Vector-valued extrapolation in Banach function spaces

Emiel Lorist
Delft University of Technology, The Netherlands

July 17, 2017

Joint work with Alex Amenta and Mark Veraar
Delft University of Technology
A. Amenta, E. Lorist, and M. C. Veraar. "Rescaled extrapolation for vector-valued functions" . arXiv:1703.06044. 2017
A. Amenta, E. Lorist, and M. C. Veraar. "Fourier multipliers in Banach function spaces with UMD concavifications". arXiv:1705.07792. 2017

Overview

(1) Motivation
(2) Preliminaries
(3) Vector-valued extrapolation
(4) Applications

(1) Motivation

(2) Preliminaries

(3) Vector-valued extrapolation

(4) Applications

Bochner spaces

Definition

Let X be a Banach space. Let $p \in[1, \infty)$, then the Bochner space $L^{p}\left(\mathbb{R}^{d} ; X\right)$ consists of all strongly measurable functions $f: \mathbb{R}^{d} \rightarrow X$ such that

$$
\|f\|_{L^{p}\left(\mathbb{R}^{d} ; X\right)}:=\left(\int_{\mathbb{R}^{d}}\|f(x)\|_{X}^{p} \mathrm{~d} x\right)^{\frac{1}{p}}<\infty
$$

Bochner spaces

Definition

Let X be a Banach space. Let $p \in[1, \infty)$, then the Bochner space $L^{p}\left(\mathbb{R}^{d} ; X\right)$ consists of all strongly measurable functions $f: \mathbb{R}^{d} \rightarrow X$ such that

$$
\|f\|_{L^{p}\left(\mathbb{R}^{d} ; X\right)}:=\left(\int_{\mathbb{R}^{d}}\|f(x)\|_{X}^{p} \mathrm{~d} x\right)^{\frac{1}{p}}<\infty
$$

Example

If X is a Banach function space over measure space (S, μ), then
$L^{P}\left(\mathbb{R}^{d} ; X\right)$ consists of $f: \mathbb{R}^{d} \times S \rightarrow \mathbb{C}$ such that

$$
\begin{aligned}
f(x, \cdot) & \in X, \quad \text { a.e. } x \in \mathbb{R}^{d} \\
x \mapsto\|f(x, \cdot)\|_{X} & \in L^{p}\left(\mathbb{R}^{d}\right)
\end{aligned}
$$

Extension problem

Let $p \in[1, \infty)$ and X be a Banach space. For a T bounded linear operator on $L^{p}\left(\mathbb{R}^{d}\right)$ we define $\widetilde{T}=T \otimes I_{X}$ on $L^{p}\left(\mathbb{R}^{d}\right) \otimes X$ by

$$
\widetilde{T}(f \otimes e)=T f \otimes e
$$

Extension problem

Let $p \in[1, \infty)$ and X be a Banach space. For a T bounded linear operator on $L^{p}\left(\mathbb{R}^{d}\right)$ we define $\widetilde{T}=T \otimes I_{X}$ on $L^{p}\left(\mathbb{R}^{d}\right) \otimes X$ by

$$
\widetilde{T}(f \otimes e)=T f \otimes e
$$

Main Question

When does \widetilde{T} define a bounded operator on $L^{p}\left(\mathbb{R}^{d} ; X\right)$?

Provide sufficient conditions on X and T

Extension problem

Let $p \in[1, \infty)$ and X be a Banach space. For a T bounded linear operator on $L^{p}\left(\mathbb{R}^{d}\right)$ we define $\widetilde{T}=T \otimes I_{X}$ on $L^{p}\left(\mathbb{R}^{d}\right) \otimes X$ by

$$
\widetilde{T}(f \otimes e)=T f \otimes e
$$

Main Question

When does \tilde{T} define a bounded operator on $L^{p}\left(\mathbb{R}^{d} ; X\right)$?

- If $X=L^{p}$ or X is a Hilbert space.

Extension problem

Let $p \in[1, \infty)$ and X be a Banach space. For a T bounded linear operator on $L^{p}\left(\mathbb{R}^{d}\right)$ we define $\widetilde{T}=T \otimes I_{X}$ on $L^{p}\left(\mathbb{R}^{d}\right) \otimes X$ by

$$
\widetilde{T}(f \otimes e)=T f \otimes e
$$

Main Question

When does \tilde{T} define a bounded operator on $L^{p}\left(\mathbb{R}^{d} ; X\right)$?

