

Some loose ends on unbounded order convergence

Hui Li

Southwest Jiaotong University

Joint work with Zili Chen

University of Alberta, July 20, 2017

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

1 Motivation

2 Main results

◆□> <圖> < E> < E> E のQ@

1 Motivation

2 Main results

Motivation

- In 1948, a type of order convergence was introduced by Nakano in semi-ordered linear spaces, in order to establish a version of Birkhoff's Ergodic Theorem in the setting of partially ordered spaces: Analogue of a.e. convergence
- In 1977, Wickstead introduced it into Banach lattices and named it unbounded order convergence.

Definition

Let X be a vector lattice, a net (x_{α}) in X is said to **unbounded order converge** to $x \in X$, $x_{\alpha} \xrightarrow{u_0} x$, if $|x_{\alpha} - x| \wedge y \xrightarrow{o} 0$ for any $y \in X_+$.

Motivation

- In 1948, a type of order convergence was introduced by Nakano in semi-ordered linear spaces, in order to establish a version of Birkhoff's Ergodic Theorem in the setting of partially ordered spaces: Analogue of a.e. convergence
- In 1977, Wickstead introduced it into Banach lattices and named it unbounded order convergence.

Definition

Let X be a vector lattice, a net (x_{α}) in X is said to **unbounded order converge** to $x \in X$, $x_{\alpha} \xrightarrow{u_0} x$, if $|x_{\alpha} - x| \wedge y \xrightarrow{o} 0$ for any $y \in X_+$.

Motivation Main results

- In 1948, a type of order convergence was introduced by Nakano in semi-ordered linear spaces, in order to establish a version of Birkhoff's Ergodic Theorem in the setting of partially ordered spaces: Analogue of a.e. convergence
- In 1977, Wickstead introduced it into Banach lattices and named it unbounded order convergence.

(日) (同) (三) (三) (三) (○) (○)

Definition

Let X be a vector lattice, a net (x_{α}) in X is said to **unbounded order converge** to $x \in X$, $x_{\alpha} \xrightarrow{uo} x$, if $|x_{\alpha} - x| \wedge y \xrightarrow{o} 0$ for any $y \in X_{+}$.

Motivation Main results

- In 1948, a type of order convergence was introduced by Nakano in semi-ordered linear spaces, in order to establish a version of Birkhoff's Ergodic Theorem in the setting of partially ordered spaces: Analogue of a.e. convergence
- In 1977, Wickstead introduced it into Banach lattices and named it unbounded order convergence.

(日) (同) (三) (三) (三) (○) (○)

Definition

Let X be a vector lattice, a net (x_{α}) in X is said to **unbounded order converge** to $x \in X$, $x_{\alpha} \xrightarrow{u_0} x$, if $|x_{\alpha} - x| \wedge y \xrightarrow{o} 0$ for any $y \in X_+$.

Gao and Xanthos (2014) used it to study Doob's Martingale Convergence Theorem in a general framework of vector and Banach lattices;

Theorem(Dobb)

Every norm bounded submartingale in $L_1(\mu)$ converges almost surely (to a limit in $L_1(\mu)$).

Let X be a vector lattice, a filtration (E_n) on X is a sequence positive projections on X such that $E_n E_m = E_m E_n = E_{m \wedge n}$ for all $m, n \geq 1$. Recall also that a sequence $(x_n) \subset X$ is called a martingale relative to (E_n) if $E_n x_m = x_n$ for all $m \geq n$.

Gao and Xanthos (2014) used it to study Doob's Martingale Convergence Theorem in a general framework of vector and Banach lattices;

Theorem(Dobb)

Every norm bounded submartingale in $L_1(\mu)$ converges almost surely (to a limit in $L_1(\mu)$).

Let X be a vector lattice, a filtration (E_n) on X is a sequence positive projections on X such that $E_n E_m = E_m E_n = E_{m \wedge n}$ for all $m, n \geq 1$. Recall also that a sequence $(x_n) \subset X$ is called a martingale relative to (E_n) if $E_n x_m = x_n$ for all $m \geq n$.

