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Main question

Question

Suppose A is a “large” subset of a Banach lattice X . Does A∪ {0}
contain large (closed) sublatices?

Convention: All spaces, lattices etc. are infinite dimensional,
unless specified otherwise.

“Large” may mean that a sublattice is:

Infinite dimensional.

Dense in A ∪ {0}.
Has “many” generators, in the lattice sense (not in the
topological sense). If S is a minimal set of generators of Z , S ′

is another set of generators, and S is infinite, then |S | 6 |S ′|.
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Some history: Banach space case

Definition (Lineability and spaceability)

For a Banach space X , A ⊂ X is:

Lineable if A ∪ {0} contains a linear subspace.

Spaceable if A ∪ {0} contains a closed linear subspace.

Dense lineable if A ∪ {0} contains a linear subspace dense in
A ∪ {0}.
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Some history: Banach space case

N. Kalton and A. Wilansky 1975: if A is a closed subspace of X ,
with dimX/A =∞, then X\A is spaceable (that is, X\A ∪ {0}
contains a closed infinite dimensional subspace).

L. Drewnowski 1984 (generalized by D. Kitson and R. Timoney
2011): if A is a non-closed operator range in X , then X\A is
spaceable.

Let ND[0, 1] be the space of nowhere differentiable functions in
C [0, 1].

(i) V. Fonf, V. Gurarii, and M. Kadets 1966-1999: ND[0, 1] is
spaceable.

(ii) L. Bernal-Gonzalez 2008: ND[0, 1] is densely lineable (contains
a dense subspace).
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Banach lattices

Definition (Latticeability)

Suppose X is a Banach lattice. A subset A ⊂ X is (completely)
latticeable if X contains a (closed) infinite dimensional sublattice
Z so that Z ⊂ A ∪ {0}.

Latticeability ∼ lineability

Complete latticeability ∼ spaceability
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Complements of closed subspaces

Suppose Y is a closed subspace of a Banach lattice X . What kind
of sublattices does (X\Y ) ∪ {0} contain?

Theorem

(a) If Y is a closed subspace of a Banach lattice X with
dimX/Y > n ∈ N, then ∃ an n-dimensional sublattice Z ⊂ X so
that Z ∩ Y = {0}.
(b) Consequently, if Y is a closed subspace of a Banach lattice X
with dimX/Y =∞, then ∀n ∈ N ∃ an n-dimensional sublattice
Z ⊂ X s.t. Z ∩ Y = {0}.

Question

In (b), can Z be infinite dimensional?
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Complements of closed ideals

An subspace Y of a Banach lattice X is called an ideal if, for any
y ∈ Y , and any x ∈ X satisfying |x | 6 |y |, we have x ∈ Y .

Theorem

Suppose Y is a closed ideal in X , with dimX/Y =∞. Then X+

contains disjoint non-zero elements (xi )i∈N so that Y ∩ Z = {0},
where Z = span[(xi )i∈N]. In particular, X\Y is completely
latticeable.
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Complements of closed subspaces

Theorem

Suppose Y is a fin. dim. subspace of a Banach lattice X . Then X+

contains disjoint non-zero elements (xi )i∈N so that Y ∩ Z = {0},
where Z is the closed ideal generated (xi )i∈N:

Z =
{

z ∈ X : |z | 6 |x | for some x ∈ span[(xi )i∈N]
}

The result of this theorem is sharp.

Proposition

C [0, 1] contains a closed inf. codim. subspace Y so that
(C [0, 1]\Y ) ∪ {0} contains no non-trivial ideals.
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Complements of closed inf. codim. subspaces

Theorem

Suppose X is an infinite dimensional order continuous Banach
lattices, and Y ⊂ X is a closed infinite codimensional subspace.
Then X\Y is completely latticeable.

Definition

X is order continuous if, for any net xα ↘ 0, we have
limα ‖xα‖ = 0. Examples: Lp (1 6 p <∞), c0, but not C [0, 1].

Theorem

Suppose K is a compact subset of Rn, K0 ⊂ K ,
X = {x ∈ C (K ) : x |K0 = 0}. If Y ⊂ X is a closed infinite
codimensional subspace, then X\Y is completely latticeable.
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Complements of closed subspaces in atomic lattices

Suppose X is a sequence space – that is, the order structure is
determined by a 1-unconditional basis (σi )i∈N.

Theorem

Suppose Y is a closed subspace of X , with dimX/Y =∞. Then
there exist k1 < k2 < . . . so that

Y ∩ span
[
(σki )i∈N

]
= {0}.

