S_{n}^{1 / 2}\right)
$$

- The proof of this inequality is very technical in nature. Indeed, it is based upon a generalization of the standard Stopping Time and an integral representation of p-powers

Crucial theorem

The key of the proof is the following theorem

Theorem

Let $p, q \in(1, \infty)$ with $\frac{1}{p}+\frac{1}{q}=1$ and $0 \leq x, w \in L^{p}(T)$. Assume that there are $\beta \in(1, \infty)$ and $c \in(0, \infty)$ for which

$$
t T P_{(x-\beta t e)+} e \leq c T P_{(x-t e)^{+}} w \quad \text { for all } t \in(0, \infty)
$$

Then,

$$
N_{p}(x) \leq c q \beta^{p} N_{p}(w) .
$$

Daniell integral

- It is imperative to built a kind of integral of x^{p} for $p \in(1, \infty)$ and $x \in L^{p}(T)^{+}$. In this regard, we have thought about the Daniell Integral in the sense of Grobler [2].
- We recall some of the relevant ideas.
- Given $x \in E$ and $t \in \mathbb{R}$, we denote by p_{t} the component of e on the projection band $\left\{(x-t e)^{+}\right\}^{d}$. In other words, $p_{t}=e-P_{(x-t e)^{+}} e$.
- The family $\left(p_{t}\right)_{t \in \mathbb{R}}$ is an increasing right continuous system of components of e [4].
- We also put $p_{\infty}=e$ and $p_{-\infty}=0$.

Daniell integral

- The Daniell Integral J is then defined on characteristic functions $\chi_{(a, b]}$ by

$$
J\left(\chi_{(a, b]}\right)=p_{b}-p_{a} \quad \text { for all } a, b \in \mathbb{R} \cup\{ \pm \infty\} \quad \text { with } a<b .
$$

Then the definition can be extended in a quite standard way to a large class of functions.

- First, for step functions of the form $\sum_{k=1}^{n} \lambda_{k} \chi_{\left.]_{a_{k}}, b_{k}\right]}$ via linearity.
- Next, for limit of increasing sequences of positive step functions via order continuity.
- It is customary to denote $J(f)$ by $f(x)$

Riemann integral

Definitions

- A function $f:[a, b] \rightarrow E$ is said to be bounded if there is $M \in E^{+}$ such that $|f(x)| \leq M \quad$ for all $x \in[a, b]$.
- Let $f:[a, b] \longrightarrow E$ be a bounded function and $\sigma=\left\{a=x_{0}<\ldots<x_{n}=b\right\}$ a partition of $[a, b]$. The mesh of σ is defined as $\|\sigma\|=\max \left\{x_{i}-x_{i-1}: i=1, \ldots, n\right\}$.
- For $i \in\{1, \ldots, n\}$, we put

$$
M_{i}=M_{i}(f, \sigma)=\sup \left\{f(t): x_{i-1} \leq t \leq x_{i}\right\}
$$

and

$$
m_{i}=m_{i}(f, \sigma)=\inf \left\{f(t): x_{i-1} \leq t \leq x_{i}\right\}
$$

- Define the upper and lower sums of f with respect to the partition σ by

$$
U(f, \sigma)=\sum_{k=1}^{n} M_{i}\left(x_{i}-x_{i-1}\right) \quad \text { and } \quad L(f, \sigma)=\sum_{k=1}^{n} m_{i}\left(x_{i}-x_{i-1}\right),
$$

Riemann integral

- As in the classical case, we may prove quite easily that for every partitions σ and τ of $[a, b]$, we have $L(f, \sigma) \leq U(f, \tau)$
- Moreover if α and β are tow partitions of $[a, d]$ with β is finer than α then

$$
L(f, \alpha) \leq L(f, \beta) \leq U(f, \beta) \leq U(f, \alpha)
$$

- . Since E is Dedekind complete, we derive that

$$
L(f)=\sup L(f, \sigma) \quad \text { and } \quad U(f)=\inf U(f, \sigma)
$$

exist.

Riemann integral

Definition

Let a, b be two real numbers with $a<b$. A bounded function $f:[a, b] \rightarrow E$ is said to be Riemann integrable if

$$
L(f)=U(f)
$$

We write $\int_{a}^{b} f(t) d t$ (or, briefly, $\int_{a}^{b} f$) for the common value.