Gao and Xanthos (2014) used it to study Doob's Martingale Convergence Theorem in a general framework of vector and Banach lattices;

Theorem(Dobb)

Every norm bounded submartingale in $L_1(\mu)$ converges almost surely (to a limit in $L_1(\mu)$).

Let X be a vector lattice, a filtration (E_n) on X is a sequence positive projections on X such that $E_n E_m = E_m E_n = E_{m \wedge n}$ for all $m, n \geq 1$. Recall also that a sequence $(x_n) \subset X$ is called a martingale relative to (E_n) if $E_n x_m = x_n$ for all $m \geq n$.

Gao and Xanthos (2014) used it to study Doob's Martingale Convergence Theorem in a general framework of vector and Banach lattices;

Theorem(Dobb)

Every norm bounded submartingale in $L_1(\mu)$ converges almost surely (to a limit in $L_1(\mu)$).

Let X be a vector lattice, a filtration (E_n) on X is a sequence positive projections on X such that $E_n E_m = E_m E_n = E_{m \wedge n}$ for all $m, n \geq 1$. Recall also that a sequence $(x_n) \subset X$ is called a martingale relative to (E_n) if $E_n x_m = x_n$ for all $m \geq n$.

Motivation

Theorem(Gao and Xanthos, 2014)

Let X be a vector lattice with a weak unit and a strictly positive order continuous functional, then every martingale (z_n) in $L_1(\Omega, X)$ with respect to a classical filtration is almost surely uo-Cauchy in X.

Uo-Cauchy

a net $\{x_{\alpha}\}$ is said to be unbounded order Cauchy (or, Uo-Cauchy for short), if the net $(x_{\alpha} - x_{\alpha'})_{(\alpha,\alpha')}$ uo-convergences to 0.

Motivation

Theorem(Gao and Xanthos, 2014)

Let X be a vector lattice with a weak unit and a strictly positive order continuous functional, then every martingale (z_n) in $L_1(\Omega, X)$ with respect to a classical filtration is almost surely uo-Cauchy in X.

Uo-Cauchy

a net $\{x_\alpha\}$ is said to be unbounded order Cauchy (or, Uo-Cauchy for short), if the net $(x_\alpha-x_{\alpha'})_{(\alpha,\alpha')}$ uo-convergences to 0.

Theorem (Gao and Xanthos, 2014)

Motivation

Let X be an order continuous Banach lattice. Then every norm bounded uo-Cauchy net is uo-convergent $\iff X$ is KB, every norm bounded increasing net is convergent (in order and in norms).

Question

In vector lattice X, is a norm bounded increasing net uo-Cauchy ?

Question 2

Can we find a limit for a uo-Cauchy net? Say, in the universal completion?

Theorem (Gao and Xanthos, 2014)

Motivation

Let X be an order continuous Banach lattice. Then every norm bounded uo-Cauchy net is uo-convergent $\iff X$ is KB, every norm bounded increasing net is convergent (in order and in norms).

Question 1

In vector lattice $\boldsymbol{X},$ is a norm bounded increasing net uo-Cauchy ?

Question 2

Can we find a limit for a uo-Cauchy net? Say, in the universal completion?

Theorem (Gao and Xanthos, 2014)

Motivation

Let X be an order continuous Banach lattice. Then every norm bounded uo-Cauchy net is uo-convergent $\iff X$ is KB, every norm bounded increasing net is convergent (in order and in norms).

Question 1

In vector lattice $\boldsymbol{X},$ is a norm bounded increasing net uo-Cauchy ?

Question 2

Can we find a limit for a uo-Cauchy net? Say, in the universal completion?

1 Motivation

2 Main results

▲□▶ <圖▶ < ≧▶ < ≧▶ = のQ@</p>

Motivation

Main results

Theorem 1

Let X be a vector lattice.Suppose that X_n^\sim separates points of X, then every norm bounded positive increasing net (x_α) is uo-Cauchy in X.

