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How to generalize structures from vector lattices to ordered vector spaces?

Definition (Buskes — van Rooij)

Let Z be an ordered vector space and X C Z a linear subspace.
X is order dense in Z, if for every z € Z we have z =inf {z € X | z < z}.

Definition (Theorem by van Haandel, 1993)

An ordered vector space X is a pre-Riesz space if there exists a vector lattice Z and a
bipositive linear mapping i : X — Z (i.e. 4 is an embedding) such that i(X) order dense
in Z.

(Z,4) is called a vector lattice cover of X.
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pre-Riesz spaces
How to generalize structures from vector lattices to ordered vector spaces?

Definition (Buskes — van Rooij)

Let Z be an ordered vector space and X C Z a linear subspace.
X is order dense in Z, if for every z € Z we have z =inf {z € X | z < z}.

Definition (Theorem by van Haandel, 1993)

An ordered vector space X is a pre-Riesz space if there exists a vector lattice Z and a

bipositive linear mapping i : X — Z (i.e. 4 is an embedding) such that i(X) order dense
in Z.
(Z,1) is called a vector lattice cover of X.

In particular, a pre-Riesz space X is always majorizing in a vector lattice cover Z.

Examples:
1. C*[0,1] is order dense in C[0,1],

2. £5° (vector space of eventually constant sequences) is order dense in £°°.

ctor lattice covers: positive results
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Let X be an Archimedean vector lattice, z,y € X and S C X.

S*:={x € X |x>S} —setof all upper bounds of S.

z and y are disjoint (in symbols z L y) if |z| A |y| =0
A subset B C X is a band, if B = B%.

(iff [z + y[ = [z — y]).
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Let X be a pre-Riesz space with a vector lattice cover (Z,4), z,y € X and S C X.
S*:={x € X |x>S} —setof all upper bounds of S.
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Theorem (Kalauch — van Gaans, 2006)
zly & i(x) Li(y).
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Let X be a pre-Riesz space with a vector lattice cover (Z,4), z,y € X and S C X.
S*:={x € X |x>S} —setof all upper bounds of S.

Definition
z and y are disjoint (in symbols z L y) if {x +y,—z —y}“ ={z—y,—z +y}".
A subset B C X is a band, if B = B%.

Theorem (Kalauch — van Gaans, 2006)
zly & i(x) Li(y).

Theorem (van Haandel, 1993)

Let X be an ordered vector space.
e |f X is directed and Archimedean, then X is pre-Riesz.
e |f X is pre-Riesz, then X is directed.

From here on: only Archimedean pre-Riesz spaces and vector lattices.

Vector lattice covers: positive results
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Let X and Y be pre-Riesz spaces, (za)a @ netin X and T: X — Y a linear operator.

Definition

T is regular if there exist positive operators T1,7T2: X — Y with
T=T —1T>,

T is order continuous if z, = = implies T(zo) = T(z).
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Let X and Y be pre-Riesz spaces, (za)a @ netin X and T: X — Y a linear operator.

Definition
T is regular if there exist positive operators T1,T2: X — Y with L.(X,Y)
9P =T — T,

T is order continuous if T, = = implies T'(za) = T(x). Loc(X,Y)

Under which conditions are L, (X,Y) and Lo.(X,Y) pre-Riesz spaces?

X is directed = L,(X,Y) is directed . .
.|s |rec. ¢ ( ) is |r.ec ¢ . = L.(X,Y) is pre-Riesz.

Y is Archimedean = L,(X,Y) is Archimedean

Le(X,Y) 1=

Loc(X,Y )+ — Loe(X,Y) 4 is directed
Loo(X,Y)C L

: = LS. (X,Y) is pre-Riesz.
+(X,Y) and thus Archimedean
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Let X and Y be pre-Riesz spaces, (za)a @ netin X and T: X — Y a linear operator.

Definition
T is regular if there exist positive operators T1,T2: X — Y with L.(X,Y)
9P =T — T,

T is order continuous if T, = = implies T'(za) = T(x). Loc(X,Y)

Under which conditions are L, (X,Y) and Lo.(X,Y) pre-Riesz spaces?

X is directed = L,(X,Y) is directed . .
.|s |rec. ¢ ( ) is |r.ec ¢ . = L.(X,Y) is pre-Riesz.

Y is Archimedean = L,(X,Y) is Archimedean

L(X,Y) := Loo(X,Y )+ — Loo(X,Y)4 is directed

: = LS. (X,Y) is pre-Riesz.
L{.(X,Y) C L (X,Y) and thus Archimedean

Task: Find vector lattice covers of L,.(X,Y) and L{.(X,Y)
which consist of operators.
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Recall:

Theorem (Riesz — Kantorovich)

Let Z: be a directed ordered vector space with the Riesz Decomposition Property and
Z be a Dedekind complete vector lattice.

