# M-operators on Partially Ordered Banach Spaces 

## Lavanya S

Department of Mathematics<br>Indian Institute of Technology Madras<br>India

21. 7. 2017

This is based on a joint work with Anke Kalauch (TU Dresden, Germany) and K. C. Sivakumar (IIT Madras, India).

## Outline

## (1) Introduction

(2) Invertible M-operators

- Matrix case
- An extension to infinite dimension
(3) Singular M-operators
- Matrix case
- An extension to infinite dimension


## Notations

Let $X$ be a normed linear space. We use the following notations:

- $\mathcal{B}(X)$ denotes the set of all bounded linear operators on $X$.
- The pair $(X, K)$ denotes a partially ordered Banach space $X$ with positive cone $K$. Unless stated $K$ is assumed to be generating and normal.


## Introduction

- Marek and Syzld - M-matrices to partially ordered Banach spaces
- Berman and Plemmon - Characterization of $M$-matrices
- Koliha and Cain - Characterized positive stability of operators on complex Hilbert spaces
- Characterization of an invertible $M$-operator
- Generalization of a result on singular $M$-matrices


## Matrix case

## Definitions

## Definition 1

A square matrix $A$ is called a $Z$-matrix if the off-diagonal entries of $A$ are all non-positive, i.e., $a_{i j} \leq 0$ for $i \neq j$.

## Definition 2

A $Z$-matrix $A$ is called an $M$-matrix if it can be expressed in the form

$$
A=s l-B, \quad B \geq 0
$$

where $s \geq r(B)$.

## Definitions

## Definition 3

A square matrix $A$ is called positive stable if the real part of each eigenvalue of $A$ is positive.

## Definition 4

A square matrix $A$ is said to be convergent if $r(A)<1$.

## Motivation

## Theorem 5 (Berman and Plemmons, 1994)

Let $A \in \mathbb{C}^{n \times n}$. Then the following are equivalent.
(a) $A$ is positive stable.
(b) There exists a positive definite matrix $W$ such that $A W+W A^{*}$ is positive definite.
(c) $A+I$ is nonsingular and $G=(A+I)^{-1}(A-I)$ is convergent.
(d) $A+I$ is nonsingular and for $G=(A+I)^{-1}(A-I)$ there exists a positive definite matrix $W$ such that $W-G^{*} W G$ is positive definite.
Additionally, if $A$ is a Z-matrix, then each of the above statements is equivalent to
(e) $A$ is a nonsingular $M$-matrix.

## An extension to infinite dimension

## Definitions

## Definition 6

A bounded linear operator $T$ on a complex Banach space $X$ is called positive stable if the real part of each spectral value of $T$ is positive.

## Definition 7

A bounded linear operator $T$ on a complex Hilbert space $H$ is called positive definite if $\langle T u, u\rangle \geq \alpha\|u\|^{2}$ for some $\alpha>0$ and for all $u \in H$.

## An extension to infinite dimension

The following theorem is an extension of the four equivalent conditions in Theorem 5 to a general Hilbert space.

## Theorem 8 (Koliha, 1973 and Cain, 1973)

Let $T$ be a bounded linear operator on a complex Hilbert space $H$. Then the following statements are equivalent:
(a') $T$ is positive stable.
(b') There exists a unique positive definite solution $X$ for the equation $T^{*} X+X T=P$ for each positive definite $P$.
(c') If $-1 \notin \sigma(T)$, then $G=(I+T)^{-1}(I-T)$ is convergent.
(d') If $-1 \notin \sigma(T)$, then for $G=(I+T)^{-1}(I-T)$ there exists a unique positive definite solution $X$ for the equation $X-G^{*} X G=P$ for each positive definite $P$.

## M-operators

## Definition 9

Let $(X, K)$ be a partially ordered Banach space. An operator $T \in \mathcal{B}(X)$ is said to be a $Z$-operator if $T=s l-B$, with $s \geq 0$, $B \geq 0$. A $Z$-operator is said to be an $M$-operator if $s \geq r(B)$.

