Order Continuous Operators on pre-Riesz Spaces

Helena Malinowski

Technical University of Dresden Germany Institute of Analysis

Edmonton, 20.07.2017

Content:

Pre-Riesz spaces and vector lattice covers

Vector lattice covers of operator spaces: the naive approach

Vector lattice covers of operator spaces: positive results

How to generalize structures from vector lattices to ordered vector spaces?

Definition (Buskes - van Rooij)

Let Z be an ordered vector space and $X \subseteq Z$ a linear subspace. X is order dense in Z, if for every $z \in Z$ we have $z = \inf \{x \in X \mid z \leq x\}$.

How to generalize structures from vector lattices to ordered vector spaces?

Definition (Buskes – van Rooij)

Let Z be an ordered vector space and $X \subseteq Z$ a linear subspace. X is order dense in Z, if for every $z \in Z$ we have $z = \inf \{x \in X \mid z \leq x\}$.

Definition (Theorem by van Haandel, 1993)

An ordered vector space X is a **pre-Riesz space** if there exists a vector lattice Z and a bipositive linear mapping $i: X \to Z$ (i.e. i is an embedding) such that i(X) order dense in Z.

(Z, i) is called a **vector lattice cover** of X.

How to generalize structures from vector lattices to ordered vector spaces?

Definition (Buskes - van Rooij)

Let Z be an ordered vector space and $X \subseteq Z$ a linear subspace. X is order dense in Z, if for every $z \in Z$ we have $z = \inf \{x \in X \mid z \leq x\}$.

Definition (Theorem by van Haandel, 1993)

An ordered vector space X is a **pre-Riesz space** if there exists a vector lattice Z and a bipositive linear mapping $i: X \to Z$ (i.e. *i* is an embedding) such that i(X) order dense in Z.

(Z, i) is called a vector lattice cover of X.

In particular, a pre-Riesz space X is always majorizing in a vector lattice cover Z.

How to generalize structures from vector lattices to ordered vector spaces?

Definition (Buskes – van Rooij)

Let Z be an ordered vector space and $X \subseteq Z$ a linear subspace. X is order dense in Z, if for every $z \in Z$ we have $z = \inf \{x \in X \mid z \leq x\}$.

Definition (Theorem by van Haandel, 1993)

An ordered vector space X is a **pre-Riesz space** if there exists a vector lattice Z and a bipositive linear mapping $i: X \to Z$ (i.e. *i* is an embedding) such that i(X) order dense in Z.

(Z, i) is called a vector lattice cover of X.

In particular, a pre-Riesz space ${\cal X}$ is always majorizing in a vector lattice cover ${\cal Z}.$

Examples:

- 1. $C^1[0,1]$ is order dense in C[0,1],
- 2. ℓ_0^{∞} (vector space of eventually constant sequences) is order dense in ℓ^{∞} .

How to generalize structures from vector lattices to ordered vector spaces?

Definition (Buskes - van Rooij)

Let Z be an ordered vector space and $X \subseteq Z$ a linear subspace. X is order dense in Z, if for every $z \in Z$ we have $z = \inf \{x \in X \mid z \leq x\}$.

Definition (Theorem by van Haandel, 1993)

An ordered vector space X is a **pre-Riesz space** if there exists a vector lattice Z and a bipositive linear mapping $i: X \to Z$ (i.e. *i* is an embedding) such that i(X) order dense in Z.

(Z, i) is called a vector lattice cover of X.

In particular, a pre-Riesz space ${\cal X}$ is always majorizing in a vector lattice cover ${\cal Z}.$

Examples:

- 1. $C^{1}[0,1]$ is order dense in C[0,1],
- 2. ℓ_0^∞ (vector space of eventually constant sequences) is order dense in ℓ^∞ .

Let X be an Archimedean vector lattice, $x, y \in X$ and $S \subseteq X$. $S^u := \{x \in X \mid x \ge S\}$ – set of all upper bounds of S.

Definition

x and y are disjoint (in symbols $x \perp y$) if $|x| \wedge |y| = 0$ (iff |x + y| = |x - y|).

A subset $B \subseteq X$ is a **band**, if $B = B^{dd}$.

Let X be a pre-Riesz space with a vector lattice cover (Z,i), $x, y \in X$ and $S \subseteq X$. $S^u := \{x \in X \mid x \ge S\}$ – set of all upper bounds of S.

Definition

x and y are disjoint (in symbols $x \perp y$) if $\{x + y, -x - y\}^u = \{x - y, -x + y\}^u$.

A subset $B \subseteq X$ is a **band**, if $B = B^{dd}$.

Theorem (Kalauch – van Gaans, 2006)

 $x \perp y \quad \Leftrightarrow \quad i(x) \perp i(y).$

Let X be a pre-Riesz space with a vector lattice cover (Z,i), $x, y \in X$ and $S \subseteq X$. $S^u := \{x \in X \mid x \ge S\}$ – set of all upper bounds of S.

Definition

x and y are disjoint (in symbols $x \perp y$) if $\{x + y, -x - y\}^u = \{x - y, -x + y\}^u$.

A subset $B \subseteq X$ is a **band**, if $B = B^{dd}$.

Theorem (Kalauch – van Gaans, 2006)

 $x \perp y \quad \Leftrightarrow \quad i(x) \perp i(y).$

Let X be a pre-Riesz space with a vector lattice cover (Z,i), $x, y \in X$ and $S \subseteq X$. $S^u := \{x \in X \mid x \ge S\}$ – set of all upper bounds of S.

Definition

x and y are disjoint (in symbols $x \perp y$) if $\{x + y, -x - y\}^u = \{x - y, -x + y\}^u$.

