Large sublattices in subsets of Banach lattices

T. Oikhberg

Positivity IX, Edmonton, Alberta, July 2017

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Question

Suppose A is a "large" subset of a Banach lattice X. Does $A \cup \{0\}$ contain large (closed) sublatices?

Convention: All spaces, lattices etc. are infinite dimensional, unless specified otherwise.

"Large" may mean that a sublattice is:

- Infinite dimensional.
- Dense in $A \cup \{0\}$.
- Has "many" generators, in the lattice sense (not in the topological sense). If S is a minimal set of generators of Z, S' is another set of generators, and S is infinite, then $|S| \leq |S'|$.

Question

Suppose A is a "large" subset of a Banach lattice X. Does $A \cup \{0\}$ contain large (closed) sublatices?

Convention: All spaces, lattices etc. are infinite dimensional, unless specified otherwise.

"Large" may mean that a sublattice is:

- Infinite dimensional.
- Dense in $A \cup \{0\}$.
- Has "many" generators, in the lattice sense (not in the topological sense). If S is a minimal set of generators of Z, S' is another set of generators, and S is infinite, then $|S| \leq |S'|$.

Question

Suppose A is a "large" subset of a Banach lattice X. Does $A \cup \{0\}$ contain large (closed) sublatices?

Convention: All spaces, lattices etc. are infinite dimensional, unless specified otherwise.

"Large" may mean that a sublattice is:

- Infinite dimensional.
- Dense in $A \cup \{0\}$.
- Has "many" generators, in the lattice sense (not in the topological sense). If S is a minimal set of generators of Z, S' is another set of generators, and S is infinite, then $|S| \leq |S'|$.

Question

Suppose A is a "large" subset of a Banach lattice X. Does $A \cup \{0\}$ contain large (closed) sublatices?

Convention: All spaces, lattices etc. are infinite dimensional, unless specified otherwise.

"Large" may mean that a sublattice is:

- Infinite dimensional.
- Dense in $A \cup \{0\}$.
- Has "many" generators, in the lattice sense (not in the topological sense). If S is a minimal set of generators of Z, S' is another set of generators, and S is infinite, then $|S| \leq |S'|$.

Question

Suppose A is a "large" subset of a Banach lattice X. Does $A \cup \{0\}$ contain large (closed) sublatices?

Convention: All spaces, lattices etc. are infinite dimensional, unless specified otherwise.

"Large" may mean that a sublattice is:

- Infinite dimensional.
- Dense in $A \cup \{0\}$.
- Has "many" generators, in the lattice sense (not in the topological sense). If S is a minimal set of generators of Z, S' is another set of generators, and S is infinite, then |S| ≤ |S'|.

Definition (Lineability and spaceability)

For a Banach space X, $A \subset X$ is:

- Lineable if $A \cup \{0\}$ contains a linear subspace.
- **Spaceable** if $A \cup \{0\}$ contains a closed linear subspace.
- Dense lineable if $A \cup \{0\}$ contains a linear subspace dense in $A \cup \{0\}$.

Definition (Lineability and spaceability)

For a Banach space X, $A \subset X$ is:

- Lineable if $A \cup \{0\}$ contains a linear subspace.
- **Spaceable** if $A \cup \{0\}$ contains a closed linear subspace.
- Dense lineable if $A \cup \{0\}$ contains a linear subspace dense in $A \cup \{0\}$.

Definition (Lineability and spaceability)

For a Banach space X, $A \subset X$ is:

- Lineable if $A \cup \{0\}$ contains a linear subspace.
- **Spaceable** if $A \cup \{0\}$ contains a closed linear subspace.
- Dense lineable if $A \cup \{0\}$ contains a linear subspace dense in $A \cup \{0\}$.

N. Kalton and A. Wilansky 1975: if A is a closed subspace of X, with $\dim X/A = \infty$, then $X \setminus A$ is spaceable (that is, $X \setminus A \cup \{0\}$ contains a closed infinite dimensional subspace).

L. Drewnowski 1984 (generalized by D. Kitson and R. Timoney 2011): if A is a non-closed operator range in X, then $X \setminus A$ is spaceable.

Let ND[0,1] be the space of nowhere differentiable functions in C[0,1].

(i) V. Fonf, V. Gurarii, and M. Kadets 1966-1999: *ND*[0,1] is spaceable.

(ii) L. Bernal-Gonzalez 2008: *ND*[0, 1] is densely lineable (contains a dense subspace).

N. Kalton and A. Wilansky 1975: if A is a closed subspace of X, with $\dim X/A = \infty$, then $X \setminus A$ is spaceable (that is, $X \setminus A \cup \{0\}$ contains a closed infinite dimensional subspace).

L. Drewnowski 1984 (generalized by D. Kitson and R. Timoney 2011): if A is a non-closed operator range in X, then $X \setminus A$ is spaceable.

Let ND[0,1] be the space of nowhere differentiable functions in C[0,1].

(i) V. Fonf, V. Gurarii, and M. Kadets 1966-1999: *ND*[0,1] is spaceable.

(ii) L. Bernal-Gonzalez 2008: ND[0, 1] is densely lineable (contains a dense subspace).

N. Kalton and A. Wilansky 1975: if A is a closed subspace of X, with $\dim X/A = \infty$, then $X \setminus A$ is spaceable (that is, $X \setminus A \cup \{0\}$ contains a closed infinite dimensional subspace).

L. Drewnowski 1984 (generalized by D. Kitson and R. Timoney 2011): if A is a non-closed operator range in X, then $X \setminus A$ is spaceable.

Let ND[0, 1] be the space of nowhere differentiable functions in C[0, 1].

(i) V. Fonf, V. Gurarii, and M. Kadets 1966-1999: *ND*[0, 1] is spaceable.

(ii) L. Bernal-Gonzalez 2008: ND[0, 1] is densely lineable (contains a dense subspace).

Definition (Latticeability)

Suppose X is a Banach lattice. A subset $A \subset X$ is (completely) latticeable if X contains a (closed) infinite dimensional sublattice Z so that $Z \subset A \cup \{0\}$.