- If $X=L^{p}$ or X is a Hilbert space.
- If T is positive.

Extension problem

Let $p \in[1, \infty)$ and X be a Banach space. For a T bounded linear operator on $L^{p}\left(\mathbb{R}^{d}\right)$ we define $\widetilde{T}=T \otimes I_{X}$ on $L^{p}\left(\mathbb{R}^{d}\right) \otimes X$ by

$$
\widetilde{T}(f \otimes e)=T f \otimes e
$$

Main Question

When does \tilde{T} define a bounded operator on $L^{p}\left(\mathbb{R}^{d} ; X\right)$?

- If $X=L^{p}$ or X is a Hilbert space.
- If T is positive.
- In general not even for $p=2$.

Extension problem

Let $p \in[1, \infty)$ and X be a Banach space. For a T bounded linear operator on $L^{p}\left(\mathbb{R}^{d}\right)$ we define $\widetilde{T}=T \otimes I_{X}$ on $L^{p}\left(\mathbb{R}^{d}\right) \otimes X$ by

$$
\widetilde{T}(f \otimes e)=T f \otimes e
$$

Main Question

When does \tilde{T} define a bounded operator on $L^{p}\left(\mathbb{R}^{d} ; X\right)$?

- If $X=L^{p}$ or X is a Hilbert space.
- If T is positive.
- In general not even for $p=2$.

Goal

Provide sufficient conditions on X and T.

(1) Motivation

(2) Preliminaries

(3) Vector-valued extrapolation

(4) Applications

Fourier Multipliers

We let \mathcal{F} denote the Fourier transform on \mathbb{R}^{d}. For a function $m: \mathbb{R}^{d} \rightarrow \mathbb{C}$ define the following operator

$$
T_{m} f:=\mathcal{F}^{-1}(m \mathcal{F}(f))
$$

Fourier Multipliers

We let \mathcal{F} denote the Fourier transform on \mathbb{R}^{d}. For a function $m: \mathbb{R}^{d} \rightarrow \mathbb{C}$ define the following operator

$$
T_{m} f:=\mathcal{F}^{-1}(m \mathcal{F}(f))
$$

Examples

The Hilbert transform " $\frac{\mathrm{d}}{\mathrm{d} x} /\left|\frac{\mathrm{d}}{\mathrm{d} x}\right|$ " for $d=1$:

$$
H:=T_{m} \quad \text { with } \quad m(\xi)=-i \operatorname{sgn}(\xi)
$$

The Riesz transforms:

$$
R_{j}:=T_{m} \quad \text { with } \quad m(\xi)=-i \frac{\xi_{j}}{|\xi|}
$$

Classifying which m yield bounded operators on L^{P} is very delicate! Theorem (M. Riesz '28)

Fourier Multipliers

We let \mathcal{F} denote the Fourier transform on \mathbb{R}^{d}. For a function $m: \mathbb{R}^{d} \rightarrow \mathbb{C}$ define the following operator

$$
T_{m} f:=\mathcal{F}^{-1}(m \mathcal{F}(f))
$$

Examples

The Hilbert transform " $\frac{\mathrm{d}}{\mathrm{d} x} /\left|\frac{\mathrm{d}}{\mathrm{d} x}\right|$ " for $d=1$:

$$
H:=T_{m} \quad \text { with } \quad m(\xi)=-i \operatorname{sgn}(\xi)
$$

The Riesz transforms:

$$
R_{j}:=T_{m} \quad \text { with } \quad m(\xi)=-i \frac{\xi_{j}}{|\xi|}
$$

Classifying which m yield bounded operators on L^{p} is very delicate!
Theorem (M. Riesz '28)
H is bounded on $L^{p}(\mathbb{R})$ and R_{j} is bounded on $L^{p}\left(\mathbb{R}^{d}\right)$ for all $p \in(1, \infty)$.

The UMD property
Is \widetilde{H} bounded on $L^{p}(\mathbb{R} ; X)$?

(Burkholder, Bourgain '83)

Equivalent to Unconditionality of Martingale Differences

The UMD property

Is \widetilde{H} bounded on $L^{p}(\mathbb{R} ; X)$?

Definition

A Banach space X is said to have the UMD property if \widetilde{H} is bounded on $L^{p}(\mathbb{R} ; X)$ for some (all) $p \in(1, \infty)$.