Note that the operator $T$ is invertible if and only if $s>r(B)$.

## Theorem 10 (Krein-Bonsall-Karlin (KBK))

Let $(X, K)$ be a partially ordered Banach space. Then, for every positive operator $T \in \mathcal{B}(X), r(T)$ belongs to the spectrum of $T$.

## Theorem 11

Let $(X, K)$ be a partially ordered Banach space. Let $T=s l-B \in \mathcal{B}(X)$, where $s \geq 0$ and $B \geq 0$. Then the following statements are equivalent:
( $a^{\prime \prime}$ ) $T$ is positive stable.
$\left(e^{\prime \prime}\right) T$ is an invertible $M$-operator.
$\left(c^{\prime \prime}\right)$ If $-1 \notin \sigma(T)$, then $G=(I-T)(I+T)^{-1}$ is convergent.

## An extension to infinite dimension

## Sketch of the proof:

$\left(a^{\prime \prime}\right) \Rightarrow\left(e^{\prime \prime}\right)$ :

- KBK Theorem : $r(B) \in \sigma(B)$
- Spectral mapping theorem: $s-r(B) \in \sigma(T)$
- Positive stability: $r(B)<s$
$\left(e^{\prime \prime}\right) \Rightarrow\left(a^{\prime \prime}\right)$ :
- $T$ is an invertible $M$-operator: $r(B)<s$
- Spectral mapping theorem: spectral values of $T$ are of the form $s-\lambda$ for some $\lambda \in \sigma(B)$


## An extension to infinite dimension

## Proof continued

$\left(a^{\prime \prime}\right) \Leftrightarrow\left(c^{\prime \prime}\right)$ :

- Spectral mapping theorem: $\lambda \in \sigma(T)$ if and only $\beta \in \sigma(G)$
where $\beta=\frac{1-\lambda}{1+\lambda}$
- Simple calculation: $|\beta|<1$ if and only if $\operatorname{Re} \lambda>0$
- $|\beta|<1$ for all $\beta \in \sigma(G)$ i.e. $r(G)<1$ if and only if $\operatorname{Re} \lambda>0$ for all $\lambda \in \sigma(T)$ i.e. $T$ is positive stable.

Combining Theorem 8 and Theorem 11, we obtain the following result, which generalizes Theorem 5.

## Theorem 12

Let $(X, K)$ be a partially ordered Hilbert space. Let $T=s l-B \in \mathcal{B}(X)$, where $s \geq 0$ and $B \geq 0$. Then the following statements are equivalent:
( $a^{*}$ ) $T$ is positive stable.
$\left(b^{*}\right)$ There exists a unique positive definite solution $W$ for the equation

$$
T^{*} W+W T=P
$$

for each positive definite $P$.
$\left(c^{*}\right)$ If $-1 \notin \sigma(T)$, then $G=(I-T)(I+T)^{-1}$ is convergent.
$\left(d^{*}\right)$ If $-1 \notin \sigma(T)$, then for $G=(I-T)(I+T)^{-1}$ there exists a unique positive definite solution $W$ for the equation $W-G^{*} W G=P$, for each positive definite $P$.
( $e^{*}$ ) $T$ is an invertible $M$-operator.
$\left(f^{*}\right) T^{-1}$ exists and $T^{-1} \geq 0$.

## Theorem 13 (Fan, 1992)

If $A-I$ is an $M$-matrix, then so is $I-A^{-1}$.
The following result is a generalization of Theorem 13.

## Theorem 14

Let $(X, K)$ be a partially ordered Banach space. Let $S \in \mathcal{B}(X)$ be such that $S-I$ is an invertible $M$-operator. Then $S$ and $I-S^{-1}$ are invertible $M$-operators.