Riemann integral

It sould be expected that the Riemann integral can be obtained as a limit of certains sequences.
So, if we define a Riemann sum of a function $f:[a, b] \rightarrow E$ with respect to a tagged partition (σ, θ) of $[a, b]$ by

$$
S(f, \sigma, \theta)=\sum_{i=1}^{n} f\left(\theta_{i}\right)\left(x_{i}-x_{i-1}\right)
$$

Riemann integral

As in classical case we require

Theorem

Let a, b be two real numbers with $a<b$ and $f:[a, b] \longrightarrow E$ be a bounded function.
(i) If there exist two sequences of partitions $\left(\alpha_{n}\right)$ and $\left(\beta_{n}\right)$ of $[a, b]$ such that $U\left(f, \beta_{n}\right)-L\left(f, \alpha_{n}\right) \longrightarrow 0$, then $f \in \operatorname{RI}([a, b], E)$ and

$$
\int_{a}^{b} f=\lim _{n \longrightarrow \infty} L\left(f, \alpha_{n}\right)=\lim _{n \longrightarrow \infty} U\left(f, \beta_{n}\right) .
$$

(ii) If $f \in \operatorname{RI}([a, b], E)$ and if $\left(\left(\sigma_{n}, \theta^{n}\right)\right)_{n \geq 1}$ is a sequence of tagged partitions of $[a, b]$ with $\left\|\sigma_{n}\right\| \longrightarrow 0$ as $n \longrightarrow \infty$, then

$$
\lim _{n \longrightarrow 0} S\left(f, \sigma_{n}, \theta^{n}\right)=\int_{a}^{b} f
$$

Riemann integral

Corollary

Let a, b be two real numbers with $a<b$, and $f:[a, b] \longrightarrow E$ be monotone function. Then f is Riemann integrable.

Proof.

Without loss of generality, we may suppose that f is increasing. Let σ_{n} be a regular partition of $[a, b]$ with $\|\sigma\|=\frac{b-a}{n}$. It is sufficent to observe that

$$
U\left(f, \sigma_{n}\right)-L\left(f, \sigma_{n}\right)=\frac{b-a}{n}(f(b)-f(a))
$$

Riemann integral

We collect here some interesting properties of the integral.

Theorem

Let a, b be real numbers with $a<b$. Then the following hold.
(i) $\mathrm{RI}([a, b], E)$ is a Riesz space with respect to the pointwise operations and ordering.
(ii) The function that takes any $f \in \operatorname{RI}([a, b], E)$ to $\int_{a}^{b} f(t) d t$ is a positive operator.
(iii) If $f \in \operatorname{RI}([a, b], E)$ then

$$
\Phi \circ f \in \operatorname{RI}([a, b], E) \quad \text { and } \quad \int_{a}^{b} \Phi \circ f=\Phi \int_{a}^{b} f
$$

if either of these conditions is satisfied
a) Φ is order continuous and lattice homomorphism;
b) Φ is order continuous and f has bounded variation.

Integral representation of p-power

Combining a Daniell and Riemann integrals we require

Lemma

Let $p \in(1, \infty)$ and $a, \varepsilon \in(0, \infty)$ with $\varepsilon<a$, then

$$
x^{p}-\varepsilon^{p} e=\int_{\varepsilon}^{a} p t^{p-1} P_{(x-t e)^{+}} e d t \quad \text { for all } x \in E \text { with } \varepsilon e<x \leq a e .
$$

Dual formula

Now we will introduce some well-known results in probability theory extended in the framework of Riesz spaces which will be usefull to achieve our objective.
This theorem is a Riesz space version of well-known result in probability theory

Theorem

Let $p, q \in(1, \infty)$ with $\frac{1}{p}+\frac{1}{q}=1$ and $0 \leq x \in L^{p}(T)$. Then,

$$
\begin{aligned}
N_{p}(x) & =\sup \left\{T(x y): 0 \leq y \in L^{q}(T) \text { and } N_{q}(y) \leq e\right\} \\
& =\sup \left\{T(x y): 0 \leq y \in L^{q}(T) \cap L^{2}(T) \text { and } N_{q}(y) \leq e\right\}
\end{aligned}
$$

Hölder inequality

Hölder inequality will take the following form.

Theorem

Let T be a conditional expectation with domain $L^{1}(T)$ and $1 \leq p, q<\infty$ with $\frac{1}{p}+\frac{1}{q}=1$. If $x \in L^{p}(T)$ and $y \in L^{q}(T)$ then

$$
x y \in L^{1}(T) \quad \text { and } \quad N_{1}(x y) \leq N_{p}(x) N_{q}(y)
$$

Sampling optional theorem

One of the classical properties of stopped submartingales will be extended in the following theorem, this is what we call in litterature sampling optional theorem.