Equivalent to Unconditionality of Martingale Differences

The UMD property

Is \widetilde{H} bounded on $L^{p}(\mathbb{R} ; X)$?
Definition (Burkholder, Bourgain '83)
A Banach space X is said to have the UMD property if \widetilde{H} is bounded on $L^{p}(\mathbb{R} ; X)$ for some (all) $p \in(1, \infty)$.

Equivalent to Unconditionality of Martingale Differences

The UMD property

Is \widetilde{H} bounded on $L^{p}(\mathbb{R} ; X)$?
Definition (Burkholder, Bourgain '83)
A Banach space X is said to have the UMD property if \widetilde{H} is bounded on $L^{p}(\mathbb{R} ; X)$ for some (all) $p \in(1, \infty)$.

Equivalent to Unconditionality of Martingale Differences

The UMD property

Is \widetilde{H} bounded on $L^{p}(\mathbb{R} ; X)$?
Definition (Burkholder, Bourgain '83)
A Banach space X is said to have the UMD property if \widetilde{H} is bounded on $L^{p}(\mathbb{R} ; X)$ for some (all) $p \in(1, \infty)$.

Equivalent to Unconditionality of Martingale Differences

Examples

The following spaces have the UMD property:

The UMD property

Is \widetilde{H} bounded on $L^{p}(\mathbb{R} ; X)$?
Definition (Burkholder, Bourgain '83)
A Banach space X is said to have the UMD property if \widetilde{H} is bounded on $L^{p}(\mathbb{R} ; X)$ for some (all) $p \in(1, \infty)$.

Equivalent to Unconditionality of Martingale Differences

Examples

The following spaces have the UMD property:
Hilbert spaces.

The UMD property

Is \widetilde{H} bounded on $L^{p}(\mathbb{R} ; X)$?
Definition (Burkholder, Bourgain '83)
A Banach space X is said to have the UMD property if \widetilde{H} is bounded on $L^{p}(\mathbb{R} ; X)$ for some (all) $p \in(1, \infty)$.

Equivalent to Unconditionality of Martingale Differences

Examples

The following spaces have the UMD property:
Hilbert spaces.
(non-commutative) L^{p}-spaces for $p \in(1, \infty)$.

The UMD property

Is \widetilde{H} bounded on $L^{p}(\mathbb{R} ; X)$?
Definition (Burkholder, Bourgain '83)
A Banach space X is said to have the UMD property if \tilde{H} is bounded on $L^{p}(\mathbb{R} ; X)$ for some (all) $p \in(1, \infty)$.

Equivalent to Unconditionality of Martingale Differences

Examples

The following spaces have the UMD property:
Hilbert spaces.
(non-commutative) L^{p}-spaces for $p \in(1, \infty)$.
Reflexive Orlicz spaces.

The UMD property

Is \widetilde{H} bounded on $L^{p}(\mathbb{R} ; X)$?
Definition (Burkholder, Bourgain '83)
A Banach space X is said to have the UMD property if \widetilde{H} is bounded on $L^{p}(\mathbb{R} ; X)$ for some (all) $p \in(1, \infty)$.

Equivalent to Unconditionality of Martingale Differences

Examples

The following spaces have the UMD property:
Hilbert spaces.
(non-commutative) L^{p}-spaces for $p \in(1, \infty)$.
Reflexive Orlicz spaces.
Duals UMD spaces.

The UMD property

Is \widetilde{H} bounded on $L^{p}(\mathbb{R} ; X)$?
Definition (Burkholder, Bourgain '83)
A Banach space X is said to have the UMD property if \widetilde{H} is bounded on $L^{p}(\mathbb{R} ; X)$ for some (all) $p \in(1, \infty)$.

Equivalent to Unconditionality of Martingale Differences

Examples

The following spaces have the UMD property:
Hilbert spaces.
(non-commutative) L^{p}-spaces for $p \in(1, \infty)$.
Reflexive Orlicz spaces.
Duals UMD spaces.
Interpolation spaces between UMD spaces.