Idea of the proof:

- KBK theorem and spectral mapping theorem: $S$ is an invertible $M$-operator.
- Positive stability of an invertible $M$-operator: $I-S^{-1}$ is an invertible $M$-operator.

The following example illustrates the above theorem.

## Example

Consider the Hilbert space $H=\mathbb{R} \oplus I^{2}(\mathbb{N})=\left\{(\xi, x): \xi \in \mathbb{R}, x \in I^{2}(\mathbb{N})\right\}$ with the inner product defined in the following way:

$$
\left\langle\left(\xi_{1}, x_{1}\right),\left(\xi_{2}, x_{2}\right)\right\rangle=\xi_{1} \xi_{2}+\left\langle x_{1}, x_{2}\right\rangle .
$$

The following example illustrates the above theorem.

## Example

Consider the Hilbert space $H=\mathbb{R} \oplus I^{2}(\mathbb{N})=\left\{(\xi, x): \xi \in \mathbb{R}, x \in I^{2}(\mathbb{N})\right\}$ with the inner product defined in the following way:
$\left\langle\left(\xi_{1}, x_{1}\right),\left(\xi_{2}, x_{2}\right)\right\rangle=\xi_{1} \xi_{2}+\left\langle x_{1}, x_{2}\right\rangle$.
Then the norm induced by the inner product is $\|(\xi, x)\|=\sqrt{\xi^{2}+\|x\|^{2}}$. Consider the cone $K=\{(\xi, x) \in H: \xi \geq 0, \xi \geq\|x\|\}$ on $H$. $K$ is generating and normal.

The following example illustrates the above theorem.

## Example

Consider the Hilbert space $H=\mathbb{R} \oplus I^{2}(\mathbb{N})=\left\{(\xi, x): \xi \in \mathbb{R}, x \in I^{2}(\mathbb{N})\right\}$ with the inner product defined in the following way:
$\left\langle\left(\xi_{1}, x_{1}\right),\left(\xi_{2}, x_{2}\right)\right\rangle=\xi_{1} \xi_{2}+\left\langle x_{1}, x_{2}\right\rangle$.
Then the norm induced by the inner product is $\|(\xi, x)\|=\sqrt{\xi^{2}+\|x\|^{2}}$. Consider the cone $K=\{(\xi, x) \in H: \xi \geq 0, \xi \geq\|x\|\}$ on $H$. $K$ is generating and normal.
Let $B: \ell^{2}(\mathbb{N}) \rightarrow \ell^{2}(\mathbb{N})$ be defined by $B(x)=\left(t_{1} x_{1}, t_{2} x_{2}, t_{3} x_{3}, \cdots\right)$ with $\frac{1}{2}<t_{i} \leq 1$ for all $i$. Consider the operator $D$ on $H$ defined by $D(\xi, x):=(\xi, B(x))$.

The following example illustrates the above theorem.

## Example

Consider the Hilbert space $H=\mathbb{R} \oplus I^{2}(\mathbb{N})=\left\{(\xi, x): \xi \in \mathbb{R}, x \in I^{2}(\mathbb{N})\right\}$ with the inner product defined in the following way:
$\left\langle\left(\xi_{1}, x_{1}\right),\left(\xi_{2}, x_{2}\right)\right\rangle=\xi_{1} \xi_{2}+\left\langle x_{1}, x_{2}\right\rangle$.
Then the norm induced by the inner product is $\|(\xi, x)\|=\sqrt{\xi^{2}+\|x\|^{2}}$.
Consider the cone $K=\{(\xi, x) \in H: \xi \geq 0, \xi \geq\|x\|\}$ on $H$. $K$ is generating and normal.
Let $B: \ell^{2}(\mathbb{N}) \rightarrow \ell^{2}(\mathbb{N})$ be defined by $B(x)=\left(t_{1} x_{1}, t_{2} x_{2}, t_{3} x_{3}, \cdots\right)$ with
$\frac{1}{2}<t_{i} \leq 1$ for all $i$. Consider the operator $D$ on $H$ defined by
$D(\xi, x):=(\xi, B(x))$.
Then $D$ is a positive linear operator on $(H, K)$ and $r(D) \leq 1$. Now define $T: H \rightarrow H$ by $T=2 I-D$. Clearly $T$ is an invertible $M$-operator.