A subset $B \subseteq X$ is a **band**, if $B = B^{dd}$.

Theorem (Kalauch – van Gaans, 2006)

 $x \perp y \quad \Leftrightarrow \quad i(x) \perp i(y).$

Theorem (van Haandel, 1993)

Let X be an ordered vector space.

- If X is directed and Archimedean, then X is pre-Riesz.
- If X is pre-Riesz, then X is directed.

From here on: only Archimedean pre-Riesz spaces and vector lattices.

Content:

Pre-Riesz spaces and vector lattice covers

Vector lattice covers of operator spaces: the naive approach

Vector lattice covers of operator spaces: positive results

Definition

T is regular if there exist positive operators $T_1, T_2 \colon X \to Y$ with

$$T = T_1 - T_2,$$

T is order continuous if $x_{\alpha} \xrightarrow{o} x$ implies $T(x_{\alpha}) \xrightarrow{o} T(x)$. L_{oc}

Definition

T is regular if there exist positive operators $T_1,T_2\colon X\to Y$ with $L_r(X,Y)$ $T=T_1-T_2,$

T is order continuous if $x_{\alpha} \xrightarrow{o} x$ implies $T(x_{\alpha}) \xrightarrow{o} T(x)$. $L_{oc}(X, Y)$

Under which conditions are $L_r(X, Y)$ and $L_{oc}(X, Y)$ vector lattices?

Definition

T is **regular** if there exist positive operators $T_1, T_2: X \to Y$ with $L_r(X, Y)$

$$T = T_1 - T_2,$$

T is order continuous if $x_{\alpha} \xrightarrow{o} x$ implies $T(x_{\alpha}) \xrightarrow{o} T(x)$. $L_{oc}(X, Y)$

Under which conditions are $L_r(X,Y)$ and $L_{oc}(X,Y)$ vector lattices?

Definition

T is **regular** if there exist positive operators $T_1, T_2: X \to Y$ with $L_r(X, Y)$

$$T = T_1 - T_2,$$

T is order continuous if $x_{\alpha} \xrightarrow{o} x$ implies $T(x_{\alpha}) \xrightarrow{o} T(x)$. $L_{oc}(X, Y)$

Under which conditions are $L_r(X, Y)$ and $L_{oc}(X, Y)$ pre-Riesz spaces?

Definition

T is regular if there exist positive operators $T_1, T_2: X \to Y$ with $L_r(X, Y)$

$$T = T_1 - T_2,$$

T is order continuous if $x_{\alpha} \xrightarrow{o} x$ implies $T(x_{\alpha}) \xrightarrow{o} T(x)$. $L_{oc}(X,Y)$

Under which conditions are $L_r(X, Y)$ and $L_{oc}(X, Y)$ pre-Riesz spaces?

 $\left. \begin{array}{ll} X \text{ is directed} & \Rightarrow & L_r(X,Y) \text{ is directed} \\ Y \text{ is Archimedean} & \Rightarrow & L_r(X,Y) \text{ is Archimedean} \end{array} \right\} \Rightarrow L_r(X,Y) \text{ is pre-Riesz.}$

Definition

T is regular if there exist positive operators $T_1, T_2: X \to Y$ with $L_r(X, Y)$

$$T = T_1 - T_2,$$

$$T$$
 is order continuous if $x_{\alpha} \xrightarrow{o} x$ implies $T(x_{\alpha}) \xrightarrow{o} T(x)$. $L_{oc}(X, Y)$

Under which conditions are $L_r(X, Y)$ and $L_{oc}(X, Y)$ pre-Riesz spaces?

 $\left. \begin{array}{l} X \text{ is directed} \quad \Rightarrow \quad L_r(X,Y) \text{ is directed} \\ Y \text{ is Archimedean} \quad \Rightarrow \quad L_r(X,Y) \text{ is Archimedean} \end{array} \right\} \Rightarrow L_r(X,Y) \text{ is pre-Riesz.} \\ \left. \begin{array}{l} L_{oc}^\diamond(X,Y) \coloneqq L_{oc}(X,Y)_+ - L_{oc}(X,Y)_+ \text{ is directed} \\ L_{oc}^\diamond(X,Y) \subseteq L_r(X,Y) \text{ and thus Archimedean} \end{array} \right\} \Rightarrow L_{oc}^\diamond(X,Y) \text{ is pre-Riesz.} \end{array}$

Definition

T is **regular** if there exist positive operators $T_1, T_2: X \to Y$ with $L_r(X, Y)$

$$T = T_1 - T_2,$$

$$T$$
 is order continuous if $x_{\alpha} \xrightarrow{o} x$ implies $T(x_{\alpha}) \xrightarrow{o} T(x)$. $L_{oc}(X, Y)$

Under which conditions are $L_r(X, Y)$ and $L_{oc}(X, Y)$ pre-Riesz spaces?

 $\left. \begin{array}{ll} X \text{ is directed} & \Rightarrow & L_r(X,Y) \text{ is directed} \\ Y \text{ is Archimedean} & \Rightarrow & L_r(X,Y) \text{ is Archimedean} \end{array} \right\} \Rightarrow L_r(X,Y) \text{ is pre-Riesz.}$

 $\left. \begin{array}{l} L_{oc}^{\diamond}(X,Y) := L_{oc}(X,Y)_{+} - L_{oc}(X,Y)_{+} \text{ is directed} \\ L_{oc}^{\diamond}(X,Y) \subseteq L_{r}(X,Y) \text{ and thus Archimedean} \end{array} \right\} \Rightarrow L_{oc}^{\diamond}(X,Y) \text{ is pre-Riesz.}$

Task: Find vector lattice covers of $L_r(X,Y)$ and $L_{oc}^{\diamond}(X,Y)$ which consist of operators.