Latticeability \sim lineability

Complete latticeability \sim spaceability

Definition (Latticeability)

Suppose X is a Banach lattice. A subset $A \subset X$ is (completely) latticeable if X contains a (closed) infinite dimensional sublattice Z so that $Z \subset A \cup \{0\}$.

Latticeability \sim lineability

Complete latticeability \sim spaceability

Theorem

(a) If Y is a closed subspace of a Banach lattice X with $\dim X/Y \ge n \in \mathbb{N}$, then \exists an n-dimensional sublattice $Z \subset X$ so that $Z \cap Y = \{0\}$. (b) Consequently, if Y is a closed subspace of a Banach lattice X with $\dim X/Y = \infty$, then $\forall n \in \mathbb{N} \exists$ an n-dimensional sublattice $Z \subset X$ s.t. $Z \cap Y = \{0\}$.

Question

Theorem

(a) If Y is a closed subspace of a Banach lattice X with $\dim X/Y \ge n \in \mathbb{N}$, then \exists an n-dimensional sublattice $Z \subset X$ so that $Z \cap Y = \{0\}$.

(b) Consequently, if Y is a closed subspace of a Banach lattice X with $\dim X/Y = \infty$, then $\forall n \in \mathbb{N} \exists$ an n-dimensional sublattice $Z \subset X$ s.t. $Z \cap Y = \{0\}$.

Question

Theorem

(a) If Y is a closed subspace of a Banach lattice X with $\dim X/Y \ge n \in \mathbb{N}$, then \exists an n-dimensional sublattice $Z \subset X$ so that $Z \cap Y = \{0\}$. (b) Consequently, if Y is a closed subspace of a Banach lattice X with $\dim X/Y = \infty$, then $\forall n \in \mathbb{N} \exists$ an n-dimensional sublattice $Z \subset X$ s.t. $Z \cap Y = \{0\}$.

Question

Theorem

(a) If Y is a closed subspace of a Banach lattice X with $\dim X/Y \ge n \in \mathbb{N}$, then \exists an n-dimensional sublattice $Z \subset X$ so that $Z \cap Y = \{0\}$. (b) Consequently, if Y is a closed subspace of a Banach lattice X with $\dim X/Y = \infty$, then $\forall n \in \mathbb{N} \exists$ an n-dimensional sublattice $Z \subset X$ s.t. $Z \cap Y = \{0\}$.

Question

An subspace Y of a Banach lattice X is called an ideal if, for any $y \in Y$, and any $x \in X$ satisfying $|x| \leq |y|$, we have $x \in Y$.

Theorem

Suppose Y is a closed ideal in X, with dim $X/Y = \infty$. Then X_+ contains disjoint non-zero elements $(x_i)_{i \in \mathbb{N}}$ so that $Y \cap Z = \{0\}$, where $Z = \overline{\text{span}}[(x_i)_{i \in \mathbb{N}}]$. In particular, $X \setminus Y$ is completely latticeable.

An subspace Y of a Banach lattice X is called an ideal if, for any $y \in Y$, and any $x \in X$ satisfying $|x| \leq |y|$, we have $x \in Y$.

Theorem

Suppose Y is a closed ideal in X, with dim $X/Y = \infty$. Then X_+ contains disjoint non-zero elements $(x_i)_{i \in \mathbb{N}}$ so that $Y \cap Z = \{0\}$, where $Z = \overline{\text{span}}[(x_i)_{i \in \mathbb{N}}]$. In particular, $X \setminus Y$ is completely latticeable.

Complements of closed subspaces

Theorem

Suppose Y is a fin. dim. subspace of a Banach lattice X. Then X_+ contains disjoint non-zero elements $(x_i)_{i \in \mathbb{N}}$ so that $Y \cap Z = \{0\}$, where Z is the closed ideal generated $(x_i)_{i \in \mathbb{N}}$:

$$Z = \left\{ z \in X : |z| \leq |x| \text{ for some } x \in \overline{\operatorname{span}}[(x_i)_{i \in \mathbb{N}}] \right\}$$

The result of this theorem is sharp.

Proposition

C[0,1] contains a closed inf. codim. subspace Y so that $(C[0,1] \setminus Y) \cup \{0\}$ contains no non-trivial ideals.

Complements of closed subspaces

Theorem

Suppose Y is a fin. dim. subspace of a Banach lattice X. Then X_+ contains disjoint non-zero elements $(x_i)_{i \in \mathbb{N}}$ so that $Y \cap Z = \{0\}$, where Z is the closed ideal generated $(x_i)_{i \in \mathbb{N}}$:

$$Z = \left\{ z \in X : |z| \leq |x| \text{ for some } x \in \overline{\operatorname{span}}[(x_i)_{i \in \mathbb{N}}] \right\}$$

The result of this theorem is sharp.

Proposition

C[0,1] contains a closed inf. codim. subspace Y so that $(C[0,1] \setminus Y) \cup \{0\}$ contains no non-trivial ideals.

Complements of closed subspaces

Theorem

Suppose Y is a fin. dim. subspace of a Banach lattice X. Then X_+ contains disjoint non-zero elements $(x_i)_{i \in \mathbb{N}}$ so that $Y \cap Z = \{0\}$, where Z is the closed ideal generated $(x_i)_{i \in \mathbb{N}}$:

$$Z = \left\{ z \in X : |z| \leq |x| \text{ for some } x \in \overline{\operatorname{span}}[(x_i)_{i \in \mathbb{N}}] \right\}$$

The result of this theorem is sharp.

Proposition

C[0,1] contains a closed inf. codim. subspace Y so that $(C[0,1]\setminus Y) \cup \{0\}$ contains no non-trivial ideals.

Complements of closed inf. codim. subspaces

Theorem

Suppose X is an infinite dimensional order continuous Banach lattices, and $Y \subset X$ is a closed infinite codimensional subspace. Then $X \setminus Y$ is completely latticeable.

Definition

X is order continuous if, for any net $x_{\alpha} \searrow 0$, we have $\lim_{\alpha} ||x_{\alpha}|| = 0$. Examples: L_p $(1 \le p < \infty)$, c_0 , but not C[0, 1].

