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Background, Motivation and References

Theorem (informal version of Aupetit’s scarcity theorem)

If a function f is analytic on a domain D in the complex plane and
with values in a Banach algebra, then either the subset of D on
which the spectrum of f is finite is “very small” in some sense, or
it is the whole of D, in which case the spectrum of f is even
uniformly finite on D.
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Background, Motivation and References

Solution of a domination problem using the scarcity theorem:

Theorem (H. du T. Mouton and S. Mouton, 2002)

Let A be an ordered Banach algebra with certain natural properties
and let a and b be positive elements in A such that b dominates a.
If b is in the radical of A, then so is a.

S. Mouton: Applications of the scarcity theorem in ordered
Banach algebras. Studia Math. 225 (2014), 219–234.
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Notation and Preliminaries

A: complex unital Banach algebra

σ(a): the spectrum of a ∈ A

σ′(a): the non-zero spectrum of a

ησ(a): the connected hull of σ(a), i.e. σ(a) together with its holes

#σ(a): the number of elements in σ(a)
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Notation and Preliminaries

Rad(A): the radical of A

A is semisimple if Rad(A) = {0}.

Z (A) = {a ∈ A : ax − xa ∈ Rad(A) for all x ∈ A}: the center
modulo the radical of A

QN(A): the set of all a with σ(a) = {0}
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Notation and Preliminaries

Let A be a semisimple Banach algebra and a ∈ A:

If a 6= 0, then a is a rank one element if aAa ⊆ Ca.

a is a finite rank element if a = 0 or a is a finite sum of rank one
elements.

Soc(A): the socle of A, i.e. the sum of the minimal left ideals in A

Soc(A) consists of all finite rank elements.
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Notation and Preliminaries

C (K ): the Banach algebra of all continuous complex valued
functions on a compact Hausdorff space K

L(E ): the Banach algebra of all bounded linear operators on a
Banach lattice E

Lr (E ): the Banach algebra of all regular operators on a Banach
lattice E
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Notation and Preliminaries

Let A be a Banach algebra and D a domain in C. Then g : A→ A
is D-analytic if g ◦ f : D → A is analytic for every analytic function
f : D → A.

The following maps are D-analytic, for every domain D ⊆ C:

g(x) = a + x and g(x) = a(1 + x) (for fixed a ∈ A)

every continuous, linear map, e.g. g(x) = ax

Let X be a vector space, a ∈ X and U ⊆ X :
Then a is an absorbing point of U if for all x ∈ X there exists
r > 0 such that a + λx ∈ U for all real λ with |λ| ≤ r .
U is an absorbing set if U contains an absorbing point.
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Ordered Banach Algebras

Let A be a complex unital Banach algebra:

A non-empty subset C of A is called a space cone if C is closed
under addition and under non-negative real scalar multiplication.

C is an algebra cone if C is a space cone containing 1 which is
closed under multiplication.

A is called an ordered Banach algebra (OBA) if A contains an
algebra cone C .

A is then partially ordered by C :

a ≤ b if and only if b − a ∈ C

The elements of C are called the positive elements.
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Ordered Banach Algebras

C is normal if there exists a constant α > 0 with the following
property:
if 0 ≤ a ≤ b (relative to C ), then ||a|| ≤ α||b||.

Proposition (S. Mouton, 2014)

Let A be an OBA with closed and normal algebra cone C . Then C
is not an absorbing set.

C is generating if span(C ) = A.
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Ordered Banach Algebras

Example

Let K be a compact Hausdorff space and let C be the subset of
C (K ) consisting of all functions which are real and nonnegative at
every point of K . Then C (K ) is an OBA with closed, normal and
generating algebra cone C .