Then L,(Z.,Z>) is a Dedekind complete vector lattice.
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pre-Riesz space  vector lattice
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Recall:

Theorem (Riesz — Kantorovich)

Let Z: be a directed ordered vector space with the Riesz Decomposition Property and
Z be a Dedekind complete vector lattice.
Then L,(Z1,Z>) is a Dedekind complete vector lattice.

Task: Find vector lattice covers of L,.(X,Y) and L{.(X,Y)
which consist of operators.

Idea: Make the range space Dedekind complete!

Let X and Y be pre-Riesz spaces and let X have the RDP. Then

Lo(X,Y)CLo(X,Y®)  and  L3(X,Y) C Loe(X,Y?)
pre-Riesz space  vector lattice pre-Riesz space  vector lattice

order dense? order dense?

No, not even under strong additional conditions!
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(X :=465°, Y :=45°)

Proposition (Abramovich — Wickstead, 1991)

The ordered vector space L, (£5°) does not have the RDP and therefore is not a vector
lattice.

The ordered vector space L3.(£5°) is not a vector lattice.
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L, (£5°) is not majorizing and thus not order dense in L., (£5°, £°°).
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L, (£5°) is not majorizing and thus not order dense in L., (£5°, £°°).

Let T: £5° — £°° be defined by

beB | T(b)
€1 (@1 01 0 0 I 0 0 0 1 0 0 0 O )
e (0O 1 0 1 0 0 1 0 0 0 1 0 0 O )
es ( 0 01 00 1 0001 0 0 )
eq ( 00 01 00 0 1 0 )
es ( 0 0 0 0 1 )
1 (111111111 1 1 1 1 )
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Example

L, (£5°) is not majorizing and thus not order dense in L., (£5°, £°°).

Let T: £5° — £°° be defined by

be B

€1
€2
€3
€4
€5

1

o
O = O

1 1

- O O

1

(oNeNeN

1

O O O

1

T is positive (and thus regular).

=l el

= O O O

[=NeNeNeN

[eNeNeN Neo)

OO Mmoo
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L, (£5°) is not majorizing and thus not order dense in L., (£5°, £°°).

Let T: £5° — £°° be defined by

beB | T(b)
e1 M 01 0 0 1 000 1 00 0 0 )
€2 (0 1.0 1 0 0 1 00 0 1 0 0 0 )
es ( 001 00 100010 0 )
eq ( 00 01 00 0 1 0 )
es ( 00 0 0 1 )
1 (1 1 1 1 1 1 1 1 1 1 1 1 1 1 ..).

T is positive (and thus regular).
T is not majorized by an operator in L.(£5°). Assume that S € L,(¢5°) with T < S.
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L, (£5°) is not majorizing and thus not order dense in L., (£5°, £°°).

Let T: £5° — £°° be defined by

be B | T(b)
e1 M 01 0 0 1 000 1 00 0 0 )
€2 (0 1.0 1 0 0 1 00 0 1 0 0 0 )
es ( 001 00 100010 0 )
eq ( 00 01 00 0 1 0 )
es ( 00 0 0 1 )
1 (1 1 1 1 1 1 1 1 1 1 1 1 1 1 ..).

T is positive (and thus regular).
T is not majorized by an operator in L.(£5°). Assume that S € L,(¢5°) with T < S.

e ThenVie N: T(e;) < S(e;) € £5.
e [t follows 1 = limsup T'(e;) < limsup S(e;) = lim S(e;).

= n=> limsupT(e;) < » limS(e;) = lim Zs@g) <limS(1). 4
i=1 =1 i=1

>or e <1 implies 327 | S(e;) < S(1) _T
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L, (£5°) is not majorizing and thus not order dense in L. (£5°, ).

L$.(45°) is not majorizing and thus not order dense in Loc(€5°, £°).

Show: The operator T in the previous example is order continuous.
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L, (£5°) is not majorizing and thus not order dense in L. (£5°, ).

Example

L$.(45°) is not majorizing and thus not order dense in Loc(€5°, £°).

Show: The operator T in the previous example is order continuous.

£6° has nice properties:
® is a vector lattice
® has an algebraic base
e has an order unit (namely the constant sequence 1)

® is atomic
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Let X and Y be pre-Riesz spaces and let X have the RDP.
Better idea: Make L, (X,Y) and L3.(X,Y) majorizing!

L(X,Y) € Tpxy) € L(X,Y?)
pre-Riesz space  vector lattice

order dense?
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Let X and Y be pre-Riesz spaces and let X have the RDP.
Better idea: Make L, (X,Y) and L3.(X,Y) majorizing!

Le(X,Y) C Tr.xy) C Le(X,Y?)
pre-Riesz space  vector lattice

order dense?