Theorem

Suppose K is a compact subset of \mathbb{R}^n , $K_0 \subset K$, $X = \{x \in C(K) : x | _{K_0} = 0\}$. If $Y \subset X$ is a closed infinite codimensional subspace, then $X \setminus Y$ is completely latticeable.

Complements of closed inf. codim. subspaces

Theorem

Suppose X is an infinite dimensional order continuous Banach lattices, and $Y \subset X$ is a closed infinite codimensional subspace. Then $X \setminus Y$ is completely latticeable.

Definition

X is order continuous if, for any net $x_{\alpha} \searrow 0$, we have $\lim_{\alpha} ||x_{\alpha}|| = 0$. Examples: L_p $(1 \le p < \infty)$, c_0 , but not C[0, 1].

Theorem

Suppose K is a compact subset of \mathbb{R}^n , $K_0 \subset K$, $X = \{x \in C(K) : x | _{K_0} = 0\}$. If $Y \subset X$ is a closed infinite codimensional subspace, then $X \setminus Y$ is completely latticeable.

Complements of closed inf. codim. subspaces

Theorem

Suppose X is an infinite dimensional order continuous Banach lattices, and $Y \subset X$ is a closed infinite codimensional subspace. Then $X \setminus Y$ is completely latticeable.

Definition

X is order continuous if, for any net $x_{\alpha} \searrow 0$, we have $\lim_{\alpha} ||x_{\alpha}|| = 0$. Examples: L_p $(1 \le p < \infty)$, c_0 , but not C[0, 1].

Theorem

Suppose K is a compact subset of \mathbb{R}^n , $K_0 \subset K$, $X = \{x \in C(K) : x |_{K_0} = 0\}$. If $Y \subset X$ is a closed infinite codimensional subspace, then $X \setminus Y$ is completely latticeable.

.....

Suppose X is a sequence space – that is, the order structure is determined by a 1-unconditional basis $(\sigma_i)_{i \in \mathbb{N}}$.

Theorem

Suppose Y is a closed subspace of X, with $\dim X/Y = \infty$. Then there exist $k_1 < k_2 < \ldots$ so that

 $Y \cap \overline{\operatorname{span}}[(\sigma_{k_i})_{i \in \mathbb{N}}] = \{0\}.$

In particular, $X \setminus Y$ is completely latticeable.

Suppose X is a sequence space – that is, the order structure is determined by a 1-unconditional basis $(\sigma_i)_{i \in \mathbb{N}}$.

Theorem

Suppose Y is a closed subspace of X, with $\dim X/Y = \infty$. Then there exist $k_1 < k_2 < \ldots$ so that

$$Y \cap \overline{\operatorname{span}}[(\sigma_{k_i})_{i \in \mathbb{N}}] = \{0\}.$$

In particular, $X \setminus Y$ is completely latticeable.

Proposition

Suppose X is either ℓ_p $(1 or <math>c_0$, and Y is a closed subspace of X, with dim $X/Y = \infty$. Then $X \setminus Y$ is completely latticeable. Moreover, there exists a closed sublattice $Z \subset X$ and a constant c so that $||z + y|| \ge c||z||$ for any $z \in Z$ and $y \in Y$.

Remark

Proposition fails for $X = \ell_1$.

Proposition

Suppose X is either ℓ_p $(1 or <math>c_0$, and Y is a closed subspace of X, with dim $X/Y = \infty$. Then $X \setminus Y$ is completely latticeable. Moreover, there exists a closed sublattice $Z \subset X$ and a constant c so that $||z + y|| \ge c||z||$ for any $z \in Z$ and $y \in Y$.

Remark

Proposition fails for $X = \ell_1$.

L. Drewnowski 1984 (generalized by D. Kitson and R. Timoney 2011): if A is a non-closed operator range in X, then $X \setminus A$ is spaceable.

Theorem

Suppose A is a relatively compact set in an infinite dimensional Banach lattice X. Then $X \setminus \mathbb{R}A$ is completely latticeable.

Corollary

If X is an infinite dimensional Banach lattice, and $Y \subset X$ is the range of a compact operator, then $X \setminus Y$ is completely latticeable.

L. Drewnowski 1984 (generalized by D. Kitson and R. Timoney 2011): if A is a non-closed operator range in X, then $X \setminus A$ is spaceable.

Theorem

Suppose A is a relatively compact set in an infinite dimensional Banach lattice X. Then $X \setminus \mathbb{R}A$ is completely latticeable.

Corollary

If X is an infinite dimensional Banach lattice, and $Y \subset X$ is the range of a compact operator, then $X \setminus Y$ is completely latticeable.

L. Drewnowski 1984 (generalized by D. Kitson and R. Timoney 2011): if A is a non-closed operator range in X, then $X \setminus A$ is spaceable.

Theorem

Suppose A is a relatively compact set in an infinite dimensional Banach lattice X. Then $X \setminus \mathbb{R}A$ is completely latticeable.

Corollary

If X is an infinite dimensional Banach lattice, and $Y \subset X$ is the range of a compact operator, then $X \setminus Y$ is completely latticeable.

Theorem

For $0 , there exists a vector lattice <math>Z \subset \ell_p \setminus (\bigcup_{q < p} \ell_q) \cup \{0\}$ (or $Z \subset c_0 \setminus (\bigcup_{q < \infty} \ell_q) \cup \{0\}$ if $p = \infty$) so that:

1
$$\overline{Z} = \ell_p$$
 (c_0 if $p = \infty$).
2 If a set S generates Z as a vector lattice, then $|S| \ge 2^{\aleph_0}$.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Suppose X is an infinite dimensional order continuous Banach lattice, and $Y \subset X$ is a closed infinite codimensional subspace. Then $X \setminus Y$ is completely latticeable.

Lemma (Technical lemma, see Singer, Bases II)

Suppose Y is a closed subspace of a Banach lattice X, and \exists mutually disjoint $x_1, x_2, \ldots \in X_+ \setminus \{0\}$ s.t. $Y \cap \operatorname{span}[x_1, x_2, \ldots] = \{0\}$. Then $\exists i_1 < i_2 < \ldots$ with $Y \cap \overline{\operatorname{span}}[x_{i_1}, x_{i_2}, \ldots] = \{0\}$. Consequently, $X \setminus Y$ is completely latticeable.