Muckenhoupt weights

Definition

$w \in L_{\text {loc }}^{1}\left(\mathbb{R}^{d}\right)$ is called a weight if $w>0$. Let $p \in(1, \infty)$, then $L^{p}\left(\mathbb{R}^{d}, w\right)$ consist of all measurable functions $f: \mathbb{R}^{d} \rightarrow \mathbb{C}$ such that

$$
\|f\|_{L^{p}\left(\mathbb{R}^{d}, w\right)}:=\left(\int_{\mathbb{R}^{d}}|f(x)|^{p} w(x) \mathrm{d} x\right)^{\frac{1}{p}}<\infty
$$

Muckenhoupt weights

Definition

$w \in L_{\text {loc }}^{1}\left(\mathbb{R}^{d}\right)$ is called a weight if $w>0$. Let $p \in(1, \infty)$, then $L^{p}\left(\mathbb{R}^{d}, w\right)$ consist of all measurable functions $f: \mathbb{R}^{d} \rightarrow \mathbb{C}$ such that

$$
\|f\|_{L^{p}\left(\mathbb{R}^{d}, w\right)}:=\left(\int_{\mathbb{R}^{d}}|f(x)|^{p} w(x) \mathrm{d} x\right)^{\frac{1}{p}}<\infty
$$

We consider the classes of Muckenhoupt weights A_{p} for $p \in(1, \infty)$.

Muckenhoupt weights

Definition

$w \in L_{\text {loc }}^{1}\left(\mathbb{R}^{d}\right)$ is called a weight if $w>0$. Let $p \in(1, \infty)$, then $L^{p}\left(\mathbb{R}^{d}, w\right)$ consist of all measurable functions $f: \mathbb{R}^{d} \rightarrow \mathbb{C}$ such that

$$
\|f\|_{L^{p}\left(\mathbb{R}^{d}, w\right)}:=\left(\int_{\mathbb{R}^{d}}|f(x)|^{p} w(x) \mathrm{d} x\right)^{\frac{1}{p}}<\infty
$$

We consider the classes of Muckenhoupt weights A_{p} for $p \in(1, \infty)$.

Theorem

Let w be a weight. The following are equivalent

- $w \in A_{p}$.
- The Hilbert transform is bounded on $L^{P}(\mathbb{R}, w)($ for $d=1)$.
- The Riesz projections are bounded on $L^{p}\left(\mathbb{R}^{d}, w\right)$.
- The Hardy-Littlewood maximal function is bounded on $L^{p}\left(\mathbb{R}^{d}, w\right)$.

Muckenhoupt weights

Definition

$w \in L_{\text {loc }}^{1}\left(\mathbb{R}^{d}\right)$ is called a weight if $w>0$. Let $p \in(1, \infty)$, then $L^{p}\left(\mathbb{R}^{d}, w\right)$ consist of all measurable functions $f: \mathbb{R}^{d} \rightarrow \mathbb{C}$ such that

$$
\|f\|_{L^{p}\left(\mathbb{R}^{d}, w\right)}:=\left(\int_{\mathbb{R}^{d}}|f(x)|^{p} w(x) \mathrm{d} x\right)^{\frac{1}{p}}<\infty
$$

We consider the classes of Muckenhoupt weights A_{p} for $p \in(1, \infty)$.

Example

Let $w(x)=|x|^{\alpha}$ for $x \in \mathbb{R}^{d}$, then

$$
w \in A_{p} \quad \Longleftrightarrow \quad-d<\alpha<d(p-1)
$$

Scalar-valued Extrapolation

Theorem (Rubio de Francia '84)
Let T be a sublinear operator on $L^{p}\left(\mathbb{R}^{d}, w\right)$.
T is bounded on $L^{p}\left(\mathbb{R}^{d}, w\right)$ for some $p \in(1, \infty)$ and all $w \in A_{p}$.

$$
\Rightarrow
$$

T is bounded on $L^{p}\left(\mathbb{R}^{d}, w\right)$ for all $p \in(1, \infty)$ and all $w \in A_{p}$.

Scalar-valued Extrapolation

Theorem (Rubio de Francia '84)
Let T be a sublinear operator on $L^{p}\left(\mathbb{R}^{d}, w\right)$.
T is bounded on $L^{p}\left(\mathbb{R}^{d}, w\right)$ for some $p \in(1, \infty)$ and all $w \in A_{p}$.

$$
\Rightarrow
$$

T is bounded on $L^{p}\left(\mathbb{R}^{d}, w\right)$ for all $p \in(1, \infty)$ and all $w \in A_{p}$.
"There are no L^{p} spaces, only weighted $L^{2 "}$ - Cordoba '88

Scalar-valued Extrapolation

Theorem (Rubio de Francia '84)
Let T be a sublinear operator on $L^{p}\left(\mathbb{R}^{d}, w\right)$ and $p_{0} \in(0, \infty)$.
T is bounded on $L^{p}\left(\mathbb{R}^{d}, w\right)$ for some $p \in\left(p_{0}, \infty\right)$ and all $w \in A_{p / p_{0}}$.