Theorem (Riesz – Kantorovich)

Let Z_1 be a directed ordered vector space with the Riesz Decomposition Property and Z_2 be a Dedekind complete vector lattice. Then $L_r(Z_1, Z_2)$ is a Dedekind complete vector lattice.

Theorem (Riesz – Kantorovich)

Let Z_1 be a directed ordered vector space with the Riesz Decomposition Property and Z_2 be a Dedekind complete vector lattice. Then $L_r(Z_1, Z_2)$ is a Dedekind complete vector lattice.

Task: Find vector lattice covers of $L_r(X,Y)$ and $L_{oc}^{\diamond}(X,Y)$ which consist of operators.

Idea: Make the range space Dedekind complete!

Let X and Y be pre-Riesz spaces and let X have the RDP. Then

 $L_r(X,Y) \subseteq L_r(X,Y^{\delta})$ pre-Riesz space vector lattice

order dense?

Theorem (Riesz – Kantorovich)

Let Z_1 be a directed ordered vector space with the Riesz Decomposition Property and Z_2 be a Dedekind complete vector lattice. Then $L_r(Z_1, Z_2)$ is a Dedekind complete vector lattice.

Task: Find vector lattice covers of $L_r(X,Y)$ and $L^\diamond_{oc}(X,Y)$ which consist of operators.

Idea: Make the range space Dedekind complete!

Let X and Y be pre-Riesz spaces and let X have the RDP. Then

 $\begin{array}{c} L_r(X,Y) \subseteq L_r(X,Y^{\delta}) & \text{and} & L_{oc}^{\diamond}(X,Y) \subseteq L_{oc}(X,Y^{\delta}) \\ \text{pre-Riesz space} & \text{vector lattice} & \text{pre-Riesz space} & \text{vector lattice} \\ & \text{order dense?} & \text{order dense?} \end{array}$

Theorem (Riesz – Kantorovich)

Let Z_1 be a directed ordered vector space with the Riesz Decomposition Property and Z_2 be a Dedekind complete vector lattice. Then $L_r(Z_1, Z_2)$ is a Dedekind complete vector lattice.

Task: Find vector lattice covers of $L_r(X,Y)$ and $L^\diamond_{oc}(X,Y)$ which consist of operators.

Idea: Make the range space Dedekind complete!

Let X and Y be pre-Riesz spaces and let X have the RDP. Then

 $\begin{array}{ll} L_r(X,Y)\subseteq L_r(X,Y^{\delta}) & \text{ and } & L_{oc}^{\diamond}(X,Y)\subseteq L_{oc}(X,Y^{\delta}) \\ \text{pre-Riesz space vector lattice } & \text{pre-Riesz space vector lattice } \\ & \text{order dense? } & \text{order dense?} \end{array}$

Theorem (Riesz – Kantorovich)

Let Z_1 be a directed ordered vector space with the Riesz Decomposition Property and Z_2 be a Dedekind complete vector lattice. Then $L_r(Z_1, Z_2)$ is a Dedekind complete vector lattice.

Task: Find vector lattice covers of $L_r(X,Y)$ and $L_{oc}^{\diamond}(X,Y)$ which consist of operators.

Idea: Make the range space Dedekind complete!

Let X and Y be pre-Riesz spaces and let X have the RDP. Then

 $\begin{array}{ll} L_r(X,Y)\subseteq L_r(X,Y^{\delta}) & \text{ and } & L_{oc}^{\diamond}(X,Y)\subseteq L_{oc}(X,Y^{\delta}) \\ \text{pre-Riesz space vector lattice } & \text{pre-Riesz space vector lattice } \\ & \text{order dense? } & \text{order dense?} \end{array}$

No, not even under strong additional conditions!

 $(X := \ell_0^\infty, Y := \ell_0^\infty)$

Proposition (Abramovich – Wickstead, 1991)

The ordered vector space $L_r(\ell_0^\infty)$ does not have the RDP and therefore is not a vector lattice.

Proposition

The ordered vector space $L^{\diamond}_{oc}(\ell^{\infty}_0)$ is not a vector lattice.

 $L_r(\ell_0^\infty)$ is not majorizing and thus not order dense in $L_r(\ell_0^\infty,\ell^\infty)$.

Let $T: \ell_0^\infty \to \ell^\infty$ be defined by

$b \in B$	T(t))													
e_1	(1	0	1	0	0	1	0	0	0	1	0	0	0	0)
e_2	(0	1	0	1	0	0	1	0	0	0	1	0	0	0)
e_3	(0	0	1	0	0	1	0	0	0	1	0	0)
e_4	(0	0	0	1	0	0	0	1	0)
e_5	(0	0	0	0	1)
1	(1	1	1	1	1	1	1	1	1	1	1	1	1	1).

 $L_r(\ell_0^\infty)$ is not majorizing and thus not order dense in $L_r(\ell_0^\infty,\ell^\infty)$.

Let $T \colon \ell_0^\infty \to \ell^\infty$ be defined by

$b \in B$	T(b))													
e_1	(1	0	1	0	0	1	0	0	0	1	0	0	0	0)
e_2	0) (0	1	0	1	0	0	1	0	0	0	1	0	0	0)
e_3	(0	0	1	0	0	1	0	0	0	1	0	0)
e_4	(0	0	0	1	0	0	0	1	0)
e_5	(0	0	0	0	1)
:															
1	(1	1	1	1	1	1	1	1	1	1	1	1	1	1).