Strategy for proving Theorem: find mutually disjoint $x_1, x_2, \ldots \in X_+ \setminus \{0\}$ s.t. $Y \cap \operatorname{span}[x_1, x_2, \ldots] = \{0\}$

Suppose X is an infinite dimensional order continuous Banach lattice, and $Y \subset X$ is a closed infinite codimensional subspace. Then $X \setminus Y$ is completely latticeable.

Lemma (Technical lemma, see Singer, Bases II)

Suppose Y is a closed subspace of a Banach lattice X, and \exists mutually disjoint $x_1, x_2, \ldots \in X_+ \setminus \{0\}$ s.t. $Y \cap \operatorname{span}[x_1, x_2, \ldots] = \{0\}$. Then $\exists i_1 < i_2 < \ldots$ with $Y \cap \overline{\operatorname{span}}[x_{i_1}, x_{i_2}, \ldots] = \{0\}$. Consequently, $X \setminus Y$ is completely latticeable.

Strategy for proving Theorem: find mutually disjoint $x_1, x_2, \ldots \in X_+ \setminus \{0\}$ s.t. $Y \cap \operatorname{span}[x_1, x_2, \ldots] = \{0\}$

Suppose X is an infinite dimensional order continuous Banach lattice, and $Y \subset X$ is a closed infinite codimensional subspace. Then $X \setminus Y$ is completely latticeable.

Lemma (Technical lemma, see Singer, Bases II)

Suppose Y is a closed subspace of a Banach lattice X, and \exists mutually disjoint $x_1, x_2, \ldots \in X_+ \setminus \{0\}$ s.t. $Y \cap \operatorname{span}[x_1, x_2, \ldots] = \{0\}$. Then $\exists i_1 < i_2 < \ldots$ with $Y \cap \overline{\operatorname{span}}[x_{i_1}, x_{i_2}, \ldots] = \{0\}$. Consequently, $X \setminus Y$ is completely latticeable.

Strategy for proving Theorem: find mutually disjoint $x_1, x_2, \ldots \in X_+ \setminus \{0\}$ s.t. $Y \cap \operatorname{span}[x_1, x_2, \ldots] = \{0\}$.

Theorem (to be proved)

Suppose X is an infinite dimensional order continuous Banach lattice, and $Y \subset X$ is a closed infinite codimensional subspace. Then $X \setminus Y$ is completely latticeable.

It suffices to consider the situation when X has a weak order unit. Then X is a Köthe function space on (Ω, Σ, μ) , where μ is a σ -finite measure on the measure space (Ω, Σ) .

For simplicity, we assume that μ is an atomless probability measure.

Notation. For $Z \subset X$, and $S \in \Sigma$, set $Z_S = \{z \in Z : z | _{S^c} = 0\}$.

Lemma

Theorem (to be proved)

Suppose X is an infinite dimensional order continuous Banach lattice, and $Y \subset X$ is a closed infinite codimensional subspace. Then $X \setminus Y$ is completely latticeable.

It suffices to consider the situation when X has a weak order unit. Then X is a Köthe function space on (Ω, Σ, μ) , where μ is a σ -finite measure on the measure space (Ω, Σ) .

For simplicity, we assume that μ is an atomless probability measure. **Notation.** For $Z \subset X$, and $S \in \Sigma$, set $Z_S = \{z \in Z : z | _{S^c} = 0\}$.

Lemma

Theorem (to be proved)

Suppose X is an infinite dimensional order continuous Banach lattice, and $Y \subset X$ is a closed infinite codimensional subspace. Then $X \setminus Y$ is completely latticeable.

It suffices to consider the situation when X has a weak order unit. Then X is a Köthe function space on (Ω, Σ, μ) , where μ is a σ -finite measure on the measure space (Ω, Σ) .

For simplicity, we assume that μ is an atomless probability measure.

Notation. For $Z \subset X$, and $S \in \Sigma$, set $Z_S = \{z \in Z : z | _{S^c} = 0\}$.

Lemma

Theorem (to be proved)

Suppose X is an infinite dimensional order continuous Banach lattice, and $Y \subset X$ is a closed infinite codimensional subspace. Then $X \setminus Y$ is completely latticeable.

It suffices to consider the situation when X has a weak order unit. Then X is a Köthe function space on (Ω, Σ, μ) , where μ is a σ -finite measure on the measure space (Ω, Σ) .

For simplicity, we assume that μ is an atomless probability measure.

Notation. For $Z \subset X$, and $S \in \Sigma$, set $Z_S = \{z \in Z : z | _{S^c} = 0\}$.

Lemma

Theorem (to be proved)

Suppose X is an infinite dimensional order continuous Banach lattice, and $Y \subset X$ is a closed infinite codimensional subspace. Then $X \setminus Y$ is completely latticeable.

It suffices to consider the situation when X has a weak order unit. Then X is a Köthe function space on (Ω, Σ, μ) , where μ is a σ -finite measure on the measure space (Ω, Σ) .

For simplicity, we assume that μ is an atomless probability measure.

Notation. For $Z \subset X$, and $S \in \Sigma$, set $Z_S = \{z \in Z : z | S^c = 0\}$.

Lemma

For X, Y, S as above, either $\dim X_S/Y_S = \infty$, or $\dim X_{S^c}/Y_{S^c} = \infty$.

Lemma

 $\forall n \in \mathbb{N} \exists S \in \Sigma \text{ s.t. } \dim X_S/Y_S \geq n, \text{ and } \dim X_{S^c}/Y_{S^c} = \infty.$

Sketch of proof. Find a family of sets $U_t \in \Sigma$ $(t \in [0, 1])$ s.t.

• $U_0 = \emptyset$, $U_1 = \Omega$, and $\mu(U_t) = t$ for any t.

If t < s, then $U_t \subset U_s$.