The following example illustrates the above theorem.

## Example

Consider the Hilbert space $H=\mathbb{R} \oplus I^{2}(\mathbb{N})=\left\{(\xi, x): \xi \in \mathbb{R}, x \in I^{2}(\mathbb{N})\right\}$ with the inner product defined in the following way:
$\left\langle\left(\xi_{1}, x_{1}\right),\left(\xi_{2}, x_{2}\right)\right\rangle=\xi_{1} \xi_{2}+\left\langle x_{1}, x_{2}\right\rangle$.
Then the norm induced by the inner product is $\|(\xi, x)\|=\sqrt{\xi^{2}+\|x\|^{2}}$.
Consider the cone $K=\{(\xi, x) \in H: \xi \geq 0, \xi \geq\|x\|\}$ on $H$. $K$ is generating and normal.
Let $B: \ell^{2}(\mathbb{N}) \rightarrow \ell^{2}(\mathbb{N})$ be defined by $B(x)=\left(t_{1} x_{1}, t_{2} x_{2}, t_{3} x_{3}, \cdots\right)$ with
$\frac{1}{2}<t_{i} \leq 1$ for all $i$. Consider the operator $D$ on $H$ defined by $D(\xi, x):=(\xi, B(x))$.
Then $D$ is a positive linear operator on $(H, K)$ and $r(D) \leq 1$. Now define $T: H \rightarrow H$ by $T=2 I-D$. Clearly $T$ is an invertible $M$-operator. Let $S=3 I-D$. Then $S-I=T$. Again $S$ is an invertible $M$-operator and $S^{-1}\left(\xi, x_{1}, x_{2}, \ldots\right)=\left(\frac{\xi}{2}, \frac{x_{1}}{3-t_{1}}, \frac{x_{2}}{3-t_{2}}, \ldots\right)$ where $\frac{2}{5} \leq \frac{1}{3-t_{i}} \leq \frac{1}{2}$ for $i \in \mathbb{N}$. Now $\sigma\left(S^{-1}\right)=\overline{\left\{\frac{1}{2}, \frac{1}{3-t_{1}}, \frac{1}{3-t_{2}}, \ldots\right\}}$. Hence $r\left(S^{-1}\right)=\frac{1}{2}$ and $I-S^{-1}$ is invertible.

## Matrix case

## Singular case

## Definition 15

Let $A \in \mathbb{R}^{n \times n}(n>1)$ be non-zero. $A$ is said to be reducible if there exists a permutation matrix $P$ such that

$$
P A P^{T}=\left(\begin{array}{ll}
B & 0 \\
C & D
\end{array}\right),
$$

where $B$ and $D$ are square matrices. Otherwise, $A$ is called an irreducible matrix.

## Definition 16

An $M$-matrix $A=s l-B$ (where $B \geq 0$ and $0 \neq s \geq r(B))$ is said to have property $c$ if the sequence $\left(s^{-k} B^{k}\right)_{k \in \mathbb{N}}$ is convergent. Property $c$ can be defined analogously in the case of a partially ordered Banach space.

## Matrix case

## Singular M-Matrix

Recall that a $Z$-matrix $A=s l-B$, where $B \geq 0$, is a singular $M$-matrix if $s=r(B)$.

## Theorem 17 (Berman and Plemmons, 1990)

Let $A \in \mathbb{R}^{n \times n}(n>1)$ be a singular, irreducible $M$-matrix. Then:
(a) A has rank $n-1$.
(b) There exists a vector $x \in \operatorname{int}\left(\mathbb{R}_{+}^{n}\right)$ such that $A x=0$.
(c) $A x \geq 0 \Rightarrow A x=0$.
(d) A has property $c$.