T is positive (and thus regular).

 $L_r(\ell_0^\infty)$ is not majorizing and thus not order dense in $L_r(\ell_0^\infty,\ell^\infty)$.

Let $T: \ell_0^\infty \to \ell^\infty$ be defined by

$b \in B$	T(t))													
e_1	(1	0	1	0	0	1	0	0	0	1	0	0	0	0)
e_2	(0	1	0	1	0	0	1	0	0	0	1	0	0	0)
e_3	(0	0	1	0	0	1	0	0	0	1	0	0)
e_4	(0	0	0	1	0	0	0	1	0)
e_5	(0	0	0	0	1)
:															
1	(1	1	1	1	1	1	1	1	1	1	1	1	1	1).

T is positive (and thus regular).

T is not majorized by an operator in $L_r(\ell_0^\infty)$.

 $L_r(\ell_0^\infty)$ is not majorizing and thus not order dense in $L_r(\ell_0^\infty,\ell^\infty)$.

Let $T \colon \ell_0^\infty \to \ell^\infty$ be defined by

$b \in B$	T(t)))													
e_1	(1	0	1	0	0	1	0	0	0	1	0	0	0	0)
e_2	(0	1	0	1	0	0	1	0	0	0	1	0	0	0)
e_3	(0	0	1	0	0	1	0	0	0	1	0	0)
e_4	(0	0	0	1	0	0	0	1	0)
e_5	(0	0	0	0	1)
:															
1	(1	1	1	1	1	1	1	1	1	1	1	1	1	1).

T is positive (and thus regular).

T is not majorized by an operator in $L_r(\ell_0^\infty)$. Assume that $S \in L_r(\ell_0^\infty)$ with $T \leq S$.

 $L_r(\ell_0^\infty)$ is not majorizing and thus not order dense in $L_r(\ell_0^\infty,\ell^\infty)$.

Let $T \colon \ell_0^\infty \to \ell^\infty$ be defined by

$b \in B$	T(t))													
e_1	(1	0	1	0	0	1	0	0	0	1	0	0	0	0)
e_2	(0	1	0	1	0	0	1	0	0	0	1	0	0	0)
e_3	(0	0	1	0	0	1	0	0	0	1	0	0)
e_4	(0	0	0	1	0	0	0	1	0)
e_5	(0	0	0	0	1)
:															
1	(1	1	1	1	1	1	1	1	1	1	1	1	1	1).

T is positive (and thus regular).

T is not majorized by an operator in $L_r(\ell_0^\infty)$. Assume that $S \in L_r(\ell_0^\infty)$ with $T \leq S$.

- Then $\forall i \in \mathbb{N}$: $T(e_i) \leq S(e_i) \in \ell_0^{\infty}$.
- It follows $1 = \limsup T(e_i) \le \limsup S(e_i) = \lim S(e_i)$.

 $L_r(\ell_0^\infty)$ is not majorizing and thus not order dense in $L_r(\ell_0^\infty,\ell^\infty)$.

Let $T \colon \ell_0^\infty \to \ell^\infty$ be defined by

$b \in B$	T(t))													
e_1	(1	0	1	0	0	1	0	0	0	1	0	0	0	0)
e_2	(0	1	0	1	0	0	1	0	0	0	1	0	0	0)
e_3	(0	0	1	0	0	1	0	0	0	1	0	0)
e_4	(0	0	0	1	0	0	0	1	0)
e_5	(0	0	0	0	1)
:															
1	(1	1	1	1	1	1	1	1	1	1	1	1	1	1).

T is positive (and thus regular).

T is not majorized by an operator in $L_r(\ell_0^\infty)$. Assume that $S \in L_r(\ell_0^\infty)$ with $T \leq S$.

• It follows
$$1 = \limsup T(e_i) \le \limsup S(e_i) = \lim S(e_i).$$

$$\Rightarrow \qquad n = \sum_{i=1}^{n} \limsup T(e_i) \le \sum_{i=1}^{n} \lim S(e_i) = \lim \left(\sum_{i=1}^{n} S(e_i)\right)$$

$$\sum_{i=1}^{n} e_i \le \mathbb{1} \text{ implies } \sum_{i=1}^{n} S(e_i) \le S(\mathbb{1})$$

 $L_r(\ell_0^\infty)$ is not majorizing and thus not order dense in $L_r(\ell_0^\infty,\ell^\infty)$.

Let $T \colon \ell_0^\infty \to \ell^\infty$ be defined by

$b \in B$	T(t))													
e_1	(1	0	1	0	0	1	0	0	0	1	0	0	0	0)
e_2	(0	1	0	1	0	0	1	0	0	0	1	0	0	0)
e_3	(0	0	1	0	0	1	0	0	0	1	0	0)
e_4	(0	0	0	1	0	0	0	1	0)
e_5	(0	0	0	0	1)
:															
1	(1	1	1	1	1	1	1	1	1	1	1	1	1	1).

T is positive (and thus regular).

T is not majorized by an operator in $L_r(\ell_0^\infty)$. Assume that $S \in L_r(\ell_0^\infty)$ with $T \leq S$.

• It follows
$$1 = \limsup \operatorname{Sp} T(e_i) \le \limsup \operatorname{Sp} S(e_i) = \lim S(e_i).$$

$$\Rightarrow \qquad n = \sum_{i=1}^n \limsup T(e_i) \le \sum_{i=1}^n \lim S(e_i) = \lim \left(\sum_{i=1}^n S(e_i)\right) \le \lim S(\mathbb{1}).$$

$$\sum_{i=1}^n e_i \le \mathbb{1} \text{ implies } \sum_{i=1}^n S(e_i) \le S(\mathbb{1}) \quad \text{if } n \le 1$$

 $L_r(\ell_0^\infty)$ is not majorizing and thus not order dense in $L_r(\ell_0^\infty,\ell^\infty)$.