Set $\phi(t) = \dim X_{U_t}/Y_{U_t}$. ϕ is increasing, left continuous. Thus, $\exists \alpha \in [0,1)$ s.t. $\{t \in [0,1] : \dim X_{U_t}/Y_{U_t} \ge n\} = (\alpha, 1]$. Similarly, $\exists \beta \in (0,1]$ s.t. $\{t \in [0,1] : \dim X_{U_t^c}/Y_{U_t^c} \ge n\} = [0,\beta)$. We have $\max\{\dim X_{U_t}/Y_{U_t}, \dim X_{U_t^c}/Y_{U_t^c}\} = \infty$, hence $[0,\beta) \cup (\alpha,1] = [0,1]$. Pick $t \in (\beta,\alpha)$, and take either $S = U_t$, or $S = U_{t^c}$.

Lemma

 $\forall n \in \mathbb{N} \exists S \in \Sigma \text{ s.t. } \dim X_S/Y_S \geq n, \text{ and } \dim X_{S^c}/Y_{S^c} = \infty.$

Sketch of proof. Find a family of sets $U_t \in \Sigma$ ($t \in [0, 1]$) s.t.

- $U_0 = \emptyset$, $U_1 = \Omega$, and $\mu(U_t) = t$ for any t.
- If t < s, then $U_t \subset U_s$.

Set $\phi(t) = \dim X_{U_t}/Y_{U_t}$. ϕ is increasing, left continuous. Thus, $\exists \alpha \in [0,1)$ s.t. $\{t \in [0,1] : \dim X_{U_t}/Y_{U_t} \ge n\} = (\alpha,1]$. Similarly, $\exists \beta \in (0,1]$ s.t. $\{t \in [0,1] : \dim X_{U_t^c}/Y_{U_t^c} \ge n\} = [0,\beta)$. We have $\max\{\dim X_{U_t}/Y_{U_t}, \dim X_{U_t^c}/Y_{U_t^c}\} = \infty$, hence $[0,\beta) \cup (\alpha,1] = [0,1]$. Pick $t \in (\beta,\alpha)$, and take either $S = U_t$, or $S = U_{t^c}$.

Lemma

 $\forall n \in \mathbb{N} \exists S \in \Sigma \text{ s.t. } \dim X_S/Y_S \geq n, \text{ and } \dim X_{S^c}/Y_{S^c} = \infty.$

Sketch of proof. Find a family of sets $U_t \in \Sigma$ ($t \in [0, 1]$) s.t.

•
$$U_0 = \emptyset$$
, $U_1 = \Omega$, and $\mu(U_t) = t$ for any t .

If
$$t < s$$
, then $U_t \subset U_s$.

Set $\phi(t) = \dim X_{U_t}/Y_{U_t}$. ϕ is increasing, left continuous. Thus, $\exists \alpha \in [0,1)$ s.t. $\{t \in [0,1] : \dim X_{U_t}/Y_{U_t} \ge n\} = (\alpha,1]$. Similarly, $\exists \beta \in (0,1]$ s.t. $\{t \in [0,1] : \dim X_{U_t^c}/Y_{U_t^c} \ge n\} = [0,\beta)$. We have $\max\{\dim X_{U_t}/Y_{U_t}, \dim X_{U_t^c}/Y_{U_t^c}\} = \infty$, hence $[0,\beta) \cup (\alpha,1] = [0,1]$. Pick $t \in (\beta,\alpha)$, and take either $S = U_t$, or $S = U_{t^c}$.

Lemma

 $\forall n \in \mathbb{N} \exists S \in \Sigma \text{ s.t. } \dim X_S/Y_S \geq n, \text{ and } \dim X_{S^c}/Y_{S^c} = \infty.$

Sketch of proof. Find a family of sets $U_t \in \Sigma$ ($t \in [0, 1]$) s.t.

•
$$U_0 = \emptyset$$
, $U_1 = \Omega$, and $\mu(U_t) = t$ for any t .

If
$$t < s$$
, then $U_t \subset U_s$.

Set $\phi(t) = \dim X_{U_t}/Y_{U_t}$. ϕ is increasing, left continuous. Thus, $\exists \alpha \in [0, 1) \text{ s.t. } \{t \in [0, 1] : \dim X_{U_t}/Y_{U_t} \ge n\} = (\alpha, 1]$. Similarly, $\exists \beta \in (0, 1] \text{ s.t. } \{t \in [0, 1] : \dim X_{U_t^c}/Y_{U_t^c} \ge n\} = [0, \beta)$.

We have $\max\{\dim X_{U_t}/Y_{U_t}, \dim X_{U_t^c}/Y_{U_t^c}\} = \infty$, hence $[0,\beta) \cup (\alpha,1] = [0,1]$. Pick $t \in (\beta,\alpha)$, and take either $S = U_t$, or $S = U_{t^c}$.

Lemma

 $\forall n \in \mathbb{N} \exists S \in \Sigma \text{ s.t. } \dim X_S/Y_S \geq n, \text{ and } \dim X_{S^c}/Y_{S^c} = \infty.$

Sketch of proof. Find a family of sets $U_t \in \Sigma$ $(t \in [0, 1])$ s.t.

•
$$U_0 = \emptyset$$
, $U_1 = \Omega$, and $\mu(U_t) = t$ for any t .

If
$$t < s$$
, then $U_t \subset U_s$.

Set $\phi(t) = \dim X_{U_t}/Y_{U_t}$. ϕ is increasing, left continuous. Thus, $\exists \alpha \in [0,1)$ s.t. $\{t \in [0,1] : \dim X_{U_t}/Y_{U_t} \ge n\} = (\alpha, 1]$. Similarly, $\exists \beta \in (0,1]$ s.t. $\{t \in [0,1] : \dim X_{U_t^c}/Y_{U_t^c} \ge n\} = [0,\beta)$. We have max $\{\dim X_{U_t}/Y_{U_t}, \dim X_{U_t^c}/Y_{U_t^c}\} = \infty$, hence $[0,\beta) \cup (\alpha,1] = [0,1]$. Pick $t \in (\beta,\alpha)$, and take either $S = U_t$, or $S = U_{t^c}$.

Theorem (to be proved)

Suppose X is an infinite dimensional order continuous Banach lattice, and $Y \subset X$ is a closed infinite codimensional subspace. Then $X \setminus Y$ is completely latticeable.