Step 1: WLOG, assume X is order complete. • Let $\{\phi_{\gamma}\}$ be a maximal disjoint collection in $(X_{n}^{\sim})_{+}$; • For each γ , the null idea of ϕ_{γ} is $N_{\gamma} = \{x \in X : \phi_{\gamma}(|x|) = 0\}$; the carrier is $C_{\gamma} = N_{\gamma}^{d}$; • $X \sim \oplus C_{\gamma}$; pass to C_{γ} by considering $(P_{\gamma}x_{\alpha})_{\alpha}$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへの

Motivation

Main results

Theorem 1

Let X be a vector lattice.Suppose that X_n^\sim separates points of X, then every norm bounded positive increasing net (x_α) is uo-Cauchy in X.

Step 1: WLOG, assume X is order complete.

Let {φ_γ} be a maximal disjoint collection in (X_n[~])₊;
For each γ, the null idea of φ_γ is N_γ = {x ∈ X : φ_γ(|x|) = 0}; the carrier is C_γ = N_γ^d;
X ∽ ⊕C_γ; pass to C_γ by considering (P_γx_α)_α.

Motivation

Main results

Theorem 1

Let X be a vector lattice.Suppose that X_n^\sim separates points of X, then every norm bounded positive increasing net (x_α) is uo-Cauchy in X.

Step 1: WLOG, assume X is order complete.

- Let $\{\phi_{\gamma}\}$ be a maximal disjoint collection in $(X_{n}^{\sim})_{+}$;
- \blacksquare For each $\gamma,$ the null idea of ϕ_{γ} is
 - $N_{\gamma} = \{x \in X : \phi_{\gamma}(|x|) = 0\}; \text{ the carrier is } C_{\gamma} = N_{\gamma}^{d};$

• $X \sim \oplus C_{\gamma}$; pass to C_{γ} by considering $(P_{\gamma}x_{\alpha})_{\alpha}$.

Motivation

Main results

Theorem 1

Let X be a vector lattice.Suppose that X_n^\sim separates points of X, then every norm bounded positive increasing net (x_α) is uo-Cauchy in X.

Step 1: WLOG, assume X is order complete.

Let {φ_γ} be a maximal disjoint collection in (X_n[~])₊;
For each γ, the null idea of φ_γ is N_γ = {x ∈ X : φ_γ(|x|) = 0}; the carrier is C_γ = N_γ^d;
X ∽ ⊕C_γ; pass to C_γ by considering (P_γx_α)_α.

Motivation

Main results

Theorem 1

Let X be a vector lattice.Suppose that X_n^{\sim} separates points of X, then every norm bounded positive increasing net (x_{α}) is uo-Cauchy in X.

Step 1: WLOG, assume X is order complete.

- Let $\{\phi_{\gamma}\}$ be a maximal disjoint collection in $(X_n^{\sim})_+$;
- For each γ , the null idea of ϕ_{γ} is
 - $N_{\gamma} = \{x \in X : \phi_{\gamma}(|x|) = 0\}; \text{ the carrier is } C_{\gamma} = N_{\gamma}^{d};$

• $X \sim \oplus C_{\gamma}$; pass to C_{γ} by considering $(P_{\gamma}x_{\alpha})_{\alpha}$.

The following lemma guarantees we can just need to prove each $(P_{\gamma}x_{\alpha})_{\alpha}$ is uo-Cauchy in C_{γ} : simply let $D = \bigcup_{\gamma} C_{\gamma}$ and notice $|x_{\alpha} - x_{\alpha'}| \wedge y = |P_{\gamma}x_{\alpha} - P_{\gamma}x_{\alpha'}| \wedge y$ for each $y \in C_{\gamma}$.

Lemma

Let X be a vector lattice and D be a set in X_+ . TFAE:

- **1** The band generated by D is X.
- 2 For any net (x_{α}) in X_+ , $x_{\alpha} \wedge d \xrightarrow{o} 0$ for any $d \in D$ implies $x_{\alpha} \xrightarrow{u_0} 0$.

On C_γ, φ_γ is a strictly positive order continuous functional. Then C_γ can be embedded in the L₁(μ) space-the norm completion of (C_γ, || · ||_γ) in which ||y||_γ = φ_γ(|y|) for each y ∈ C_γ.

