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pre-Riesz spaces

How to generalize structures from vector lattices to ordered vector spaces?

Definition (Buskes – van Rooij)

Let Z be an ordered vector space and X ⊆ Z a linear subspace.
X is order dense in Z, if for every z ∈ Z we have z = inf {x ∈ X | z ≤ x}.

Definition (Theorem by van Haandel, 1993)

An ordered vector space X is a pre-Riesz space if there exists a vector lattice Z and a
bipositive linear mapping i : X → Z (i.e. i is an embedding) such that i(X) order dense
in Z.
(Z, i) is called a vector lattice cover of X.

In particular, a pre-Riesz space X is always majorizing in a vector lattice cover Z.

Examples:

1. C1[0, 1] is order dense in C[0, 1],

2. `∞0 (vector space of eventually constant sequences) is order dense in `∞.
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Let X be an Archimedean vector lattice, x, y ∈ X and S ⊆ X.
Su := {x ∈ X | x ≥ S} – set of all upper bounds of S.

Definition
x and y are disjoint (in symbols x ⊥ y) if |x| ∧ |y| = 0 (iff |x+ y| = |x− y|).

A subset B ⊆ X is a band, if B = Bdd.

Theorem (Kalauch – van Gaans, 2006)

x ⊥ y ⇔ i(x) ⊥ i(y).

Theorem (van Haandel, 1993)

Let X be an ordered vector space.

� If X is directed and Archimedean, then X is pre-Riesz.

� If X is pre-Riesz, then X is directed.

From here on: only Archimedean pre-Riesz spaces and vector lattices.
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Let X and Y be pre-Riesz spaces, (xα)α a net in X and T : X → Y a linear operator.

Definition

T is regular if there exist positive operators T1, T2 : X → Y with

T = T1 − T2,

T is order continuous if xα
o−→ x implies T (xα)

o−→ T (x).

Lr(X,Y )

Loc(X,Y )

Under which conditions are Lr(X,Y ) and Loc(X,Y ) ?

X is directed ⇒ Lr(X,Y ) is directed

Y is Archimedean ⇒ Lr(X,Y ) is Archimedean

}
⇒ Lr(X,Y ) is pre-Riesz.

L�oc(X,Y ) := Loc(X,Y )+ − Loc(X,Y )+ is directed

L�oc(X,Y ) ⊆ Lr(X,Y ) and thus Archimedean

}
⇒ L�oc(X,Y ) is pre-Riesz.

Task: Find vector lattice covers of Lr(X,Y ) and L�oc(X,Y )
which consist of operators.
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Recall:

Theorem (Riesz – Kantorovich)

Let Z1 be a directed ordered vector space with the Riesz Decomposition Property and
Z2 be a Dedekind complete vector lattice.
Then Lr(Z1, Z2) is a Dedekind complete vector lattice.

Task: Find vector lattice covers of Lr(X,Y ) and L�oc(X,Y )
which consist of operators.

Idea: Make the range space Dedekind complete!

Let X and Y be pre-Riesz spaces and let X have the RDP. Then

Lr(X,Y ) ⊆ Lr(X,Y δ)

and L�oc(X,Y ) ⊆ Loc(X,Y δ)

pre-Riesz space vector lattice

pre-Riesz space vector lattice

order dense?

order dense?

No, not even under strong additional conditions!
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(X := `∞0 , Y := `∞0 )

Proposition (Abramovich – Wickstead, 1991)

The ordered vector space Lr(`
∞
0 ) does not have the RDP and therefore is not a vector

lattice.

Proposition

The ordered vector space L�oc(`
∞
0 ) is not a vector lattice.

7 / 14
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Example

Lr(`
∞
0 ) is not majorizing and thus not order dense in Lr(`

∞
0 , `

∞).

Let T : `∞0 → `∞ be defined by

b ∈ B T (b)
e1 (1 0 1 0 0 1 0 0 0 1 0 0 0 0 . . .)
e2 (0 1 0 1 0 0 1 0 0 0 1 0 0 0 . . .)
e3 ( 0 0 1 0 0 1 0 0 0 1 0 0 . . .)
e4 ( 0 0 0 1 0 0 0 1 0 . . .)
e5 ( 0 0 0 0 1 . . .)

.

.

. . . .
1 (1 1 1 1 1 1 1 1 1 1 1 1 1 1 . . .).

T is positive (and thus regular).
T is not majorized by an operator in Lr(`

∞
0 ).

Assume that S ∈ Lr(`∞0 ) with T ≤ S.

� Then ∀i ∈ N : T (ei) ≤ S(ei) ∈ `∞0 .

� It follows 1 = lim supT (ei) ≤ lim supS(ei) = limS(ei).

⇒ n =

n∑
i=1

lim supT (ei) ≤
n∑
i=1

limS(ei) = lim

(
n∑
i=1

S(ei)

)

≤ limS(1). �

∑n
i=1 ei ≤ 1 implies

∑n
i=1 S(ei) ≤ S(1)

8 / 14
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0 ). Assume that S ∈ Lr(`∞0 ) with T ≤ S.

� Then ∀i ∈ N : T (ei) ≤ S(ei) ∈ `∞0 .

� It follows 1 = lim supT (ei) ≤ lim supS(ei) = limS(ei).

⇒ n =
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)
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Example

Lr(`
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0 ) is not majorizing and thus not order dense in Lr(`

∞
0 , `

∞).