Sketch of proof. Assume X is a Köthe function space on (Ω, Σ, μ) , where μ is an atomless probability measure. Need to find mutually disjoint $x_1, x_2, \ldots \in X_+ \setminus \{0\}$ s.t. $Y \cap \operatorname{span}[x_1, x_2, \ldots] = \{0\}.$

Recursively find $x_1, x_2, \ldots \in X_+ \setminus \{0\}$, and mutually disjoint $S_1, S_2, \ldots \subset \Omega$ so that:

- $\forall i, x_i \text{ is supported on } S_i$.
- $\forall n, \dim X_S/Y_S = \infty$, where $S = (S_1 \cup \ldots \cup S_n)^c$.
- $\forall n, x_1, \ldots, x_n$ are linearly independent modulo Y.

Theorem (to be proved)

Suppose X is an infinite dimensional order continuous Banach lattice, and $Y \subset X$ is a closed infinite codimensional subspace. Then $X \setminus Y$ is completely latticeable.

Sketch of proof. Assume X is a Köthe function space on (Ω, Σ, μ) , where μ is an atomless probability measure. Need to find mutually disjoint $x_1, x_2, \ldots \in X_+ \setminus \{0\}$ s.t. $Y \cap \operatorname{span}[x_1, x_2, \ldots] = \{0\}.$

Recursively find $x_1, x_2, \ldots \in X_+ \setminus \{0\}$, and mutually disjoint $S_1, S_2, \ldots \subset \Omega$ so that:

- $\forall i, x_i \text{ is supported on } S_i$.
- $\forall n, \dim X_S/Y_S = \infty$, where $S = (S_1 \cup \ldots \cup S_n)^c$.
- $\forall n, x_1, \ldots, x_n$ are linearly independent modulo Y.

Suppose X is an infinite dimensional order continuous Banach lattice, and $Y \subset X$ is a closed infinite codimensional subspace. Then $X \setminus Y$ is completely latticeable.

Sketch of proof. Assume X is a Köthe function space on (Ω, Σ, μ) , where μ is an atomless probability measure. Need to find mutually disjoint $x_1, x_2, \ldots \in X_+ \setminus \{0\}$ s.t. $Y \cap \operatorname{span}[x_1, x_2, \ldots] = \{0\}.$

Recursively find $x_1, x_2, \ldots \in X_+ \setminus \{0\}$, and mutually disjoint $S_1, S_2, \ldots \subset \Omega$ so that:

- $\forall i, x_i \text{ is supported on } S_i$.
- $\forall n, \dim X_S/Y_S = \infty$, where $S = (S_1 \cup \ldots \cup S_n)^c$.
- $\forall n, x_1, \ldots, x_n$ are linearly independent modulo Y.

Need to find mutually disjoint $x_1, x_2, \ldots \in X_+ \setminus \{0\}$ s.t. $Y \cap \operatorname{span}[x_1, x_2, \ldots] = \{0\}.$

Recursively find $x_1, x_2, \ldots \in X_+ \setminus \{0\}$, and mutually disjoint $S_1, S_2, \ldots \subset \Omega$ so that:

- $\forall i, x_i \text{ is supported on } S_i$.
- $\forall n, \dim X_S/Y_S = \infty$, where $S = (S_1 \cup \ldots \cup S_n)^c$.
- $\forall n, x_1, \ldots, x_n$ are linearly independent modulo Y.

Once $x_1, \ldots, x_n, S_1, \ldots, S_n$ are selected: find $S_{n+1} \subset S = (S_1 \cup \ldots \cup S_n)^c$ s.t. $\dim X_{S_{n+1}}/Y_{S_{n+1}} \ge n+1$, $\dim X_{S \setminus S_{n+1}}/Y_{S \setminus S_{n+1}} = \infty$. Pick a "right" x_{n+1} , supported on S_{n+1} .

Need to find mutually disjoint $x_1, x_2, \ldots \in X_+ \setminus \{0\}$ s.t. $Y \cap \operatorname{span}[x_1, x_2, \ldots] = \{0\}.$

Recursively find $x_1, x_2, \ldots \in X_+ \setminus \{0\}$, and mutually disjoint $S_1, S_2, \ldots \subset \Omega$ so that:

- $\forall i, x_i \text{ is supported on } S_i$.
- $\forall n, \dim X_S/Y_S = \infty$, where $S = (S_1 \cup \ldots \cup S_n)^c$.
- $\forall n, x_1, \ldots, x_n$ are linearly independent modulo Y.

Once $x_1, \ldots, x_n, S_1, \ldots, S_n$ are selected: find $S_{n+1} \subset S = (S_1 \cup \ldots \cup S_n)^c$ s.t. $\dim X_{S_{n+1}}/Y_{S_{n+1}} \ge n+1$, $\dim X_{S \setminus S_{n+1}}/Y_{S \setminus S_{n+1}} = \infty$. Pick a "right" x_{n+1} , supported on S_{n+1} .

Need to find mutually disjoint $x_1, x_2, \ldots \in X_+ \setminus \{0\}$ s.t. $Y \cap \operatorname{span}[x_1, x_2, \ldots] = \{0\}.$

Recursively find $x_1, x_2, \ldots \in X_+ \setminus \{0\}$, and mutually disjoint $S_1, S_2, \ldots \subset \Omega$ so that:

- $\forall i, x_i \text{ is supported on } S_i$.
- $\forall n, \dim X_S/Y_S = \infty$, where $S = (S_1 \cup \ldots \cup S_n)^c$.
- $\forall n, x_1, \ldots, x_n$ are linearly independent modulo Y.

Once $x_1, \ldots, x_n, S_1, \ldots, S_n$ are selected: find $S_{n+1} \subset S = (S_1 \cup \ldots \cup S_n)^c$ s.t. $\dim X_{S_{n+1}}/Y_{S_{n+1}} \ge n+1$, $\dim X_{S \setminus S_{n+1}}/Y_{S \setminus S_{n+1}} = \infty$. Pick a "right" x_{n+1} , supported on S_{n+1} .

If Y is a closed subspace of a Banach lattice X with $\dim X/Y \ge n \in \mathbb{N}$, then there exists an n-dimensional sublattice $Z \subset X$ so that $Z \cap Y = \{0\}$.

Definition

A Banach lattice X is Dedekind (or order) complete if any subset of X, which has an upper bound, has a supremum.

