The dual Radon-Nikodym property for finitely generated
Banach C(K)-modules

Arkady Kitover

Community College of Philadelphia

July 18, 2017

Arkady Kitover (Community College of PhilacThe dual Radon-Nikodym property for finitely July 18, 2017 1/20



@ A joint work with Mehmet Orhon.

Arkady Kitover (Community College of PhilacThe dual Radon-Nikodym property for finitely July 18, 2017 2 /20



@ A joint work with Mehmet Orhon.

o Let us recall the following equivalences in the class of Banach lattices.

Arkady Kitover (Community College of PhilacThe dual Radon-Nikodym property for finitely July 18, 2017 2 /20



@ A joint work with Mehmet Orhon.

o Let us recall the following equivalences in the class of Banach lattices.

Theorem 1

(Lozanovsky - Lotz) Let X be a Banach lattice. Then the following
conditions are equivalent.
@ @ X is reflexive.

@ X does not contain a copy ? of either ¢y or ¢*.
Py

@ X does not contain a copy of either ¢y or {* as a sublattice. °

°If X and Y are Banach spaces we say that X contains a copy of Y if there is a
closed subspace of X linearly isomorphic to Y.

bIf X and Y are Banach lattices we say that X contains a copy of Y as a sublattice
if there is a closed sublattice of X lattice isomorphic to Y.
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Theorem 2

(Lozanovsky) Let X be a Banach lattice. Then the following conditions
are equivalent.
@ @ X is weakly sequentially complete.

@ X does not contain a copy of c.

© X does not contain a copy of ¢y as a sublattice.
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Theorem 2

(Lozanovsky) Let X be a Banach lattice. Then the following conditions
are equivalent.
@ @ X is weakly sequentially complete.

@ X does not contain a copy of cy.

© X does not contain a copy of ¢y as a sublattice.

@ Before we state one more result in this direction let us recall the
following definition.
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Definition 3

A Banach space X is said to have the Radon-Nikodym property (RNP) if
for every finite measure space (2, X, \) and for every bounded linear
operator T : L1(\) — X there exists a strongly measurable g € L%(\, X)
such that

Tf :/fgd)\, fell(N),

Q

where the integral is the Bochner integral.
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Theorem 4
(Lotz) Let X be a Banach lattice. The following conditions are equivalent.
@ @ The Banach dual X* of X has RNP.

@ X does not contain a copy of (.

© X* does not contain a copy of either cy or L*[0,1] as a sublattice.
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@ One of the reasons to study the dual RNP is the following important
result.
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@ One of the reasons to study the dual RNP is the following important
result.

Theorem 5

(Diestel - Uhl) Let (2, X, 1) be a finite measure space, 1 < p < oo, and X
be a Banach space. Then LP(u, X)* = L9(pu, X*), where 1/p+1/q =1, if
and only if X* has the Radon-Nikodym property with respect to p.
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@ The statements of Theorems 1, 2, and 4 become false if instead of
Banach lattices we consider arbitrary Banach spaces. For Theorems 1
and 2 a counterexample is provided by the famous James' space.
However the James' space, being quasi-reflexive does have the dual
RNP. Therefore as a counterexample in the case of Theorem 4 we
need to use another example of James where he constructed a
separable Banach space X not containing a copy of £ and such that
X* is not separable. It follows from a later result of Stegall that the
space X does not have the dual RNP.
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@ The statements of Theorems 1, 2, and 4 become false if instead of
Banach lattices we consider arbitrary Banach spaces. For Theorems 1
and 2 a counterexample is provided by the famous James' space.
However the James' space, being quasi-reflexive does have the dual
RNP. Therefore as a counterexample in the case of Theorem 4 we
need to use another example of James where he constructed a
separable Banach space X not containing a copy of £ and such that
X* is not separable. It follows from a later result of Stegall that the
space X does not have the dual RNP.

@ But, if instead of the class of all Banach spaces we consider the much
smaller classes of finitely generated Banach C(K)-modules or Banach
C(K)-modules of finite multiplicity, which while not contained in the
class of all Banach lattices can be considered as its nearest relatives,
the analogues of Theorems 1 - 4 remain true.
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Definition 6

Let K be a compact Hausdorff space and X be a Banach space. We say
that X is a Banach C(K)-module if there is a continuous unital algebra
homomorphism m of C(K) into the algebra L(X) of all bounded linear
operators on X.

Arkady Kitover (Community College of PhilacThe dual Radon-Nikodym property for finitely July 18, 2017 8 /20



Definition 6

Let K be a compact Hausdorff space and X be a Banach space. We say
that X is a Banach C(K)-module if there is a continuous unital algebra
homomorphism m of C(K) into the algebra L(X) of all bounded linear

operators on X.