In particular, X\Y is completely latticeable.
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Complements of closed subspaces in `p, c0

Proposition

Suppose X is either `p (1 < p <∞) or c0, and Y is a closed
subspace of X , with dimX/Y =∞. Then X\Y is completely
latticeable. Moreover, there exists a closed sublattice Z ⊂ X and a
constant c so that ‖z + y‖ > c‖z‖ for any z ∈ Z and y ∈ Y .

Remark

Proposition fails for X = `1.
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Complements of compact sets

L. Drewnowski 1984 (generalized by D. Kitson and R. Timoney
2011): if A is a non-closed operator range in X , then X\A is
spaceable.

Theorem

Suppose A is a relatively compact set in an infinite dimensional
Banach lattice X . Then X\RA is completely latticeable.

Corollary

If X is an infinite dimensional Banach lattice, and Y ⊂ X is the
range of a compact operator, then X\Y is completely latticeable.
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Complements of dense subspaces

Theorem

For 0 < p 6∞, there exists a vector lattice
Z ⊂ `p\(∪q<p`q) ∪ {0} (or Z ⊂ c0\(∪q<∞`q) ∪ {0} if p =∞) so
that:

1 Z = `p (c0 if p =∞).

2 If a set S generates Z as a vector lattice, then |S | > 2ℵ0 .



Proof: complements of inf. codim. subspaces

Theorem (to be proved)

Suppose X is an infinite dimensional order continuous Banach
lattice, and Y ⊂ X is a closed infinite codimensional subspace.
Then X\Y is completely latticeable.

Lemma (Technical lemma, see Singer, Bases II)

Suppose Y is a closed subspace of a Banach lattice X , and ∃
mutually disjoint x1, x2, . . . ∈ X+\{0} s.t.
Y ∩ span[x1, x2, . . .] = {0}. Then ∃ i1 < i2 < . . . with
Y ∩ span[xi1 , xi2 , . . .] = {0}. Consequently, X\Y is completely
latticeable.

Strategy for proving Theorem: find mutually disjoint
x1, x2, . . . ∈ X+\{0} s.t. Y ∩ span[x1, x2, . . .] = {0}.
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Proof: complements of inf. codim. subspaces

Theorem (to be proved)

Suppose X is an infinite dimensional order continuous Banach
lattice, and Y ⊂ X is a closed infinite codimensional subspace.
Then X\Y is completely latticeable.

It suffices to consider the situation when X has a weak order unit.
Then X is a Köthe function space on (Ω,Σ, µ), where µ is a
σ-finite measure on the measure space (Ω,Σ).

For simplicity, we assume that µ is an atomless probability measure.

Notation. For Z ⊂ X , and S ∈ Σ, set ZS = {z ∈ Z : z |Sc = 0}.

Lemma

For X ,Y , S as above, either dimXS/YS =∞, or
dimXSc/YSc =∞.
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Proof: complements of inf. codim. subspaces

Lemma

∀ n ∈ N ∃ S ∈ Σ s.t. dimXS/YS > n, and dimXSc/YSc =∞.

Sketch of proof. Find a family of sets Ut ∈ Σ (t ∈ [0, 1]) s.t.

U0 = ∅, U1 = Ω, and µ(Ut) = t for any t.

If t < s, then Ut ⊂ Us .

Set φ(t) = dimXUt/YUt . φ is increasing, left continuous. Thus,
∃α ∈ [0, 1) s.t. {t ∈ [0, 1] : dimXUt/YUt > n} = (α, 1].
Similarly, ∃β ∈ (0, 1] s.t. {t ∈ [0, 1] : dimXUc

t
/YUc

t
> n} = [0, β).

We have max{dimXUt/YUt , dimXUc
t
/YUc

t
} =∞, hence

[0, β) ∪ (α, 1] = [0, 1]. Pick t ∈ (β, α), and take either S = Ut , or
S = Utc .
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lattice, and Y ⊂ X is a closed infinite codimensional subspace.
Then X\Y is completely latticeable.

Sketch of proof. Assume X is a Köthe function space on
(Ω,Σ, µ), where µ is an atomless probability measure. Need to
find mutually disjoint x1, x2, . . . ∈ X+\{0} s.t.
Y ∩ span[x1, x2, . . .] = {0}.
Recursively find x1, x2, . . . ∈ X+\{0}, and mutually disjoint
S1, S2, . . . ⊂ Ω so that:

∀i , xi is supported on Si .

∀n, dimXS/YS =∞, where S = (S1 ∪ . . . ∪ Sn)c .