Examples of Dedekind complete lattices: L_p ($1 \le p \le \infty$), dual Banach lattices. C[0, 1] is not Dedekind complete.

If Y is a closed subspace of a Banach lattice X with $\dim X/Y \ge n \in \mathbb{N}$, then there exists an n-dimensional sublattice $Z \subset X$ so that $Z \cap Y = \{0\}$.

Definition

A Banach lattice X is Dedekind (or order) complete if any subset of X, which has an upper bound, has a supremum.

Examples of Dedekind complete lattices: L_p ($1 \le p \le \infty$), dual Banach lattices. C[0, 1] is not Dedekind complete.

If Y is a closed subspace of a Banach lattice X with $\dim X/Y \ge n \in \mathbb{N}$, then there exists an n-dimensional sublattice $Z \subset X$ so that $Z \cap Y = \{0\}$.

Definition

A Banach lattice X is Dedekind (or order) complete if any subset of X, which has an upper bound, has a supremum.

Examples of Dedekind complete lattices: L_p ($1 \le p \le \infty$), dual Banach lattices. C[0,1] is not Dedekind complete.

If Y is a closed subspace of a Banach lattice X with $\dim X/Y \ge n \in \mathbb{N}$, then there exists an n-dimensional sublattice $Z \subset X$ so that $Z \cap Y = \{0\}$.

Definition

A Banach lattice X is Dedekind (or order) complete if any subset of X, which has an upper bound, has a supremum.

Examples of Dedekind complete lattices: L_p ($1 \le p \le \infty$), dual Banach lattices. C[0, 1] is not Dedekind complete.

If Y is a closed subspace of a Banach lattice X with $\dim X/Y \ge n \in \mathbb{N}$, then there exists an n-dimensional sublattice $Z \subset X$ so that $Z \cap Y = \{0\}$.

Proof when X **is Dedekind complete.**

(1) If G is a subspace of a fin. dim. Banach lattice F, then \exists a sublattice $Z \subset F$, s.t. $Z \cap G = \{0\}$, dim $Z + \dim G = \dim F$. Proof: identify F with \mathbb{R}^m ($m = \dim F$), use linear algebra.

If Y is a closed subspace of a Banach lattice X with $\dim X/Y \ge n \in \mathbb{N}$, then there exists an n-dimensional sublattice $Z \subset X$ so that $Z \cap Y = \{0\}$.

Proof when X **is Dedekind complete.**

(1) If G is a subspace of a fin. dim. Banach lattice F, then \exists a sublattice $Z \subset F$, s.t. $Z \cap G = \{0\}$, dim $Z + \dim G = \dim F$.

Proof: identify F with \mathbb{R}^m ($m = \dim F$), use linear algebra.

If Y is a closed subspace of a Banach lattice X with $\dim X/Y \ge n \in \mathbb{N}$, then there exists an n-dimensional sublattice $Z \subset X$ so that $Z \cap Y = \{0\}$.

Proof when X **is Dedekind complete.**

(1) If G is a subspace of a fin. dim. Banach lattice F, then \exists a sublattice $Z \subset F$, s.t. $Z \cap G = \{0\}$, dim $Z + \dim G = \dim F$. Proof: identify F with \mathbb{R}^m ($m = \dim F$), use linear algebra.

If Y is a closed subspace of a Banach lattice X with $\dim X/Y \ge n \in \mathbb{N}$, then there exists an n-dimensional sublattice $Z \subset X$ so that $Z \cap Y = \{0\}$.

Proof when *X* **is Dedekind complete.**

(2) Fact: if E is a fin. dim. subspace of a Dedekind complete Banach lattice X, and $\varepsilon > 0$, then \exists a fin. dim. sublattice $F \subset X$ and an automorphism $T : X \to X$ s.t. $TE \subset F$, $||I - T|| < \varepsilon$.

Find a subspace $E \subset X$ s.t. dim E = n, $E \cap Y = \{0\}$. Use (2) to find a fin. dim. sublattice $F \subset X$ and $T \in B(X)$ as above s.t. $TE \cap Y = \{0\}$. Then dim $F/G \ge n$, where $G = Y \cap F$. Use (1) to find a sublattice $Z \subset F$ s.t. dim Z = n, $Z \cap G = \{0\}$. Then $Z \cap Y = \{0\}$.

If Y is a closed subspace of a Banach lattice X with $\dim X/Y \ge n \in \mathbb{N}$, then there exists an n-dimensional sublattice $Z \subset X$ so that $Z \cap Y = \{0\}$.

Proof when *X* **is Dedekind complete.**

(2) Fact: if *E* is a fin. dim. subspace of a Dedekind complete Banach lattice *X*, and $\varepsilon > 0$, then \exists a fin. dim. sublattice $F \subset X$ and an automorphism $T : X \to X$ s.t. $TE \subset F$, $||I - T|| < \varepsilon$.

Find a subspace $E \subset X$ s.t. dim E = n, $E \cap Y = \{0\}$. Use (2) to find a fin. dim. sublattice $F \subset X$ and $T \in B(X)$ as above s.t. $TE \cap Y = \{0\}$. Then dim $F/G \ge n$, where $G = Y \cap F$. Use (1) to find a sublattice $Z \subset F$ s.t. dim Z = n, $Z \cap G = \{0\}$. Then $Z \cap Y = \{0\}$.

If Y is a closed subspace of a Banach lattice X with $\dim X/Y \ge n \in \mathbb{N}$, then there exists an n-dimensional sublattice $Z \subset X$ so that $Z \cap Y = \{0\}$.

Proof when *X* **is Dedekind complete.**

(2) Fact: if *E* is a fin. dim. subspace of a Dedekind complete Banach lattice *X*, and $\varepsilon > 0$, then \exists a fin. dim. sublattice $F \subset X$ and an automorphism $T: X \to X$ s.t. $TE \subset F$, $||I - T|| < \varepsilon$. Find a subspace $E \subset X$ s.t. dim E = n, $E \cap Y = \{0\}$. Use (2) to find a fin. dim. sublattice $F \subset X$ and $T \in B(X)$ as above s.t. $TE \cap Y = \{0\}$. Then dim $F/G \ge n$, where $G = Y \cap F$. Use (1) to find a sublattice $Z \subset F$ s.t. dim Z = n, $Z \cap G = \{0\}$. Then $Z \cap Y = \{0\}$.

