Extending Algebra Homomorphisms to Spectral Measures

(a Boolean Algebra approach)

Mehmet Orhon

University of New Hampshire, USA

(This is joint work with Marcel de Jeu and Xingni Jiang from the University of Leiden, Netherlands)

K compact Hausdorff space (or locally compact H. sp.)

C(K) real-valued continuous functions (or $C_0(K)$ real-valued cont. fns.that are 0 at ∞)

 Σ Borel σ -algebra of K

 $B(\Sigma)$ bounded real-valued Borel measurable functions on K

X Banach sp., L(X) bounded operators on X

E Banach lattice, $L_r(E)$ regular operators on E

 $m: A \rightarrow L(X)$ bounded algebra homomorphism,

where $A (C(K) \text{ or } C_0(K))$

Definition 1 A map $\phi : \Sigma \to L(X)$ is a spectral measure if it is a Boolean algebra homomorphism. Then ϕ is countably additive if it is countably additive in the strong operator topology on L(X)

That is for $u, v \in \Sigma$, one has $\phi(\chi_u \chi_v) = \phi(\chi_u)\phi(\chi_v)$ and $\phi(\chi_{u \cup v}) = \phi(\chi_u) + \phi(\chi_v) - \phi(\chi_u \chi_v)$

where χ_u is the characteristic function of $u \in \Sigma$.

Problem 2 Given $m : A \to L(X)$, what are the necessary and sufficient conditions such that there exists $\phi : B(\Sigma) \to L(X)$ (bounded algebra homomorphism) with (i) $\phi|_A = m$ and (ii) $\phi|_{\Sigma}$ is countably additive?

Problem 3 Consider the same problem when L(X) is replaced by $L_r(E)$ with the further requirement that mand ϕ should be **positive**.

Problem 4 Which Banach lattices E have affirmative answer to Problem 3 for every positive (bounded algebra homomorphism) $m : A \to L_r(E)$? Given $m: A \rightarrow L(X)$, define a bilinear map

$$A \times X \to X : (a, x) \rightsquigarrow m(a)(x) = ax$$

Consider its (First-)Arens extension ($a \in A, x \in X, x' \in X', x'' \in X'', a'' \in A''$)

(1)
$$x' \cdot a(x) = x'(ax)$$
, with $x' \cdot a \in X'$
(2) $\psi_{x'',x'}(a) = x''(x' \cdot a)$, with $\psi_{x'',x'} \in A'$
(3) $a'' \cdot x''(x') = a''(\psi_{x'',x'})$, with $a'' \cdot x'' \in X''$

Define
$$\widehat{m} : A'' \to L(X'') : \widehat{m}(a'')(x'') = a'' \cdot x''$$

then \widehat{m} is a (w*,w*-operator)-continuous bounded algebra homomorphism and $\widehat{m}(a) = m''(a)$

Lemma 5 TFAE:

1. $\widehat{m}(A'')(X) \subset X$,

2. For each $x \in X$, the map $A \to X$ defined by $a \to ax$ is weakly compact,

3. m has a unique extension to a bounded algebra homomorphism $\widehat{m}_X : A'' \to L(X)$ that is (w*,weakoperator)-cont. ($\widehat{m}_X(a'') = \widehat{m}(a'')|_X$).

We refer to the property in condition (2) above as A has weakly compact action on X.

Theorem 6 Let $m : A \to L(X)$ be a bounded algebra homomorphism. Then there exists a countably additive spectral measure $\phi : B(\Sigma) \to L(X)$ that extends m if and only if m induces weakly compact action of A in X. In such a case $\phi = \widehat{m}|_{B(\Sigma)}$.

Corollary 7 Let $m : A \to L_r(E)$ be a positive bounded algebra homomorphism. Then \widehat{m} is also positive. Furtermore there exists a positive countably additive spectral measure $\phi : B(\Sigma) \to L_r(E)$ that extends m if and only if m induces weakly compact action of A in E. In such a case $\phi = \widehat{m}|_{B(\Sigma)}$. Now we consider Problem 4. However the answer splits into two parts. To state the results we need to recall a definition.

Definition 8 (Wickstead) The center Z(E) of a Banach lattice is **topologically full** if for each positive $x \in E$, the norm closure of Z(E)x is an order ideal in E.

Theorem 9 Suppose E has a topologically full center. Then every positive bounded algebra homomorphism m: $C(K) \rightarrow L_r(E)$ extends to a positive countably additive spectral measure if and only if E has order continuous norm. But when we bring in homomorphisms on $C_0(K)$ as well the answer changes.

Theorem 10 Suppose E has a topologically full center. Then every positive bounded algebra homomorphism m: $A \rightarrow L_r(E)$ extends to a positive countably additive spectral measure if and only if E is a KB-space.

(This is joint work with Marcel de Jeu and Xingni Jiang from the University of Leiden, Netherlands)