∀n, x1, . . . , xn are linearly independent modulo Y .
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Once x1, . . . , xn, S1, . . . ,Sn are selected: find
Sn+1 ⊂ S = (S1 ∪ . . . ∪ Sn)c s.t. dimXSn+1/YSn+1 > n + 1,
dimXS\Sn+1

/YS\Sn+1
=∞.

Pick a “right” xn+1, supported on Sn+1.
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Proof: complements of n-codimensional subspaces

Theorem (to be proved)

If Y is a closed subspace of a Banach lattice X with
dimX/Y > n ∈ N, then there exists an n-dimensional sublattice
Z ⊂ X so that Z ∩ Y = {0}.

Definition

A Banach lattice X is Dedekind (or order) complete if any subset
of X , which has an upper bound, has a supremum.

Examples of Dedekind complete lattices:
Lp (1 6 p 6∞), dual Banach lattices.
C [0, 1] is not Dedekind complete.
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Theorem (to be proved)

If Y is a closed subspace of a Banach lattice X with
dimX/Y > n ∈ N, then there exists an n-dimensional sublattice
Z ⊂ X so that Z ∩ Y = {0}.

Proof when X is Dedekind complete.

(1) If G is a subspace of a fin. dim. Banach lattice F , then ∃ a
sublattice Z ⊂ F , s.t. Z ∩ G = {0}, dimZ + dimG = dimF .

Proof: identify F with Rm (m = dimF ), use linear algebra.



Proof: complements of n-codimensional subspaces

Theorem (to be proved)

If Y is a closed subspace of a Banach lattice X with
dimX/Y > n ∈ N, then there exists an n-dimensional sublattice
Z ⊂ X so that Z ∩ Y = {0}.

Proof when X is Dedekind complete.

(1) If G is a subspace of a fin. dim. Banach lattice F , then ∃ a
sublattice Z ⊂ F , s.t. Z ∩ G = {0}, dimZ + dimG = dimF .

Proof: identify F with Rm (m = dimF ), use linear algebra.



Proof: complements of n-codimensional subspaces

Theorem (to be proved)

If Y is a closed subspace of a Banach lattice X with
dimX/Y > n ∈ N, then there exists an n-dimensional sublattice
Z ⊂ X so that Z ∩ Y = {0}.

Proof when X is Dedekind complete.

(1) If G is a subspace of a fin. dim. Banach lattice F , then ∃ a
sublattice Z ⊂ F , s.t. Z ∩ G = {0}, dimZ + dimG = dimF .

Proof: identify F with Rm (m = dimF ), use linear algebra.



Proof: complements of n-codimensional subspaces

Theorem (to be proved)

If Y is a closed subspace of a Banach lattice X with
dimX/Y > n ∈ N, then there exists an n-dimensional sublattice
Z ⊂ X so that Z ∩ Y = {0}.
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(2) Fact: if E is a fin. dim. subspace of a Dedekind complete
Banach lattice X , and ε > 0, then ∃ a fin. dim. sublattice F ⊂ X
and an automorphism T : X → X s.t. TE ⊂ F , ‖I − T‖ < ε.

Find a subspace E ⊂ X s.t. dimE = n, E ∩ Y = {0}. Use (2) to
find a fin. dim. sublattice F ⊂ X and T ∈ B(X ) as above s.t.
TE ∩Y = {0}. Then dimF/G > n, where G = Y ∩ F . Use (1) to
find a sublattice Z ⊂ F s.t. dimZ = n, Z ∩ G = {0}. Then
Z ∩ Y = {0}.
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If Y is a closed subspace of a Banach lattice X with
dimX/Y > n ∈ N, then there exists an n-dimensional sublattice
Z ⊂ X so that Z ∩ Y = {0}.

Proof for general X . X ∗∗ is Dedekind complete, hence ∃
n-dimensional sublattice W ⊂ X ∗∗ s.t. W ∩ Y⊥⊥ = {0}.
Find c ∈ (0, 1/9) s.t. dist(w ,Y⊥⊥) > 3c‖w‖ ∀ w ∈W . Find
x∗1 , . . . , x

∗
N ∈ B(Y⊥) ⊂ X ∗ s.t.

max
16i6N

∣∣〈x∗i ,w〉∣∣ > 2c‖w‖ ∀w ∈W .

Let V =
{

x∗∗ ∈ X ∗∗ : max16i6N

∣∣〈x∗i ,w〉∣∣ < c
}

.

Local reflexivity: ∃ lattice homomorphism T : W → Z ⊂ X s.t.
‖T‖, ‖T−1‖ < 1 + ε, and (I −T )B(W ) ⊂ εV . ⇒ Z ∩Y = {0}.
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