Proof: complements of *n*-codimensional subspaces

Theorem (to be proved)

If Y is a closed subspace of a Banach lattice X with $\dim X/Y \ge n \in \mathbb{N}$, then there exists an n-dimensional sublattice $Z \subset X$ so that $Z \cap Y = \{0\}$.

Proof for general *X*. *X*^{**} is Dedekind complete, hence \exists *n*-dimensional sublattice $W \subset X^{**}$ s.t. $W \cap Y^{\perp \perp} = \{0\}$. Find $c \in (0, 1/9)$ s.t. $\operatorname{dist}(w, Y^{\perp \perp}) \ge 3c ||w|| \forall w \in W$. Find $x_1^*, \dots, x_N^* \in \mathbf{B}(Y^{\perp}) \subset X^*$ s.t.

$$\max_{1\leqslant i\leqslant N} |\langle x_i^*, w \rangle| \ge 2c ||w|| \quad \forall w \in W.$$

Let $V = \{x^{**} \in X^{**} : \max_{1 \leq i \leq N} |\langle x_i^*, w \rangle| < c\}.$

Local reflexivity: \exists lattice homomorphism $T : W \to Z \subset X$ s.t. $||T||, ||T^{-1}|| < 1 + \varepsilon$, and $(I - T)\mathbf{B}(W) \subset \varepsilon \bigvee_{\mathbf{n}} \Rightarrow Z \cap \bigvee_{\mathbf{n}} = \{0\}$.

If Y is a closed subspace of a Banach lattice X with $\dim X/Y \ge n \in \mathbb{N}$, then there exists an n-dimensional sublattice $Z \subset X$ so that $Z \cap Y = \{0\}$.

Proof for general *X*. *X*^{**} is Dedekind complete, hence \exists *n*-dimensional sublattice $W \subset X^{**}$ s.t. $W \cap Y^{\perp \perp} = \{0\}$.

Find $c \in (0, 1/9)$ s.t. $\operatorname{dist}(w, Y^{\perp \perp}) \ge 3c \|w\| \forall w \in W$. Find $x_1^*, \ldots, x_N^* \in \mathbf{B}(Y^{\perp}) \subset X^*$ s.t.

$$\max_{1 \leq i \leq N} |\langle x_i^*, w \rangle| \ge 2c ||w|| \quad \forall w \in W.$$

Let $V = \{x^{**} \in X^{**} : \max_{1 \leq i \leq N} |\langle x_i^*, w \rangle| < c\}.$

Local reflexivity: \exists lattice homomorphism $T : W \to Z \subset X$ s.t. $||T||, ||T^{-1}|| < 1 + \varepsilon$, and $(I - T)\mathbf{B}(W) \subset \varepsilon \bigvee_{\mathbf{n}} \Rightarrow Z \cap \bigvee_{\mathbf{n}} = \{0\}$.

If Y is a closed subspace of a Banach lattice X with $\dim X/Y \ge n \in \mathbb{N}$, then there exists an n-dimensional sublattice $Z \subset X$ so that $Z \cap Y = \{0\}$.

Proof for general *X*. *X*^{**} is Dedekind complete, hence \exists *n*-dimensional sublattice $W \subset X^{**}$ s.t. $W \cap Y^{\perp \perp} = \{0\}$.

Find $c \in (0, 1/9)$ s.t. $\operatorname{dist}(w, Y^{\perp \perp}) \ge 3c ||w|| \forall w \in W$. Find $x_1^*, \ldots, x_N^* \in \mathbf{B}(Y^{\perp}) \subset X^*$ s.t.

$$\max_{1\leqslant i\leqslant N} |\langle x_i^*,w\rangle| \geqslant 2c ||w|| \quad \forall w \in W.$$

Let $V = \left\{ x^{**} \in X^{**} : \max_{1 \leq i \leq N} \left| \langle x_i^*, w \rangle \right| < c \right\}.$

Local reflexivity: \exists lattice homomorphism $T : W \to Z \subset X$ s.t. $||T||, ||T^{-1}|| < 1 + \varepsilon$, and $(I - T)\mathbf{B}(W) \subset \varepsilon \bigvee_{\mathbf{n}} \Rightarrow Z \cap \bigvee_{\mathbf{n}} = \{0\}$.

If Y is a closed subspace of a Banach lattice X with $\dim X/Y \ge n \in \mathbb{N}$, then there exists an n-dimensional sublattice $Z \subset X$ so that $Z \cap Y = \{0\}$.

Proof for general *X*. *X*^{**} is Dedekind complete, hence \exists *n*-dimensional sublattice $W \subset X^{**}$ s.t. $W \cap Y^{\perp \perp} = \{0\}$.

Find $c \in (0, 1/9)$ s.t. $\operatorname{dist}(w, Y^{\perp \perp}) \geq 3c \|w\| \forall w \in W$. Find $x_1^*, \ldots, x_N^* \in \mathbf{B}(Y^{\perp}) \subset X^*$ s.t.

$$\max_{1\leqslant i\leqslant N} |\langle x_i^*,w\rangle| \ge 2c ||w|| \quad \forall w \in W.$$

Let $V = \{x^{**} \in X^{**} : \max_{1 \leq i \leq N} |\langle x_i^*, w \rangle| < c\}.$ Local reflexivity: \exists lattice homomorphism $T : W \to Z \subset X$ s.t. $||T||, ||T^{-1}|| < 1 + \varepsilon$, and $(I - T)\mathbf{B}(W) \subset \varepsilon V_{c} \Rightarrow Z_{c} \cap Y_{c} = \{0\}.$ Based on:

- A note on latticeability and algebrability, J. Math. Anal. Appl., 2016.
- Large sublattices in subsets of Banach lattices, Arch. der Math., available online

Thank you for your attention!

Based on:

- A note on latticeability and algebrability, J. Math. Anal. Appl., 2016.
- Large sublattices in subsets of Banach lattices, Arch. der Math., available online

Thank you for your attention!