Let $T \colon \ell_0^\infty \to \ell^\infty$ be defined by

$b \in B$	T(t))													
e_1	(1	0	1	0	0	1	0	0	0	1	0	0	0	0)
e_2	(0	1	0	1	0	0	1	0	0	0	1	0	0	0)
e_3	(0	0	1	0	0	1	0	0	0	1	0	0)
e_4	(0	0	0	1	0	0	0	1	0)
e_5	(0	0	0	0	1)
:															
1	(1	1	1	1	1	1	1	1	1	1	1	1	1	1).

T is positive (and thus regular).

T is not majorized by an operator in $L_r(\ell_0^\infty)$. Assume that $S \in L_r(\ell_0^\infty)$ with $T \leq S$.

• It follows
$$1 = \limsup \operatorname{Sp} T(e_i) \le \limsup \operatorname{Sp} S(e_i) = \lim S(e_i).$$

$$\Rightarrow \qquad n = \sum_{i=1}^n \limsup T(e_i) \le \sum_{i=1}^n \lim S(e_i) = \lim \left(\sum_{i=1}^n S(e_i)\right) \le \lim S(\mathbb{1}).$$

 $L_r(\ell_0^\infty)$ is not majorizing and thus not order dense in $L_r(\ell_0^\infty, \ell^\infty)$.

Example

 $L_{oc}^{\diamond}(\ell_0^{\infty})$ is not majorizing and thus not order dense in $L_{oc}(\ell_0^{\infty}, \ell^{\infty})$.

Show: The operator \boldsymbol{T} in the previous example is order continuous.

 ℓ_0^∞ has nice properties:

- is a vector lattice
- has an algebraic base
- has an order unit (namely the constant sequence 1)
- is atomic

 $L_r(\ell_0^\infty)$ is not majorizing and thus not order dense in $L_r(\ell_0^\infty, \ell^\infty)$.

Example

 $L_{oc}^{\diamond}(\ell_0^{\infty})$ is not majorizing and thus not order dense in $L_{oc}(\ell_0^{\infty}, \ell^{\infty})$.

Show: The operator \boldsymbol{T} in the previous example is order continuous.

 ℓ_0^∞ has nice properties:

- is a vector lattice
- has an algebraic base
- has an order unit (namely the constant sequence 1)
- is atomic

Pre-Riesz spaces and vector lattice covers

Vector lattice covers of operator spaces: the naive approach

Vector lattice covers of operator spaces: positive results

Let X and Y be pre-Riesz spaces and let X have the RDP. Better idea: Make $L_r(X, Y)$ and $L_{oc}^{\diamond}(X, Y)$ majorizing!

> $L_r(X,Y) \subseteq \mathcal{I}_{L_r(X,Y)} \subseteq L_r(X,Y^{\delta})$ pre-Riesz space vector lattice order dense?

Let X and Y be pre-Riesz spaces and let X have the RDP.

Better idea: Make $L_r(X, Y)$ and $L_{oc}^{\diamond}(X, Y)$ majorizing!

 $L_r(X,Y) \subseteq \mathcal{I}_{L_r(X,Y)} \subseteq L_r(X,Y^{\delta})$ pre-Riesz space vector lattice order dense?

 $L_{oc}^{\diamond}(X,Y) \subseteq \mathcal{I}_{L_{oc}^{\diamond}(X,Y)} \subseteq L_{oc}(X,Y^{\delta})$ pre-Riesz space vector lattice

order dense?

Let X and Y be pre-Riesz spaces and let X have the RDP.

Better idea: Make $L_r(X, Y)$ and $L_{oc}^{\diamond}(X, Y)$ majorizing!

 $\begin{array}{rcl} L_r(X,Y) \ \subseteq \ \mathcal{I}_{L_r(X,Y)} \ \subseteq \ L_r(X,Y^{\delta}) \\ \\ \text{pre-Riesz space} & \text{vector lattice} \\ & \text{order dense?} \end{array}$

 $\begin{array}{rcl} L_{oc}^{\diamond}(X,Y) \ \subseteq \ \mathcal{I}_{L_{oc}^{\diamond}(X,Y)} \ \subseteq \ L_{oc}(X,Y^{\delta}) \\ \text{pre-Riesz space} & \text{vector lattice} \end{array}$

order dense?

Definition

An element $a \in X_+ \setminus \{0\}$ is called an atom if

$$\forall \ x \in X \colon 0 < x \le a \quad \Rightarrow \quad \exists \lambda \in \mathbb{R}_{>0} \colon x = \lambda a.$$

X is called

• atomic if for every $y \in X_+ \setminus \{0\}$ there is an atom $a \in X_+$ such that $0 < a \le y$.

Definition

An element $a \in X_+ \setminus \{0\}$ is called an **atom** if

$$\forall x \in X : 0 < x \le a \quad \Rightarrow \quad \exists \lambda \in \mathbb{R}_{>0} : x = \lambda a.$$

 \boldsymbol{X} is called

- atomic if for every $y \in X_+ \setminus \{0\}$ there is an atom $a \in X_+$ such that $0 < a \le y$.
- **pervasive** if for every $z \in \mathbb{Z}_+ \setminus \{0\}$ there is an $x \in X$ such that $0 < i(x) \le z$.