$$
\Rightarrow
$$

T is bounded on $L^{p}\left(\mathbb{R}^{d}, w\right)$ for all $p \in\left(p_{0}, \infty\right)$ and all $w \in A_{p / p_{0}}$.
"There are no L^{p} spaces, only weighted $L^{2 "}$ - Cordoba '88

p-Convexity

Definition
Let $p \in[1, \infty]$. A Banach function space X is p-convex if

$$
\left\|\left(\sum_{k=1}^{n}\left|x_{k}\right|^{p}\right)^{1 / p}\right\|_{X} \leq\left(\sum_{k=1}^{n}\left\|x_{k}\right\|_{X}^{p}\right)^{1 / p}
$$

for all $x_{1}, \cdots, x_{n} \in X$. It is p-concave if the reverse estimate holds.

p-Convexity

Definition
Let $p \in[1, \infty]$. A Banach function space X is p-convex if

$$
\left\|\left(\sum_{k=1}^{n}\left|x_{k}\right|^{p}\right)^{1 / p}\right\|_{X} \leq\left(\sum_{k=1}^{n}\left\|x_{k}\right\|_{X}^{p}\right)^{1 / p}
$$

for all $x_{1}, \cdots, x_{n} \in X$. It is p-concave if the reverse estimate holds.

- Every Banach function space is 1 -convex and ∞-concave.

p-Convexity

Definition

Let $p \in[1, \infty]$. A Banach function space X is p-convex if

$$
\left\|\left(\sum_{k=1}^{n}\left|x_{k}\right|^{p}\right)^{1 / p}\right\|_{X} \leq\left(\sum_{k=1}^{n}\left\|x_{k}\right\|_{X}^{p}\right)^{1 / p}
$$

for all $x_{1}, \cdots, x_{n} \in X$. It is p-concave if the reverse estimate holds.

- Every Banach function space is 1 -convex and ∞-concave.
- If a Banach function space is p-convex and q-concave, then
- $p \leq q$.
- X is p_{0}-convex for all $p_{0} \leq p$.
- X is q_{0}-concave for all $q_{0} \geq q$.

p-Convexity

Definition

Let $p \in[1, \infty]$. A Banach function space X is p-convex if

$$
\left\|\left(\sum_{k=1}^{n}\left|x_{k}\right|^{p}\right)^{1 / p}\right\|_{X} \leq\left(\sum_{k=1}^{n}\left\|x_{k}\right\|_{X}^{p}\right)^{1 / p}
$$

for all $x_{1}, \cdots, x_{n} \in X$. It is p-concave if the reverse estimate holds.

- Every Banach function space is 1 -convex and ∞-concave.
- If a Banach function space is p-convex and q-concave, then
- $p \leq q$.
- X is p_{0}-convex for all $p_{0} \leq p$.
- X is q_{0}-concave for all $q_{0} \geq q$.
- L^{p} is p-convex and p-concave.

Concavification

Definition

Let $p \in(0, \infty)$ and let X be a p-convex Banach function space. Define the p-concavification X^{p} of X by

$$
X^{p}=\left\{|x|^{p} \operatorname{sgn}(x): x \in X\right\}=\left\{x:|x|^{1 / p} \in X\right\}
$$

with the norm $\|x\|_{X^{p}}=\left\||x|^{1 / p}\right\|_{X}^{p}$

Concavification

Definition

Let $p \in(0, \infty)$ and let X be a p-convex Banach function space. Define the p-concavification X^{p} of X by

$$
X^{p}=\left\{|x|^{p} \operatorname{sgn}(x): x \in X\right\}=\left\{x:|x|^{1 / p} \in X\right\}
$$

with the norm $\|x\|_{X^{p}}=\left\||x|^{1 / p}\right\|_{X}^{p}$

For example $\left(L^{p}\right)^{r}=L^{p / r}$.

(1) Motivation

(2) Preliminaries

(3) Vector-valued extrapolation

(4) Applications

Vector-valued extrapolation

Theorem (Rubio de Francia '86)
Let T be a sublinear operator on $L^{p}(\mathbb{R}, w)$ and let X be a Banach function space with the UMD property.
T is bounded on $L^{p}(\mathbb{R}, w)$ for all $p \in(1, \infty)$ and all $w \in A_{p}$

\widetilde{T} is bounded on $L^{p}(\mathbb{R} ; X)$ for all $p \in(1, \infty)$.