Example

Let E be a complex Banach lattice with cone
C = {x ∈ E : x = |x |} and let K = {T ∈ L(E ) : TC ⊆ C}. Then
both L(E ) and Lr (E ) are OBAs with closed and normal algebra
cone K , and K generates Lr (E ).
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The Scarcity Theorem

Theorem (Aupetit’s scarcity theorem)

Let f : D → A be analytic, where D is a domain in C and A is a
Banach algebra. Then either the set of λ ∈ D such that σ(f (λ)) is
finite is a Borel set having zero capacity, or there exist an integer
n ≥ 1 and a closed discrete subset E of D such that #σ(f (λ)) = n
for all λ ∈ D\E and #σ(f (λ)) < n for all λ ∈ E .

Corollary

Let f : D → A be analytic, where D is a domain in C and A is a
Banach algebra. If n ≥ 1 is such that #σ(f (λ)) ≤ n for all λ in a
subset of D with non-zero capacity, then #σ(f (λ)) ≤ n for all
λ ∈ D.
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Applications of the Scarcity Theorem

Theorem (S. Mouton, 2014)

Let A be an OBA with algebra cone C , G a subset of A and B a
subset of C which is a space cone of A containing a point which is
absorbing in G . Also, let g : A→ A be a C-analytic map.

1 If #σ(g(c)) <∞ for all c ∈ B ∩ G , then there exists m ∈ N
such that #σ(g(x)) ≤ m for all x ∈ span(B).

2 If n ∈ N and #σ(g(c)) ≤ n for all c ∈ B ∩ G , then
#σ(g(x)) ≤ n for all x ∈ span(B).

3 If σ(g(c)) = {0} for all c ∈ B ∩G , then σ(g(x)) = {0} for all
x ∈ span(B).

Typical choices, depending on the situation:

B = B1 ∩ C for any vector subspace B1 of A; in particular
B = C . For some applications, B = QN(A) ∩ C .

G = A or G = A−1 or G a neighborhood of 0 or 1.
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Applications of the Scarcity Theorem

Theorem (classical result)

Let A be a Banach algebra. Then
Rad(A) = {a ∈ A : Aa ⊆ QN(A)}.

Theorem

Let A be a Banach algebra and let G be any set with absorbing
point 0. Then Rad(A) = {a ∈ A : Ga ⊆ QN(A)}.

Theorem (H. du T. Mouton and S. Mouton, 2002; S. Mouton,
2014)

Let A be an OBA with generating algebra cone C , and let G be
any subset of A which contains a point of C which is absorbing in
G . Then Rad(A) = {a ∈ A : (C ∩ G )a ⊆ QN(A)}.
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Applications of the Scarcity Theorem

Theorem (B. Aupetit, 1970s)

Let A be a Banach algebra. If A contains an absorbing subset U
such that

1 σ(x) is finite for all x ∈ U, then A/Rad(A) is
finite-dimensional,

2 #σ(x) ≤ n for all x ∈ U and some fixed n ∈ N, then
dimA/Rad(A) ≤ n6.

Theorem (S. Mouton, 2014)

Let A be an OBA with generating algebra cone C , and let G be any
subset of A which contains a point of C which is absorbing in G .

1 If #σ(c) is finite for all c ∈ C ∩ G , then A/Rad(A) is
finite-dimensional.

2 If #σ(c) ≤ n for all c ∈ C ∩ G and some fixed n ∈ N, then
dimA/Rad(A) ≤ n6.
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Applications of the Scarcity Theorem

Theorem (S. Mouton, 2014)

Let A be an OBA with generating algebra cone C , and let G be any
subset of A which contains a point of C which is absorbing in G .

If #σ(c) is finite for all c ∈ C ∩ G , then A/Rad(A) is
finite-dimensional.

If #σ(c) = 1 for all c ∈ C ∩ G , then A/Rad(A) ∼= C.

Take G = A−1:

Corollary

Let A be a semisimple OBA with generating algebra cone C . Then

1 dimA <∞ if and only if the spectrum of each positive
invertible element in A is finite, and

2 A ∼= C if and only if the spectrum of each positive invertible
element in A consists of one element only.
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Applications of the Scarcity Theorem

Theorem (B. Aupetit, 1970s)

Let A be a Banach algebra and a ∈ A. If #σ(ax − xa) = 1 for all
x ∈ A, then a ∈ Z (A).