Theorem

Let $P=\left(P_{i}\right)_{i \geq 1}$ be a stopping time adapted to the filtration $\left(T_{i}\right)_{i \geq 1}$. Then $T\left(x_{P \wedge k}\right) \leq T\left(x_{k}\right)$ for $k=1,2, \ldots$

Doob inequality

The following Theorem gives a Riesz spaces version of Doob inequality in classical probability theory.

Theorem

If $t \in(0, \infty)$ then

$$
t T P_{\left(M_{k}-t e\right)^{+}} e \leq T P_{\left(M_{k}-t e\right)^{+}} x_{k}
$$

with

$$
M_{k}=\sup _{1 \leq i \leq k} x_{i} \quad \text { for all } k \geq 1
$$

Technical lemmas

As before, we define the quadratic variation by putting

$$
S_{k}=\sum_{j=1}^{k}\left(\Delta x_{j}\right)^{2} \quad \text { for all } k \geq 1
$$

Also, we set

$$
M_{k}=\sup _{1 \leq i \leq k} x_{i} \quad \text { for all } k \geq 1
$$

Lemma

The following holds

$$
t T P_{\left(M_{n}-t e\right)^{+}}^{d} P_{\left(S_{n}-t^{2} e\right)^{+}} e \leq 2 T x_{n} \quad \text { for all } t \in(0, \infty)
$$

Technical lemmas

Lemma

Let $t \in(0, \infty)$ and $c \in[1, \infty)$. Then

$$
t T P_{\left(S_{n}-(2+c) t^{2} e\right)^{+}} P_{\left(M_{n}-t e\right)^{+}}^{d} e \leq 2 T P_{\left(S_{n}-c t^{2} e\right)^{+}} x_{n} .
$$

Proof.

Apply the previous result to the positive martingale $\left(y_{i}=P_{i} x_{i}\right)_{i \geq 1}$ with $P=\left(P_{i}\right)_{i \geq 1}=\left(P_{\left(S_{i}-c t^{2} e\right)^{+}}\right)_{i \geq 1}$. \square

Technical lemmas.

Lemma

Let $c \in[1, \infty)$ and put

$$
\beta=\sqrt{1+\frac{2}{c}} \quad \text { and } \quad w=\sup \left(M_{n},\left(c^{-1} S_{n}\right)^{1 / 2}\right)
$$

Then

$$
t T P_{(w-\beta t e)^{+}} e \leq 3 T P_{(w-t e)^{+}} x_{n} \quad \text { for all } t \in(0, \infty)
$$

Proof.

Since for $x \in L^{2}(T)^{+}$and $t \in(0, \infty)$ the equality $B_{\left(x^{2}-t^{2} e\right)^{+}}=B_{(x-t e)^{+}}$ holds.
combining with the previous lemma and Doob inequality introduced before, we obtain the required result.

Main result

We gathered now all the tools that we need to proove the main result in this talk.

Theorem

For every $p \in(1, \infty)$, there exist constants c_{p} and C_{p} such that

$$
C_{p} N_{p}\left(x_{n}\right) \leq N_{p}\left(S_{n}^{\frac{1}{2}}\right) \leq c_{p} N_{p}\left(x_{n}\right)
$$

for all positive martingales $\left(x_{k}\right)_{k \geq 1}$ in $L^{2}(T) \cap L^{p}(T)$ with quadratic variation $\left(S_{k}\right)_{k \geq 1}$.

Proof of the right side inequality.

Proof.

- Fix $c \geq 1$ qnd put $\beta=\sqrt{1+\frac{2}{c}}$ and $w=\sup \left(M_{n},\left(c^{-1} S_{n}\right)^{1 / 2}\right)$.the previous technichal lemma gives

$$
t T P_{(w-\beta t e)^{+}} e \leq 3 T P_{(w-t e)^{+}} x_{n}
$$

Proof of the right side inequality.

Proof.

- Fix $c \geq 1$ qnd put $\beta=\sqrt{1+\frac{2}{c}}$ and $w=\sup \left(M_{n},\left(c^{-1} S_{n}\right)^{1 / 2}\right)$.the previous technichal lemma gives

$$
t T P_{(w-\beta t e)^{+}} e \leq 3 T P_{(w-t e)^{+}} X_{n}
$$

- Using the crucial theorem, we get

$$
N_{p}(w) \leq 3 q \beta^{p} N_{p}\left(x_{n}\right),
$$

Hence,

$$
N_{p}\left(S_{n}^{\frac{1}{2}}\right) \leq c_{p} N_{p}\left(x_{n}\right)
$$

with $c_{p}=3 c^{\frac{1}{2}} q \beta^{p}$.