## An extension to infinite dimension

## Preliminary result

## Theorem 18 (Marek and Syzld, 1990)

Let $(X, K)$ be a partially ordered Banach space. Let $T=s l-B \in \mathcal{B}(X)$ (where $B \geq 0$ and $s \geq r(B)$ ) be an
$M$-operator with property $c$. Then the following implication holds:

$$
T x \in K \text { and } x \in R(T) \Rightarrow x \in K
$$

## Definition 19

Let $(X, K)$ be a partially ordered Banach space. A positive operator $T \in \mathcal{B}(X)$ is called irreducible if for every $\alpha>0$ and $x \in K \backslash\{0\}$ such that $T x \leq \alpha x$ it follows that $x$ is a quasi-interior point of $K$.

A vector $x \in K$ is called a quasi-interior point of $K$ if $f(x)>0$ for every non-zero $f \in K^{*}$.

## A Generalization of the result on singular M-matrices

## Theorem 20

Let $(X, K)$ be a partially ordered Banach space where int $(K)$ is non-empty. Let $T=s l-B$, where $s>0, s=r(B)$ and $B$ is an irreducible positive operator with $r(B)$ as a pole of the resolvent map $\mathcal{R}_{T}$. Then the following results hold:
( $a^{\prime}$ ) The dimension of the nullspace of $T$ is 1 .
( $b^{\prime}$ ) There exists a vector $u \in \operatorname{int}(K)$ such that $T u=0$.
(c') If $X$ is reflexive, then $T_{x} \in K$ implies $T x=0$.
( $d^{\prime}$ ) If $X$ is reflexive, then $T x \in K, x \in R(T)$ implies $x=0$.

Idea of the proof:
$\left(a^{\prime}\right) B$ is positive and irreducible : $r(B)$ is a simple eigenvalue of $B$.
$\left(b^{\prime}\right)$ Perron-Frobenius: Existence of positive vector $u$ such that $B u=r(B) u$.
Irreducibility of $B: u \in \operatorname{int}(K)$.
$\left(c^{\prime}\right)$ Irreducibility of $B^{*}: f \in K^{*} \backslash\{0\}$ is a quasi-interior point such that $T^{*} f=0$.
$T x \in K$ and $T x \neq 0 . f$ is a quasi-interior implies $x\left(T^{*} f\right)>0$, a contradiction since $T^{*} f=0$.
( $d^{\prime}$ ) Let $T x \in K$ and $x \in R(T)$. By ( $\left.c^{\prime}\right), T x=0$ and by ( $a^{\prime}$ ), $x=\alpha u$ for some $\alpha \in \mathbb{R}$. Using ( $c^{\prime}$ ) and some simple calculation we can get $\alpha \geq 0$. Similar argument gives $-x \in K$ that is
$x \in K \cap(-K)=\{0\}$.

## References

围 J．J．Koliha，Convergent and Stable Operators and Their Generalization．Journal of Mathematical Analysis and applications， 43：778－794， 1973.

囦 Bryan E．Cain，An Inertia Theory for Operators on a Hilbert Space． Journal of mathematical analysis and applications，41：97－114， 1973.

囯 I．Marek and D．B．Szyld，Splittings of M－operators：Irreducibility and the index of the iteration operator，Numer．Funct．Anal．Optim．， 11：529－553， 1990.
䡒 M．Rajesh Kannan and K．C．Sivakumar，On some positivity classes of operators，Numer．Funct．Anal．Optimiz．，37：206－224， 2016.
（ K．Fan，Some inequalities for matrices $A$ such that $A-I$ is positive definite or an M－matrix，Linear Mult．Algebra，32：89－92， 1992.

## THANK YOU!