°

@ Because ker m is a closed ideal in C(K) by considering, if needed,
C(K) = C(K)/ ker m we can and will assume without loss of
generality that m is a contractive homomorphism and ker m = 0.
Then it can be proved that m is an isometry. Moreover, when it does
not cause any ambiguity we will identify f € C(K) and m(f) € L(X).
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Definition 7

Let X be a Banach C(K)-module and x € X. We introduce the cyclic
subspace X(x) of X as X(x) = cl/{fx: f € C(K)}.
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Definition 7

Let X be a Banach C(K)-module and x € X. We introduce the cyclic
subspace X(x) of X as X(x) = cl{fx: f € C(K)}.

@ The following proposition was proved by Veksler in the case when the
compact space K is extremally disconnected and in full generality by
Hadwin and Orhon.
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Definition 7

Let X be a Banach C(K)-module and x € X. We introduce the cyclic
subspace X(x) of X as X(x) = cl{fx: f € C(K)}.

@ The following proposition was proved by Veksler in the case when the
compact space K is extremally disconnected and in full generality by
Hadwin and Orhon.

e Proposition. Let X be a Banach C(K)-module, x € X, and X(x) be
the corresponding cyclic subspace. Then, endowed with the cone
X(x)4 = cl{fx: f € C(K),f > 0} and the norm inherited from X,
X(x) is a Banach lattice with positive quasi-interior point x.
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e Proposition. (Orhon) The center Z(X(x)) of the Banach lattice
X(x) is isometrically isomorphic to the weak operator closure of
m(C(K)) in L(X(x)).
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e Proposition. (Orhon) The center Z(X(x)) of the Banach lattice

X(x) is isometrically isomorphic to the weak operator closure of
m(C(K)) in L(X(x)).

@ Now we can introduce one of our two main objects of interest.
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e Proposition. (Orhon) The center Z(X(x)) of the Banach lattice
X(x) is isometrically isomorphic to the weak operator closure of
m(C(K)) in L(X(x)).

@ Now we can introduce one of our two main objects of interest.

Definition 8

Let X be a Banach C(K)-module. We say that X is finitely generated if

there are an n € IN and xi,...,x, € X such that the set >  X(x;) is dense
i=1

in X.
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e Proposition. (Orhon) The center Z(X(x)) of the Banach lattice
X(x) is isometrically isomorphic to the weak operator closure of
m(C(K)) in L(X(x)).

@ Now we can introduce one of our two main objects of interest.

Definition 8

Let X be a Banach C(K)-module. We say that X is finitely generated if

there are an n € IN and xi,...,x, € X such that the set >  X(x;) is dense
i=1

in X.

@ Introduction of the second main object of this talk requires some
additional preliminaries.
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Definition 9

Let X be a Banach space and BB be a Boolean algebra of projections on X.
The algebra B is called Bade complete if

(1) B is a complete Boolean algebra.

(2) Let {x+}yer be an increasing net in B, x be the supremum of this net,
and x € X. Then the net {x,x} converges to xx in norm in X.
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Definition 9

Let X be a Banach space and BB be a Boolean algebra of projections on X.
The algebra B is called Bade complete if

(1) B is a complete Boolean algebra.

(2) Let {x+}yer be an increasing net in B, x be the supremum of this net,
and x € X. Then the net {x,x} converges to xx in norm in X.

Definition 10

Let B be a Bade complete Boolean algebra of projections on X. B is said
to be of uniform multiplicity n, if there exist a set of nonzero pairwise
disjoint idempotents {e,} in B with sup e, = 1 such that for any e, and
for any e € B, e < e, the C(K)-module eX has exactly n generators.
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@ When B is of uniform multiplicity 1 we have the following result.
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@ When B is of uniform multiplicity 1 we have the following result.

Theorem 11

(Rall) Let B be of uniform multiplicity one on X. Then X may be
represented as a Banach lattice with order continuous norm such that B is
the Boolean algebra of band projections on X.
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@ When B is of uniform multiplicity 1 we have the following result.

Theorem 11

(Rall) Let B be of uniform multiplicity one on X. Then X may be
represented as a Banach lattice with order continuous norm such that B is
the Boolean algebra of band projections on X.

Definition 12

A Bade complete Boolean algebra of projections B on X is said to be of
finite multiplicity on X if there exists a collection of disjoint idempotents
{en} in B such that, for each a, e,X is n,-generated and sup e, = 1.
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@ The collection {n,} of positive integers in Definition 12 need not be
bounded.
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@ The collection {n,} of positive integers in Definition 12 need not be
bounded.

Definition 13

A Banach C(K)-module X is said to be of finite multiplicity (of uniform
multiplicity n) if the Boolean algebra of idempotents in C(K) is of finite
multiplicity (respectively of uniform multiplicity n) on X.
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@ The collection {n,} of positive integers in Definition 12 need not be
bounded.

Definition 13

A Banach C(K)-module X is said to be of finite multiplicity (of uniform
multiplicity n) if the Boolean algebra of idempotents in C(K) is of finite
multiplicity (respectively of uniform multiplicity n) on X.

°
@ The following theorem describes the structure of Banach
C(K)-modules of finite multiplicity.

Arkady Kitover (Community College of PhilacThe dual Radon-Nikodym property for finitely July 18, 2017 13 /20



@ The collection {n,} of positive integers in Definition 12 need not be
bounded.