Theorem (S. Mouton, 2014)

Let A be an OBA with generating algebra cone C , and let G be
any subset of A which contains a point of C which is absorbing in
G . If a ∈ A and #σ(ac − ca) = 1 for all c ∈ C ∩G , then a ∈ Z (A).
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Applications of the Scarcity Theorem

Theorem (H. du T. Mouton and H. Raubenheimer, 1993; B.
Aupetit and H. du T. Mouton, 1994)

Let A be a semisimple Banach algebra. Then

{a ∈ A : there exists n ∈ N such that #σ′(xa) ≤ n for all x ∈ A}

= Soc(A) = {a ∈ A : #σ′(xa) <∞ for all x ∈ A},

and if 0 6= a ∈ A, then a is rank one if and only if #σ′(xa) ≤ 1 for
all x ∈ A.
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Applications of the Scarcity Theorem

Theorem (S. Mouton, 2014)

Let A be a semisimple OBA with generating algebra cone C , and
let G be any subset of A which contains a point of C which is
absorbing in G . Then

{a ∈ A : there exists n ∈ N s.t. #σ′(ca) ≤ n for all c ∈ C ∩ G}

= Soc(A) = {a ∈ A : #σ′(ca) <∞ for all c ∈ C ∩ G},

and if dimA =∞ and 0 6= a ∈ A, then a is rank one if and only if
#σ′(ca) ≤ 1 for all c ∈ C ∩ G .
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Applications of the Scarcity Theorem

Theorem (H. du T. Mouton and H. Raubenheimer, 1993; B.
Aupetit and H. du T. Mouton, 1994)

Let A be a semisimple Banach algebra and a ∈ A. Then the
following are equivalent:

1 a ∈ Soc(A)

2 There exists n ∈ N such that ∩t∈Fσ(x + ta) ⊆ σ(x) for all
(n + 1)-element subsets F of C\{0} and all x ∈ A.

3 There exists n ∈ N such that ∩t∈Fησ(x + ta) ⊆ ησ(x) for all
(n + 1)-element subsets F of C\{0} and all x ∈ A.
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Applications of the Scarcity Theorem

Theorem (S. Mouton, 2014)

Let A be a semisimple OBA with closed and generating algebra
cone C and a ∈ A. Then the following are equivalent:

1 a ∈ Soc(A).

2 There exists n ∈ N such that ∩t∈Fσ(x + ta) ⊆ σ(x) for all
(n + 1)-element subsets F of C\{0} and all x ∈ C ∩ A−1.

3 There exists n ∈ N such that ∩t∈Fησ(x + ta) ⊆ ησ(x) for all
(n + 1)-element subsets F of C\{0} and all x ∈ C ∩ A−1.
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Applications of the Scarcity Theorem

Theorem (H. du T. Mouton and H. Raubenheimer, 1993; B.
Aupetit and H. du T. Mouton, 1994)

Let A be a semisimple Banach algebra and 0 6= a ∈ A. Then the
following are equivalent:

1 a is rank one.

2 σ(x + s0a) ∩ σ(x + s1a) ⊆ σ(x) for all s0, s1 ∈ C\{0} with
s0 6= s1 and all x ∈ A.

3 ησ(x + s0a) ∩ ησ(x + s1a) ⊆ ησ(x) for all s0, s1 ∈ C\{0} with
s0 6= s1 and all x ∈ A.
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Applications of the Scarcity Theorem

Theorem (S. Mouton, 2014)

Let A be a semisimple OBA with dimA =∞ and closed and
generating algebra cone C , and let 0 6= a ∈ A. Then the following
are equivalent:

1 a is rank one.

2 σ(c + s0a) ∩ σ(c + s1a) ⊆ σ(c) for all s0, s1 ∈ C\{0} with
s0 6= s1 and all c ∈ C ∩ A−1.

3 ησ(c + s0a) ∩ ησ(c + s1a) ⊆ ησ(c) for all s0, s1 ∈ C\{0} with
s0 6= s1 and all c ∈ C ∩ A−1.
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