L5(X,Y) C g x,v) € Loc(X,Y?)
pre-Riesz space  vector lattice

order dense?

Vector lattice covers: positive results
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An element a € X\ {0} is called an atom if

VeeX:0<rx<a = INER-p:z=Aa.
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Let X be a pre-Riesz space and (Z, 1) a vector lattice cover of X.
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e pervasive if for every z € Z\ {0} there is an = € X such that 0 < i(z) < z.
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Let X be a pre-Riesz space and (Z, 1) a vector lattice cover of X.

An element a € X\ {0} is called an atom if
VeeX:0<rx<a = INER-p:z=Aa.

X is called
e atomic if for every y € X1\ {0} there is an atom a € X such that 0 < a < y.
e pervasive if for every z € Z\ {0} there is an = € X such that 0 < i(z) < z.

Example:
Let X :=C'[0,1] @ lin {1y | t €[0,1]}. Then
e X is a pre-Riesz space,
e for any t € [0, 1] positive multiples of 1, are atoms,

e X is atomic, pervasive and has the RDP.

11/14
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Theorem (Dedekind completion of L¢.)

Let X and Y be pre-Riesz spaces and let X be atomic, pervasive and have the RDP.
Then L;.(X,Y) has a vector lattice cover consisting of operators, namely the ideal

J:=Trs (x,v)
generated by L3,(X,Y) in Loc(X,Y?).
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Theorem (Dedekind completion of L¢.)

Let X and Y be pre-Riesz spaces and let X be atomic, pervasive and have the RDP.
Then L;.(X,Y) has a vector lattice cover consisting of operators, namely the ideal

J =T (x,v)

generated by L3,(X,Y) in Loc(X,Y?).

In particular, J is the Dedekind completion of L$.(X,Y).

Example: For any pre-Riesz space Y the Dedekind completion of LS. (£5°,Y) is the ideal

Tis (o) = {T € Loo(6,Y%) | 38 € Lo, (63, Y): |T| < S}.
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e Show: sufficient to approximate every T' € J from above, i.e. to show
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Theorem (Dedekind completion of L¢.)

Let X and Y be pre-Riesz spaces and let X be atomic, pervasive and have the RDP.
Then L;.(X,Y) has a vector lattice cover consisting of operators, namely the ideal

J:=Trs (x,v)
generated by L3,(X,Y) in Loc(X,Y?).

In particular, J is the Dedekind completion of L$.(X,Y).

Sketch of the proof:

e Show: sufficient to approximate every T' € J from above, i.e. to show
T=inf{SelL|T<S}

e Show: for every atom a € X we have X = B, @ B (notice: Bo = Za).
o Y order dense in Y?, thus Ta =inf {y € Y | Ta < y}.
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Theorem (Dedekind completion of L¢.)
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e Show: for every atom a € X we have X = B, @ B (notice: Bo = Za).
o Y order dense in Y?, thus Ta =inf {y € Y | Ta < y}.
o Let S € L§, with T < S. For every fixed y > Ta define and extend linearly the
mapping
S () = S(x) forxz € {0} @ B
Y Y for z = Xa, z € B, @ {0}.
e Show that S{* is order continuous, i.e. 4 € L¢,.

e Establish 7' = inf {S@(,a) ‘ aatomin X and Ta <y € Y}.
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Theorem (Dedekind completion of L¢.)

Let X and Y be pre-Riesz spaces and let X be atomic, pervasive and have the RDP.
Then L;.(X,Y) has a vector lattice cover consisting of operators, namely the ideal

J:=Trs (x,v)
generated by L3,(X,Y) in Loc(X,Y?).

In particular, J is the Dedekind completion of L$.(X,Y).

Let X and Y as above.

If for U,V € L3.(X,Y) the supremum U V'V or the infimum U AV exists in
L$.(X,Y), then it can be computed by the Riesz-Kantorovich formulae.
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Proposition

Let X be a atomic vector lattice with an algebraic basis consisting of atoms, i.e.
X =lin{a € X | a is an atom}. LetY be pre-Riesz.

Then L (X,Y) = L3.(X,Y).

13/14



Content

pre-Riesz spaces 1aive approach Vector lattice covers: positive results

Proposition

Let X be a atomic vector lattice with an algebraic basis consisting of atoms, i.e.
X =lin{a € X | a is an atom}. LetY be pre-Riesz.
Then L (X,Y) = L3.(X,Y).

Corollary (Dedekind completion of L,.)

Let X and Y be as above.
Then L,(X,Y) has a vector lattice cover consisting of operators, namely the ideal

J = IL,«(X,Y)
generated by L.(X,Y) in L.(X,Y?°).

In particular, J is the Dedekind completion of L, (X,Y).
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Thank you for your attention!
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