Example

L�oc(`
∞
0 ) is not majorizing and thus not order dense in Loc(`

∞
0 , `

∞).

Show: The operator T in the previous example is order continuous.

`∞0 has nice properties:

� is a vector lattice

� has an algebraic base

� has an order unit (namely the constant sequence 1)

� is atomic
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Let X and Y be pre-Riesz spaces and let X have the RDP.

Better idea: Make Lr(X,Y ) and L�oc(X,Y ) majorizing!

Lr(X,Y ) ⊆ ILr(X,Y ) ⊆ Lr(X,Y
δ)

pre-Riesz space vector lattice

order dense?

L�oc(X,Y ) ⊆ IL�oc(X,Y ) ⊆ Loc(X,Y
δ)

pre-Riesz space vector lattice

order dense?
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Let X be a pre-Riesz space and (Z, i) a vector lattice cover of X.

Definition
An element a ∈ X+\ {0} is called an atom if

∀ x ∈ X : 0 < x ≤ a ⇒ ∃λ ∈ R>0 : x = λa.

X is called

� atomic if for every y ∈ X+\ {0} there is an atom a ∈ X+ such that 0 < a ≤ y.

� pervasive if for every z ∈ Z+\ {0} there is an x ∈ X such that 0 < i(x) ≤ z.

Example:

Let X := C1[0, 1]⊕ lin
{
1{t}

∣∣ t ∈ [0, 1]
}

. Then

� X is a pre-Riesz space,

� for any t ∈ [0, 1] positive multiples of 1{t} are atoms,

� X is atomic, pervasive and has the RDP.
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Theorem (Dedekind completion of L�
oc)

Let X and Y be pre-Riesz spaces and let X be atomic, pervasive and have the RDP.

Then L�oc(X,Y ) has a vector lattice cover consisting of operators, namely the ideal

J := IL�oc(X,Y )

generated by L�oc(X,Y ) in Loc(X,Y
δ).

In particular, J is the Dedekind completion of L�oc(X,Y ).

12 / 14



Content: pre-Riesz spaces naive approach Vector lattice covers: positive results

Theorem (Dedekind completion of L�
oc)

Let X and Y be pre-Riesz spaces and let X be atomic, pervasive and have the RDP.

Then L�oc(X,Y ) has a vector lattice cover consisting of operators, namely the ideal

J := IL�oc(X,Y )

generated by L�oc(X,Y ) in Loc(X,Y
δ).

In particular, J is the Dedekind completion of L�oc(X,Y ).

12 / 14



Content: pre-Riesz spaces naive approach Vector lattice covers: positive results

Theorem (Dedekind completion of L�
oc)

Let X and Y be pre-Riesz spaces and let X be atomic, pervasive and have the RDP.

Then L�oc(X,Y ) has a vector lattice cover consisting of operators, namely the ideal

J := IL�oc(X,Y )

generated by L�oc(X,Y ) in Loc(X,Y
δ).

In particular, J is the Dedekind completion of L�oc(X,Y ).

Example: For any pre-Riesz space Y the Dedekind completion of L�oc(`
∞
0 , Y ) is the ideal

IL�oc(`∞0 ,Y ) =
{
T ∈ Loc(`∞0 , Y δ)

∣∣∣ ∃S ∈ L�oc(`∞0 , Y ) : |T | ≤ S
}
.
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Then L�oc(X,Y ) has a vector lattice cover consisting of operators, namely the ideal

J := IL�oc(X,Y )

generated by L�oc(X,Y ) in Loc(X,Y
δ).

In particular, J is the Dedekind completion of L�oc(X,Y ).

Sketch of the proof:

� Show: sufficient to approximate every T ∈ J+ from above, i.e. to show
T = inf {S ∈ L�oc | T ≤ S}.

� Show: for every atom a ∈ X we have X = Ba ⊕ Bd
a (notice: Ba = Ia).

� Y order dense in Y δ, thus Ta = inf {y ∈ Y | Ta ≤ y}.
� Let S ∈ L�oc with T ≤ S. For every fixed y ≥ Ta define and extend linearly the

mapping

S(a)
y (x) :=

{
S(x) for x ∈ {0} ⊕ Bd

a

λy for x = λa, x ∈ Ba ⊕ {0} .
� Show that S

(a)
y is order continuous, i.e. S

(a)
y ∈ L�oc.

� Establish T = inf
{
S

(a)
y

∣∣∣ a atom in X and Ta ≤ y ∈ Y
}

.
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Theorem
Let X and Y as above.

If for U, V ∈ L�oc(X,Y ) the supremum U ∨ V or the infimum U ∧ V exists in
L�oc(X,Y ), then it can be computed by the Riesz-Kantorovich formulae.
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Proposition

Let X be a atomic vector lattice with an algebraic basis consisting of atoms, i.e.
X = lin {a ∈ X | a is an atom}. Let Y be pre-Riesz.
Then Lr(X,Y ) = L�oc(X,Y ).

Corollary (Dedekind completion of Lr)

Let X and Y be as above.
Then Lr(X,Y ) has a vector lattice cover consisting of operators, namely the ideal

J := ILr(X,Y )

generated by Lr(X,Y ) in Lr(X,Y
δ).

In particular, J is the Dedekind completion of Lr(X,Y ).
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Thank you for your attention!
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