Definition

An element $a \in X_+ \setminus \{0\}$ is called an **atom** if

$$\forall x \in X : 0 < x \le a \quad \Rightarrow \quad \exists \lambda \in \mathbb{R}_{>0} : x = \lambda a.$$

 \boldsymbol{X} is called

- atomic if for every $y \in X_+ \setminus \{0\}$ there is an atom $a \in X_+$ such that $0 < a \le y$.
- pervasive if for every $z \in Z_+ \setminus \{0\}$ there is an $x \in X$ such that $0 < i(x) \le z$.

Example:

Let $X := C^{1}[0,1] \oplus \lim \{ \mathbb{1}_{\{t\}} \mid t \in [0,1] \}$. Then

• X is a pre-Riesz space,

Definition

An element $a \in X_+ \setminus \{0\}$ is called an **atom** if

$$\forall x \in X : 0 < x \le a \quad \Rightarrow \quad \exists \lambda \in \mathbb{R}_{>0} : x = \lambda a.$$

 \boldsymbol{X} is called

- atomic if for every $y \in X_+ \setminus \{0\}$ there is an atom $a \in X_+$ such that $0 < a \le y$.
- pervasive if for every $z \in Z_+ \setminus \{0\}$ there is an $x \in X$ such that $0 < i(x) \le z$.

Example:

Let $X := C^1[0,1] \oplus \lim \{ \mathbb{1}_{\{t\}} \mid t \in [0,1] \}$. Then

- X is a pre-Riesz space,
- for any $t \in [0, 1]$ positive multiples of $\mathbb{1}_{\{t\}}$ are atoms,

Definition

An element $a \in X_+ \setminus \{0\}$ is called an **atom** if

$$\forall x \in X : 0 < x \le a \quad \Rightarrow \quad \exists \lambda \in \mathbb{R}_{>0} : x = \lambda a.$$

 \boldsymbol{X} is called

- atomic if for every $y \in X_+ \setminus \{0\}$ there is an atom $a \in X_+$ such that $0 < a \le y$.
- pervasive if for every $z \in Z_+ \setminus \{0\}$ there is an $x \in X$ such that $0 < i(x) \le z$.

Example:

Let $X := C^1[0,1] \oplus \lim \left\{ \mathbb{1}_{\{t\}} \mid t \in [0,1] \right\}$. Then

- X is a pre-Riesz space,
- for any $t \in [0,1]$ positive multiples of $\mathbbm{1}_{\{t\}}$ are atoms,
- X is atomic, pervasive and has the RDP.

Definition

An element $a \in X_+ \setminus \{0\}$ is called an **atom** if

$$\forall x \in X : 0 < x \le a \quad \Rightarrow \quad \exists \lambda \in \mathbb{R}_{>0} : x = \lambda a.$$

 \boldsymbol{X} is called

- atomic if for every $y \in X_+ \setminus \{0\}$ there is an atom $a \in X_+$ such that $0 < a \le y$.
- pervasive if for every $z \in Z_+ \setminus \{0\}$ there is an $x \in X$ such that $0 < i(x) \le z$.

Example:

Let $X := C^1[0,1] \oplus \lim \{ \mathbb{1}_{\{t\}} \mid t \in [0,1] \}$. Then

- X is a pre-Riesz space,
- for any $t \in [0, 1]$ positive multiples of $\mathbb{1}_{\{t\}}$ are atoms,
- X is atomic, pervasive and has the RDP.

Theorem (Dedekind completion of L_{oc}^{\diamond})

Let X and Y be pre-Riesz spaces and let X be atomic, pervasive and have the RDP. Then $L_{oc}^{\diamond}(X,Y)$ has a vector lattice cover consisting of operators, namely the ideal

 $J := \mathcal{I}_{L_{oc}^{\diamond}(X,Y)}$

generated by $L_{oc}^{\diamond}(X,Y)$ in $L_{oc}(X,Y^{\delta})$.

In particular, J is the Dedekind completion of $L_{oc}^{\diamond}(X, Y)$.

Theorem (Dedekind completion of L_{oc}^{\diamond})

Let X and Y be pre-Riesz spaces and let X be atomic, pervasive and have the RDP. Then $L_{oc}^{\diamond}(X,Y)$ has a vector lattice cover consisting of operators, namely the ideal

 $J := \mathcal{I}_{L_{oc}^{\diamond}(X,Y)}$

generated by $L_{oc}^{\diamond}(X,Y)$ in $L_{oc}(X,Y^{\delta})$.

In particular, J is the Dedekind completion of $L_{oc}^{\diamond}(X,Y)$.

Theorem (Dedekind completion of L_{oc}^{\diamond})

Let X and Y be pre-Riesz spaces and let X be atomic, pervasive and have the RDP. Then $L_{oc}^{\diamond}(X,Y)$ has a vector lattice cover consisting of operators, namely the ideal

 $J := \mathcal{I}_{L_{oc}^{\diamond}(X,Y)}$

generated by $L_{oc}^{\diamond}(X,Y)$ in $L_{oc}(X,Y^{\delta})$.

In particular, J is the Dedekind completion of $L_{oc}^{\diamond}(X,Y)$.