Proof of the left side inequality.

Proof.

- Choose $y \in L^{q}(T) \cap L^{2}(T)^{+}$with $N_{q}(y) \leq e$.

Proof of the left side inequality.

Proof.

- Choose $y \in L^{q}(T) \cap L^{2}(T)^{+}$with $N_{q}(y) \leq e$.
- We introduce a new martingale with associate quadratic sum G_{n}, we use Hölder inequality and Cauchy Shwartz inequality to get

$$
T\left(x_{n} y\right) \leq c_{q} N_{p}\left(\sqrt{S_{n}}\right)
$$

Proof of the left side inequality.

Proof.

- Choose $y \in L^{q}(T) \cap L^{2}(T)^{+}$with $N_{q}(y) \leq e$.
- We introduce a new martingale with associate quadratic sum G_{n}, we use Hölder inequality and Cauchy Shwartz inequality to get

$$
T\left(x_{n} y\right) \leq c_{q} N_{p}\left(\sqrt{S_{n}}\right)
$$

- By the first step of the proof we have that

$$
N_{q}\left(\sqrt{G_{n}}\right) \leq c_{q} N_{q}\left(T_{n}(y) \leq c_{q} N_{q}(y) \leq c_{q} e .\right.
$$

Proof of the left side inequality.

Proof.

- Choose $y \in L^{q}(T) \cap L^{2}(T)^{+}$with $N_{q}(y) \leq e$.
- We introduce a new martingale with associate quadratic sum G_{n}, we use Hölder inequality and Cauchy Shwartz inequality to get

$$
T\left(x_{n} y\right) \leq c_{q} N_{p}\left(\sqrt{S_{n}}\right)
$$

- By the first step of the proof we have that $N_{q}\left(\sqrt{G_{n}}\right) \leq c_{q} N_{q}\left(T_{n}(y) \leq c_{q} N_{q}(y) \leq c_{q} e\right.$.
- In summary, $T\left(x_{n} y\right) \leq c_{q} N_{p}\left(\sqrt{S_{n}}\right)$ for all y in $L^{q}(T) \cap L^{2}(T)^{+}$ with $N_{q}(y) \leq e$.

Proof of the left side inequality.

Proof.

- Choose $y \in L^{q}(T) \cap L^{2}(T)^{+}$with $N_{q}(y) \leq e$.
- We introduce a new martingale with associate quadratic sum G_{n}, we use Hölder inequality and Cauchy Shwartz inequality to get

$$
T\left(x_{n} y\right) \leq c_{q} N_{p}\left(\sqrt{S_{n}}\right)
$$

- By the first step of the proof we have that

$$
N_{q}\left(\sqrt{G_{n}}\right) \leq c_{q} N_{q}\left(T_{n}(y) \leq c_{q} N_{q}(y) \leq c_{q} e .\right.
$$

- In summary, $T\left(x_{n} y\right) \leq c_{q} N_{p}\left(\sqrt{S_{n}}\right)$ for all y in $L^{q}(T) \cap L^{2}(T)^{+}$ with $N_{q}(y) \leq e$.
- It follows from Dual formula that $N_{p}\left(x_{n}\right) \leq c_{q} N_{p}\left(\sqrt{S_{n}}\right)$.The conclusion would be clear putting $C_{p}=\frac{1}{c_{q}}$, which completes the proof of the theorem.

目 Y．Azouzi and M．Trabelsi，L^{p}－spaces with respect to conditional expectation on Riesz spaces，Submitted．
固 J．J．Grobler，Jensen＇s and martingale inequalities in Riesz spaces， Indag．Math．， 25 （2014），275－295．
國 W．C．Kuo，C．A．Labuschagne，and B．A．Watson，Discrete－time stochastic processes on Riesz spaces，Indag．Math．， 15 （2004）435－451．

嗇 W．A．J．Luxemburg and A．C．Zaanen，Riesz spaces I，North－Holland， Amsterdam－London， 1971.
W．C．Kuo，C．A．Labuschagne，and B．A．Watson，Conditional expectations on Riesz spaces，J．Math．Anal．Appl．， 303 （2005）， 509－521．

Thank you for your attention