Vector-valued extrapolation

Theorem (Rubio de Francia '86)
Let T be a sublinear operator on $L^{p}(\mathbb{R}, w)$ and let X be a Banach function space with the UMD property.
T is bounded on $L^{p}(\mathbb{R}, w)$ for all $p \in(1, \infty)$ and all $w \in A_{p}$

\widetilde{T} is bounded on $L^{p}(\mathbb{R} ; X)$ for all $p \in(1, \infty)$.
Here \widetilde{T} is defined on simple functions $f: \mathbb{R} \rightarrow X$ by

$$
\widetilde{T} f(x, s)=T(f(\cdot, s))(x)
$$

and extended by density. For linear operators this coincides with tensor extension $\widetilde{T}=T \otimes I_{X}$.

Vector-valued extrapolation

Theorem (Amenta, L., Veraar '17)
Let T be a sublinear operator on $L^{p}\left(\mathbb{R}^{d}, w\right)$. Let X be a Banach function space with the UMD property.
T is bounded on $L^{p}\left(\mathbb{R}^{d}, w\right)$ for all $p \in(1, \infty)$ and all $w \in A_{p}$.

$$
\Longrightarrow
$$

\tilde{T} is bounded on $L^{p}\left(\mathbb{R}^{d} ; X\right)$ for all $p \in(1, \infty)$.
Here \tilde{T} is defined on simple functions $f: \mathbb{R}^{d} \rightarrow X$ by

$$
\tilde{T} f(x, s)=T(f(\cdot, s))(x)
$$

and extended by density. For linear operators this coincides with tensor extension $\widetilde{T}=T \otimes I_{X}$.

Vector-valued extrapolation

Theorem (Amenta, L., Veraar '17)
Let T be a sublinear operator on $L^{p}\left(\mathbb{R}^{d}, w\right)$. Let X be a Banach function space with the UMD property.
T is bounded on $L^{p}\left(\mathbb{R}^{d}, w\right)$ for all $p \in(1, \infty)$ and all $w \in A_{p}$.

\tilde{T} is bounded on $L^{p}\left(\mathbb{R}^{d}, w ; X\right)$ for all $p \in(1, \infty)$ and all $w \in A_{p}$. Here \tilde{T} is defined on simple functions $f: \mathbb{R}^{d} \rightarrow X$ by

$$
\widetilde{T} f(x, s)=T(f(\cdot, s))(x)
$$

and extended by density. For linear operators this coincides with tensor extension $\widetilde{T}=T \otimes I_{X}$.

Vector-valued extrapolation

Theorem (Amenta, L., Veraar '17)
Let T be a sublinear operator on $L^{p}\left(\mathbb{R}^{d}, w\right)$. Take $p_{0} \in(0, \infty)$ and let X be a Banach function space such that $X^{p_{0}}$ has the UMD property.
T is bounded on $L^{p}\left(\mathbb{R}^{d}, w\right)$ for all $p \in\left(p_{0}, \infty\right)$ and all $w \in A_{p / p_{0}}$.

\tilde{T} is bounded on $L^{p}\left(\mathbb{R}^{d}, w ; X\right)$ for all $p \in\left(p_{0}, \infty\right)$ and all $w \in A_{p / p_{0}}$. Here \tilde{T} is defined on simple functions $f: \mathbb{R}^{d} \rightarrow X$ by

$$
\tilde{T} f(x, s)=T(f(\cdot, s))(x)
$$

and extended by density. For linear operators this coincides with tensor extension $\widetilde{T}=T \otimes I_{X}$.

(1) Motivation

(2) Preliminaries

(3) Vector-valued extrapolation

(4) Applications

Applications and conclusion

- Vector-valued Littlewood-Paley-Rubio de Francia inequalities. (Rubio de Francia 85'), (Potapov, Sukochev, Xu '12), (Król '14)

Applications and conclusion

- Vector-valued Littlewood-Paley-Rubio de Francia inequalities. (Rubio de Francia 85'), (Potapov, Sukochev, Xu '12), (Król '14)
- Operator-valued Fourier multiplier theorems. (Hytönen, Potapov '06), (Król '14)

Applications and conclusion

- Vector-valued Littlewood-Paley-Rubio de Francia inequalities. (Rubio de Francia 85'), (Potapov, Sukochev, Xu '12), (Król '14)
- Operator-valued Fourier multiplier theorems.
(Hytönen, Potapov '06), (Król '14)
- Boundedness of the vector-valued variational Carleson operator. (Oberlin, Seeger, Tao, Thiele, Wright '12), (Di Plinio, Do, Uraltsev '16)