Example: For any pre-Riesz space Y the Dedekind completion of $L^{\diamond}_{oc}(\ell^{\infty}_0,Y)$ is the ideal

$$\mathcal{I}_{L^{\diamond}_{oc}(\ell^{\infty}_{0},Y)} = \left\{ T \in L_{oc}(\ell^{\infty}_{0},Y^{\delta}) \mid \exists S \in L^{\diamond}_{oc}(\ell^{\infty}_{0},Y) \colon |T| \leq S \right\}$$

Theorem (Dedekind completion of L_{oc}^{\diamond})

Let X and Y be pre-Riesz spaces and let X be atomic, pervasive and have the RDP. Then $L_{oc}^{\diamond}(X,Y)$ has a vector lattice cover consisting of operators, namely the ideal

 $J := \mathcal{I}_{L_{oc}^{\diamond}(X,Y)}$

generated by $L_{oc}^{\diamond}(X,Y)$ in $L_{oc}(X,Y^{\delta})$.

In particular, J is the Dedekind completion of $L_{oc}^{\diamond}(X, Y)$.

- Show: sufficient to approximate every $T \in J_+$ from above, i.e. to show $T = \inf \{ S \in L_{oc}^{\diamond} \mid T \leq S \}.$
- Show: for every atom $a \in X$ we have $X = \mathcal{B}_a \oplus \mathcal{B}_a^d$ (notice: $\mathcal{B}_a = \mathcal{I}_a$).

Theorem (Dedekind completion of L_{oc}^{\diamond})

Let X and Y be pre-Riesz spaces and let X be atomic, pervasive and have the RDP. Then $L_{oc}^{\diamond}(X,Y)$ has a vector lattice cover consisting of operators, namely the ideal

 $J := \mathcal{I}_{L_{oc}^{\diamond}(X,Y)}$

generated by $L_{oc}^{\diamond}(X,Y)$ in $L_{oc}(X,Y^{\delta})$.

In particular, J is the Dedekind completion of $L_{oc}^{\diamond}(X, Y)$.

- Show: sufficient to approximate every $T \in J_+$ from above, i.e. to show $T = \inf \{S \in L_{oc}^{\diamond} \mid T \leq S\}.$
- Show: for every atom $a \in X$ we have $X = \mathcal{B}_a \oplus \mathcal{B}_a^d$ (notice: $\mathcal{B}_a = \mathcal{I}_a$).
- Y order dense in Y^{δ} , thus $Ta = \inf \{y \in Y \mid Ta \leq y\}$.

Theorem (Dedekind completion of L_{oc}^{\diamond})

Let X and Y be pre-Riesz spaces and let X be atomic, pervasive and have the RDP. Then $L_{oc}^{\diamond}(X,Y)$ has a vector lattice cover consisting of operators, namely the ideal

 $J := \mathcal{I}_{L_{oc}^{\diamond}(X,Y)}$

generated by $L_{oc}^{\diamond}(X,Y)$ in $L_{oc}(X,Y^{\delta})$.

In particular, J is the Dedekind completion of $L^{\diamond}_{oc}(X,Y)$.

- Show: sufficient to approximate every $T \in J_+$ from above, i.e. to show $T = \inf \{S \in L_{oc}^{\diamond} \mid T \leq S\}.$
- Show: for every atom $a \in X$ we have $X = \mathcal{B}_a \oplus \mathcal{B}_a^d$ (notice: $\mathcal{B}_a = \mathcal{I}_a$).
- Y order dense in Y^{δ} , thus $Ta = \inf \{y \in Y \mid Ta \leq y\}$.
- Let $S \in L_{oc}^{\diamond}$ with $T \leq S$. For every fixed $y \geq Ta$ define and extend linearly the mapping

$$S_y^{(a)}(x) := \begin{cases} S(x) & \text{ for } x \in \{0\} \oplus \mathcal{B}_a^{\mathsf{d}} \\ \lambda y & \text{ for } x = \lambda a, \ x \in \mathcal{B}_a \oplus \{0\} \end{cases}$$

Theorem (Dedekind completion of L_{oc}^{\diamond})

Let X and Y be pre-Riesz spaces and let X be atomic, pervasive and have the RDP. Then $L_{oc}^{\diamond}(X,Y)$ has a vector lattice cover consisting of operators, namely the ideal

 $J := \mathcal{I}_{L_{oc}^{\diamond}(X,Y)}$

generated by $L_{oc}^{\diamond}(X,Y)$ in $L_{oc}(X,Y^{\delta})$.

In particular, J is the Dedekind completion of $L^{\diamond}_{oc}(X,Y)$.

Sketch of the proof:

- Show: sufficient to approximate every $T \in J_+$ from above, i.e. to show $T = \inf \{S \in L_{oc}^{\diamond} \mid T \leq S\}.$
- Show: for every atom $a \in X$ we have $X = \mathcal{B}_a \oplus \mathcal{B}_a^d$ (notice: $\mathcal{B}_a = \mathcal{I}_a$).
- Y order dense in Y^{δ} , thus $Ta = \inf \{y \in Y \mid Ta \leq y\}$.
- Let $S \in L_{oc}^{\diamond}$ with $T \leq S$. For every fixed $y \geq Ta$ define and extend linearly the mapping

$$S_y^{(a)}(x) := \begin{cases} S(x) & \text{ for } x \in \{0\} \oplus \mathcal{B}_a^{\mathsf{d}} \\ \lambda y & \text{ for } x = \lambda a, \ x \in \mathcal{B}_a \oplus \{0\} \end{cases}$$

• Show that $S_y^{(a)}$ is order continuous, i.e. $S_y^{(a)} \in L_{oc}^\diamond$.

Theorem (Dedekind completion of L_{oc}^{\diamond})

Let X and Y be pre-Riesz spaces and let X be atomic, pervasive and have the RDP. Then $L_{oc}^{\diamond}(X,Y)$ has a vector lattice cover consisting of operators, namely the ideal

 $J := \mathcal{I}_{L_{oc}^{\diamond}(X,Y)}$

generated by $L_{oc}^{\diamond}(X,Y)$ in $L_{oc}(X,Y^{\delta})$.