On C_γ, φ_γ is a strictly positive order continuous functional. Then C_γ can be embedded in the L₁(μ) space-the norm completion of (C_γ, || · ||_γ) in which ||y||_γ = φ_γ(|y|) for each y ∈ C_γ.

corollary

Let X be a Banach function space over a σ -finite measure space. Then any norm bounded positive increasing sequence in X converges a.e. to a real-valued measurable function.

Theorem 2

Let X be a vector lattice such that X_n^{\sim} separates points of X. Then X^u is uo-complete, and every uo-Cauchy net in X is uo-convergent in X^u .

corollary

Let X be a Banach function space over a σ -finite measure space. Then any norm bounded positive increasing sequence in X converges a.e. to a real-valued measurable function.

Theorem 2

Let X be a vector lattice such that X_n^{\sim} separates points of X. Then X^u is uo-complete, and every uo-Cauchy net in X is uo-convergent in X^u .

Universal completion

Motivation Main results

Recall that a vector lattice X is said to be:

- laterally complete if every collection of mutually disjoint positive vectors admit a supremum;
- universally complete if it is order complete and laterally complete.

Universal completion

Motivation Main results

Recall that a vector lattice X is said to be:

 laterally complete if every collection of mutually disjoint positive vectors admit a supremum;

 universally complete if it is order complete and laterally complete.

Universal completion

Motivation Main results

Recall that a vector lattice X is said to be:

- laterally complete if every collection of mutually disjoint positive vectors admit a supremum;
- universally complete if it is order complete and laterally complete.

Motivation

Main results

Theorem 2

Let X be a vector lattice such that X_n^{\sim} separates points of X. Then X^u is uo-complete, and every uo-Cauchy net in X is uo-convergent in X^u .

Step 1:

- $\blacksquare X \backsim \oplus C_{\gamma};$
- Moreover, $X \sim \oplus B_{\sigma}$ and for each σ , B_{σ} is a principal band;

Motivation

Main results

Theorem 2

Let X be a vector lattice such that X_n^{\sim} separates points of X. Then X^u is uo-complete, and every uo-Cauchy net in X is uo-convergent in X^u .

Step 1:

- $\blacksquare X \backsim \oplus C_{\gamma};$
- Moreover, $X \backsim \oplus B_{\sigma}$ and for each σ , B_{σ} is a principal band;

Motivation

Main results

Theorem 2

Let X be a vector lattice such that X_n^{\sim} separates points of X. Then X^u is uo-complete, and every uo-Cauchy net in X is uo-convergent in X^u .

Step 1:

- $X \backsim \oplus C_{\gamma};$
- Moreover, $X \backsim \oplus B_{\sigma}$ and for each σ , B_{σ} is a principal band;

Motivation

Main results

Theorem 2

Let X be a vector lattice such that X_n^{\sim} separates points of X. Then X^u is uo-complete, and every uo-Cauchy net in X is uo-convergent in X^u .

Step 1:

- $X \backsim \oplus C_{\gamma};$
- Moreover, $X \backsim \oplus B_{\sigma}$ and for each σ , B_{σ} is a principal band;

Countable sup property

Motivation

Main results

Step 2:

Lemma

Let X be a vector lattice with a weak unit u>0. If X has the countable sup property, then $X^{\rm u}$ also has the countable sup property.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Step 3:

Proposition

Let X be an order complete vector lattice. If X is universally complete, and, in addition, has the countable sup property, then it is uo-complete.

Remark:

• If X is uo-complete, then it is universally complete.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

э

Motivation

Main results

Step 3:

Proposition

Let X be an order complete vector lattice. If X is universally complete, and, in addition, has the countable sup property, then it is uo-complete.

Remark:

If X is uo-complete, then it is universally complete.

Motivation

Main results

Step 3:

Proposition

Let X be an order complete vector lattice. If X is universally complete, and, in addition, has the countable sup property, then it is uo-complete.

Remark:

If X is uo-complete, then it is universally complete.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Motivation

Main results

Theorem 3

Let X be a vector lattice, and D be a maximal collection of disjoint positive nonzero vectors in X. Suppose that the band B_d generated by d has the countable sup property for each $d \in D$. Then X^u is uo-complete, and every uo-Cauchy net in X is uo-convergent in X^u .

Motivation

Main results

Thanks for your attention!

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