Definition 13

A Banach C(K)-module X is said to be of finite multiplicity (of uniform
multiplicity n) if the Boolean algebra of idempotents in C(K) is of finite
multiplicity (respectively of uniform multiplicity n) on X.

@ The following theorem describes the structure of Banach
C(K)-modules of finite multiplicity.

Theorem 14

(Bade). Let X be a Banach C(K)-module of finite multiplicity. Then there
exists a sequence of disjoint idempotents {e,} in B such that, for each n,
B is of uniform multiplicity n on e,X and sup e, = 1. Also the norm
closure of the sum of the sequence of the spaces {e,X} is equal to X.
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@ The following two results were proved in our previous papers with
Mehmet.
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@ The following two results were proved in our previous papers with
Mehmet.

Theorem 15

Let X be a finitely generated Banach C(K)-module or a Banach

C(K)-module of finite multiplicity. Then the following conditions are
equivalent.

o O X is reflexive.
@ X does not contain a copy of either cy or £*.
@ Every cyclic subspace of X does not contain a copy of either cy or of /*.

© Every cyclic subspace of X, represented as a Banach lattice, does not
contain a copy of either cy or of £* as a sublattice.
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Theorem 16

. Let X be a finitely generated Banach C(K)-module or a Banach
C(K)-module of finite multiplicity. Then the following conditions are
equivalent.

@ O X is weakly sequentially complete.
@ X does not contain a copy of c.
© Every cyclic subspace of X does not contain a copy of cg.

© Every cyclic subspace of X, represented as a Banach lattice, does not
contain a copy of ¢y as a sublattice.
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@ Finally, it is time to present our current results concerning analogues
of Lotz's Theorem 4 for Banach C(K)-modules.
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@ Finally, it is time to present our current results concerning analogues
of Lotz's Theorem 4 for Banach C(K)-modules.

Theorem 17

Let X be a finitely generated Banach C(K)-module. Then the following
are equivalent:

(1) X* has the Radon-Nikodym property.
(2) X does not contain any copy of £
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@ Finally, it is time to present our current results concerning analogues
of Lotz's Theorem 4 for Banach C(K)-modules.

Theorem 17

Let X be a finitely generated Banach C(K)-module. Then the following
are equivalent:

(1) X* has the Radon-Nikodym property.

(2) X does not contain any copy of £

@ We do not know if, under conditions of Theorem 17, the condition
that every cyclic subspace of X does not contain a copy of ¢! is
sufficient for X* to have RNP. But we can prove it if we put
additional constraints on Banach C(K)-module X.
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Theorem 18

Let K be a hyperstonian compact space and let X be a finitely generated
Banach C(K)-module such that the algebra B of the idempotents in

C(K), is a Bade complete Boolean algebra of projections on X. Then the
following conditions are equivalent

@ @ X* has the Radon-Nikodym property.
@ X does not contain any copy of (*.
@ No cyclic subspace of X contains a copy of ¢*.

@ No cyclic subspace of X, when represented as a Banach lattice, contains a
copy of /1 as a sublattice.
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@ The last result can be extended to Banach C(K)-modules of finite
multiplicity.
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@ The last result can be extended to Banach C(K)-modules of finite
multiplicity.

Theorem 19

Let X be a Banach C(K)-module of finite multiplicity. Then the following
conditions are equivalent.

(1) X* has RNP.

(2) X does not contain a copy of /1.

(3) Any cyclic subspace of X does not contain a copy of /*.

(4) Any cyclic subspace of X represented as a Banach lattice does not
contain ¢* as a sublattice.
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o Final Remarks.
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o Final Remarks.

@ As it is the case with reflexivity and weak sequential completeness, it
is easy to see that condition (3) in Theorem 18 cannot be changed to

a weaker condition: there is a system of generators {x,...,x,} such
that any cyclic subspace X(x;),i =1,...,n does not contain a copy
of /1.
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o Final Remarks.

@ As it is the case with reflexivity and weak sequential completeness, it
is easy to see that condition (3) in Theorem 18 cannot be changed to

a weaker condition: there is a system of generators {x,...,x,} such
that any cyclic subspace X(x;),i =1,...,n does not contain a copy
of /1.

@ It is not difficult to produce examples of finitely generated Banach
C(K)-modules that do not allow a structure of Banach lattice
compatible with its structure as a module.

Still, we do not know any example of a finitely generated Banach
C(K)-module which is either reflexive, or weakly sequentially
complete, or has dual RNP, but is not linearly isomorphic to a closed
subspace of a Banach lattice with order continuous norm.
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@ There is an example of a Banach C(K)-module X with the following
properties.

@ X is of uniform multiplicity n, n > 1.

@ X is not separable.

© Every cyclic subspace of X is separable and has separable dual. In
particular, X cannot be finitely (or even countably) generated.

© There are cyclic subspaces of X that are not weakly sequentially
complete.

Thus, while Theorem 18 cannot be applied, by Theorem 19 X has
dual RNP.
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