In particular, J is the Dedekind completion of $L_{oc}^{\diamond}(X, Y)$.

- Show: sufficient to approximate every $T \in J_+$ from above, i.e. to show $T = \inf \{S \in L_{oc}^{\diamond} \mid T \leq S\}.$
- Show: for every atom $a \in X$ we have $X = \mathcal{B}_a \oplus \mathcal{B}_a^d$ (notice: $\mathcal{B}_a = \mathcal{I}_a$).
- Y order dense in Y^{δ} , thus $Ta = \inf \{y \in Y \mid Ta \leq y\}$.
- Let $S \in L_{oc}^{\diamond}$ with $T \leq S$. For every fixed $y \geq Ta$ define and extend linearly the mapping

$$S_y^{(a)}(x) := \begin{cases} S(x) & \text{ for } x \in \{0\} \oplus \mathcal{B}_a^{\mathsf{d}} \\ \lambda y & \text{ for } x = \lambda a, \ x \in \mathcal{B}_a \oplus \{0\} \,. \end{cases}$$

- Show that $S_y^{(a)}$ is order continuous, i.e. $S_y^{(a)} \in L_{oc}^\diamond$.
- Establish $T = \inf \left\{ S_y^{(a)} \mid a \text{ atom in } X \text{ and } Ta \le y \in Y \right\}.$

Theorem (Dedekind completion of L_{oc}^{\diamond})

Let X and Y be pre-Riesz spaces and let X be atomic, pervasive and have the RDP. Then $L_{oc}^{\diamond}(X,Y)$ has a vector lattice cover consisting of operators, namely the ideal

 $J := \mathcal{I}_{L_{oc}^{\diamond}(X,Y)}$

generated by $L_{oc}^{\diamond}(X,Y)$ in $L_{oc}(X,Y^{\delta})$.

In particular, J is the Dedekind completion of $L^{\diamond}_{oc}(X,Y)$.

- Show: sufficient to approximate every $T \in J_+$ from above, i.e. to show $T = \inf \{S \in L_{oc}^{\diamond} \mid T \leq S\}.$
- Show: for every atom $a \in X$ we have $X = \mathcal{B}_a \oplus \mathcal{B}_a^d$ (notice: $\mathcal{B}_a = \mathcal{I}_a$).
- Y order dense in Y^{δ} , thus $Ta = \inf \{y \in Y \mid Ta \leq y\}$.
- Let $S \in L_{oc}^{\diamond}$ with $T \leq S$. For every fixed $y \geq Ta$ define and extend linearly the mapping

$$S_y^{(a)}(x) := \begin{cases} S(x) & \text{ for } x \in \{0\} \oplus \mathcal{B}_a^{\mathsf{d}} \\ \lambda y & \text{ for } x = \lambda a, \ x \in \mathcal{B}_a \oplus \{0\} \end{cases}$$

- Show that $S_y^{(a)}$ is order continuous, i.e. $S_y^{(a)} \in L_{oc}^\diamond$.
- Establish $T = \inf \left\{ S_y^{(a)} \mid a \text{ atom in } X \text{ and } Ta \leq y \in Y \right\}.$

Theorem (Dedekind completion of L_{oc}^{\diamond})

Let X and Y be pre-Riesz spaces and let X be atomic, pervasive and have the RDP. Then $L_{oc}^{\diamond}(X,Y)$ has a vector lattice cover consisting of operators, namely the ideal

 $J := \mathcal{I}_{L_{oc}^{\diamond}(X,Y)}$

generated by $L_{oc}^{\diamond}(X,Y)$ in $L_{oc}(X,Y^{\delta})$.

In particular, J is the Dedekind completion of $L_{oc}^{\diamond}(X,Y)$.

Theorem

Let X and Y as above.

If for $U, V \in L_{oc}^{\diamond}(X, Y)$ the supremum $U \lor V$ or the infimum $U \land V$ exists in $L_{oc}^{\diamond}(X, Y)$, then it can be computed by the Riesz-Kantorovich formulae.

Proposition

Let X be a atomic vector lattice with an algebraic basis consisting of atoms, i.e. $X = \lim \{a \in X \mid a \text{ is an atom}\}$. Let Y be pre-Riesz. Then $L_r(X,Y) = L_{oc}^{\diamond}(X,Y)$.

Corollary (Dedekind completion of L_r)

Let X and Y be as above.

Then $L_r(X,Y)$ has a vector lattice cover consisting of operators, namely the ideal

 $J := \mathcal{I}_{L_r(X,Y)}$

generated by $L_r(X, Y)$ in $L_r(X, Y^{\delta})$.

In particular, J is the Dedekind completion of $L_r(X, Y)$.

Proposition

Let X be a atomic vector lattice with an algebraic basis consisting of atoms, i.e. $X = \lim \{a \in X \mid a \text{ is an atom}\}$. Let Y be pre-Riesz. Then $L_r(X,Y) = L_{oc}^{\diamond}(X,Y)$.

Corollary (Dedekind completion of L_r)

Let X and Y be as above.

Then $L_r(X,Y)$ has a vector lattice cover consisting of operators, namely the ideal

 $J := \mathcal{I}_{L_r(X,Y)}$

generated by $L_r(X, Y)$ in $L_r(X, Y^{\delta})$.

In particular, J is the Dedekind completion of $L_r(X, Y)$.

Content:

pre-Riesz spaces

naive approach

Vector lattice covers: positive results

Thank you for your attention!