Applications and conclusion

- Vector-valued Littlewood-Paley-Rubio de Francia inequalities. (Rubio de Francia 85'), (Potapov, Sukochev, Xu '12), (Król '14)
- Operator-valued Fourier multiplier theorems. (Hytönen, Potapov '06), (Król '14)
- Boundedness of the vector-valued variational Carleson operator. (Oberlin, Seeger, Tao, Thiele, Wright '12), (Di Plinio, Do, Uraltsev '16)

Goal

Provide sufficient conditions on X and T such that \widetilde{T} is a bounded operator on $L^{p}\left(\mathbb{R}^{d} ; X\right)$

Applications and conclusion

- Vector-valued Littlewood-Paley-Rubio de Francia inequalities. (Rubio de Francia 85'), (Potapov, Sukochev, Xu '12), (Król '14)
- Operator-valued Fourier multiplier theorems. (Hytönen, Potapov '06), (Król '14)
- Boundedness of the vector-valued variational Carleson operator. (Oberlin, Seeger, Tao, Thiele, Wright '12), (Di Plinio, Do, Uraltsev '16)

Goal

Provide sufficient conditions on X and T such that \widetilde{T} is a bounded operator on $L^{p}\left(\mathbb{R}^{d} ; X\right)$

- X a Banach function space such that $X^{p_{0}}$ is a Banach function space with the UMD property

Applications and conclusion

- Vector-valued Littlewood-Paley-Rubio de Francia inequalities. (Rubio de Francia 85'), (Potapov, Sukochev, Xu '12), (Król '14)
- Operator-valued Fourier multiplier theorems. (Hytönen, Potapov '06), (Król '14)
- Boundedness of the vector-valued variational Carleson operator. (Oberlin, Seeger, Tao, Thiele, Wright '12), (Di Plinio, Do, Uraltsev '16)

Goal

Provide sufficient conditions on X and T such that \widetilde{T} is a bounded operator on $L^{p}\left(\mathbb{R}^{d} ; X\right)$

- X a Banach function space such that $X^{p_{0}}$ is a Banach function space with the UMD property
- T a sublinear operator that is bounded on $L^{p}(w)$ for all $w \in A_{p / p_{0}}$.

Thank you for your attention!

LPR for Banach function spaces

For an interval $I \subset \mathbb{R}$ we define

$$
S_{I} f=\mathcal{F}^{-1}\left(\mathbf{1}_{l} \mathcal{F}(f)\right)
$$

LPR for Banach function spaces

For an interval $I \subset \mathbb{R}$ we define

$$
S_{I} f=\mathcal{F}^{-1}\left(\mathbf{1}_{I} \mathcal{F}(f)\right)
$$

Theorem (Rubio de Francia '85)

Let $p \in(2, \infty)$ and let \mathcal{I} be a collection of mutually disjoint intervals in \mathbb{R}, then for $w \in A_{p / 2}$ and $f \in L^{p}(w)$

$$
\left\|\left(\sum_{I \in \mathcal{I}}\left|S_{I} f\right|^{2}\right)^{1 / 2}\right\|_{L^{p}(w)} \lesssim_{p, w}\|f\|_{L^{p}(w)}
$$

LPR for Banach function spaces

For an interval $I \subset \mathbb{R}$ we define

$$
S_{I} f=\mathcal{F}^{-1}\left(\mathbf{1}_{l} \mathcal{F}(f)\right)
$$

Theorem (Rubio de Francia '85)

Let $p \in(2, \infty)$ and let \mathcal{I} be a collection of mutually disjoint intervals in \mathbb{R}, then for $w \in A_{p / 2}$ and $f \in L^{p}(w)$

$$
\left\|\left(\sum_{I \in \mathcal{I}}\left|S_{I} f\right|^{2}\right)^{1 / 2}\right\|_{L^{p}(w)} \lesssim_{p, w}\|f\|_{L^{p}(w)}
$$

Definition

Let X be a Banach function space and $p \in(2, \infty)$. X has the LPR_{p} property if

$$
\left\|\left(\sum_{I \in \mathcal{I}}\left|S_{I} f\right|^{2}\right)^{1 / 2}\right\|_{L^{p}(X)} \lesssim X, p, w\|f\|_{L^{p}(X)}
$$

LPR for Banach function spaces

For an interval $I \subset \mathbb{R}$ we define

$$
S_{I} f=\mathcal{F}^{-1}\left(\mathbf{1}_{l} \mathcal{F}(f)\right)
$$

Theorem (Rubio de Francia '85, Król '14)

Let $q \in[2, \infty), p \in\left(q^{\prime}, \infty\right)$ and let \mathcal{I} be a collection of mutually disjoint intervals in \mathbb{R}, then for $w \in A_{p / q^{\prime}}$ and $f \in L^{p}(w)$

$$
\left\|\left(\sum_{I \in \mathcal{I}}\left|S_{I} f\right|^{q}\right)^{1 / q}\right\|_{L^{p}(w)} \lesssim_{p, q, w}\|f\|_{L^{p}(w)}
$$

Definition

Let X be a Banach function space and $p \in\left(q^{\prime}, \infty\right)$. X has the $\operatorname{LPR}_{p, q}$ property if

$$
\left\|\left(\sum_{I \in \mathcal{I}}\left|S_{l} f\right|^{q}\right)^{1 / q}\right\|_{L^{p}(X)} \lesssim X, p, q, w\|f\|_{L^{p}(X)}
$$

LPR for Banach function spaces

Theorem (Potapov, Sukochev, Xu '12)
Let X be a Banach function space such that X^{2} is a Banach function space with the UMD property. Then X has the $\operatorname{LPR}_{p, 2}$ property for all $p \in(2, \infty)$.

LPR for Banach function spaces

Theorem (Potapov, Sukochev, Xu '12)
Let X be a Banach function space such that X^{2} is a Banach function space with the UMD property. Then X has the $\operatorname{LPR}_{p, 2}$ property for all $p \in(2, \infty)$.

Corollary (Amenta, L., Veraar '17)
Let $q \in[2, \infty)$ and let X be a Banach function space such that $X^{q^{\prime}}$ is a Banach function space with the UMD property. Then X has the $\operatorname{LPR}_{p, q}$ property for all $p \in\left(q^{\prime}, \infty\right)$.

LPR for Banach function spaces

Theorem (Potapov, Sukochev, Xu '12)
Let X be a Banach function space such that X^{2} is a Banach function space with the UMD property. Then X has the $\operatorname{LPR}_{p, 2}$ property for all $p \in(2, \infty)$.

Corollary (Amenta, L., Veraar '17)
Let $q \in[2, \infty)$ and let X be a Banach function space such that $X^{q^{\prime}}$ is a Banach function space with the UMD property. Then X has the $\operatorname{LPR}_{p, q}$ property for all $p \in\left(q^{\prime}, \infty\right)$. Moreover, the defining estimate holds for all $w \in A_{p / q^{\prime}}$ and $f \in L^{p}(w ; X)$.

As an application we obtain an operator-valued Fourier multiplier result, which extends a result of (Hytönen, Potapov '06).

Scalar-valued limited range extrapolation

Theorem (Auscher, Martell '07)
Let T be a sublinear operator on $L^{p}(w)$ and $0 \leq p_{-}<p_{+} \leq \infty$.
T is bounded on $L^{p}(w)$ for some $p \in\left(p_{-}, p_{+}\right)$and all $w \in A_{p / p_{-}} \cap R H_{\left(p_{+} / p\right)^{\prime}}$.

T is bounded on $L^{p}(w)$ for all $p \in\left(p_{-}, p_{+}\right)$and all $w \in A_{p / p_{-}} \cap R H_{\left(p_{+} / p\right)^{\prime}}$.

Vector-valued limited range extrapolation

Theorem (L. '17)

Let T be a sublinear operator on $L^{p}(w)$. Take $0 \leq p_{-}<p_{+} \leq \infty$ and let X be p_{-}-convex, p_{+}-concave Banach function space such that $\left(\left(X^{p_{-}}\right)^{*}\right)^{p_{+} / p_{-}}$ has the UMD property.
T is bounded on $L^{p}(w)$ for all $p \in\left(p_{-}, p_{+}\right)$and all $w \in A_{p / p_{-}} \cap R H_{\left(p_{+} / p\right)^{\prime}}$.

\tilde{T} is bounded on $L^{p}(w ; X)$ for all $p \in\left(p_{-}, p_{+}\right)$and all $w \in A_{p / p_{-}} \cap R H_{\left(p_{+} / p\right)^{\prime}}$.

Let $X=L^{q}$, then $\left(\left(X^{p_{-}}\right)^{*}\right)^{p_{+} / p_{-}}$has the UMD property if and only if

$$
p_{-}<q<p_{+}
$$

