The dual Radon-Nikodym property for finitely generated Banach C(K)-modules

Arkady Kitover

Community College of Philadelphia

July 18, 2017

Arkady Kitover (Community College of Phila The dual Radon-Nikodym property for finitely

July 18, 2017 1 / 20

• A joint work with Mehmet Orhon.

・ロト ・ 理ト ・ ヨト ・ ヨト

- A joint work with Mehmet Orhon.
- Let us recall the following equivalences in the class of Banach lattices.

A = A = A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

- A joint work with Mehmet Orhon.
- Let us recall the following equivalences in the class of Banach lattices.

۲

(Lozanovsky - Lotz) Let X be a Banach lattice. Then the following conditions are equivalent.

X is reflexive.

2 X does not contain a copy ^a of either c_0 or ℓ^1 .

§ X does not contain a copy of either c_0 or ℓ^1 as a sublattice. ^b

^aIf X and Y are Banach spaces we say that X contains a copy of Y if there is a closed subspace of X linearly isomorphic to Y.

^bIf X and Y are Banach lattices we say that X contains a copy of Y as a sublattice if there is a closed sublattice of X lattice isomorphic to Y.

۰

(Lozanovsky) Let X be a Banach lattice. Then the following conditions are equivalent.

- X is weakly sequentially complete.
 - 2 X does not contain a copy of c_0 .
 - X does not contain a copy of c₀ as a sublattice.

۰

(Lozanovsky) Let X be a Banach lattice. Then the following conditions are equivalent.

- X is weakly sequentially complete.
 - 2 X does not contain a copy of c_0 .
 - X does not contain a copy of c₀ as a sublattice.
 - Before we state one more result in this direction let us recall the following definition.

A Banach space X is said to have the Radon-Nikodym property (RNP) if for every finite measure space $(\Omega, \Sigma, \lambda)$ and for every bounded linear operator $T : L^1(\lambda) \to X$ there exists a strongly measurable $g \in L^{\infty}(\lambda, X)$ such that

$$Tf=\int\limits_{\Omega}fgd\lambda,\;f\in L^{1}(\lambda),$$

where the integral is the Bochner integral.

(Lotz) Let X be a Banach lattice. The following conditions are equivalent.

- The Banach dual X* of X has RNP.
 - 2 X does not contain a copy of ℓ^1 .
 - **3** X^* does not contain a copy of either c_0 or $L^1[0,1]$ as a sublattice.

• One of the reasons to study the dual RNP is the following important result.

A D > A B > A B > A

 One of the reasons to study the dual RNP is the following important result.

Theorem 5

(Diestel - Uhl) Let (Ω, Σ, μ) be a finite measure space, $1 \le p < \infty$, and X be a Banach space. Then $L^p(\mu, X)^* = L^q(\mu, X^*)$, where 1/p + 1/q = 1, if and only if X^* has the Radon-Nikodym property with respect to μ .

The statements of Theorems 1, 2, and 4 become false if instead of Banach lattices we consider arbitrary Banach spaces. For Theorems 1 and 2 a counterexample is provided by the famous James' space. However the James' space, being quasi-reflexive does have the dual RNP. Therefore as a counterexample in the case of Theorem 4 we need to use another example of James where he constructed a separable Banach space X not containing a copy of l¹ and such that X* is not separable. It follows from a later result of Stegall that the space X does not have the dual RNP.

- The statements of Theorems 1, 2, and 4 become false if instead of Banach lattices we consider arbitrary Banach spaces. For Theorems 1 and 2 a counterexample is provided by the famous James' space. However the James' space, being quasi-reflexive does have the dual RNP. Therefore as a counterexample in the case of Theorem 4 we need to use another example of James where he constructed a separable Banach space X not containing a copy of l¹ and such that X* is not separable. It follows from a later result of Stegall that the space X does not have the dual RNP.
- But, if instead of the class of all Banach spaces we consider the much smaller classes of finitely generated Banach C(K)-modules or Banach C(K)-modules of finite multiplicity, which while not contained in the class of all Banach lattices can be considered as its nearest relatives, the analogues of Theorems 1 4 remain true.

Let K be a compact Hausdorff space and X be a Banach space. We say that X is a Banach C(K)-module if there is a continuous unital algebra homomorphism m of C(K) into the algebra L(X) of all bounded linear operators on X.

Let K be a compact Hausdorff space and X be a Banach space. We say that X is a Banach C(K)-module if there is a continuous unital algebra homomorphism m of C(K) into the algebra L(X) of all bounded linear operators on X.

۲

 Because ker m is a closed ideal in C(K) by considering, if needed, C(K̃) = C(K)/ker m we can and will assume without loss of generality that m is a contractive homomorphism and ker m = 0. Then it can be proved that m is an isometry. Moreover, when it does not cause any ambiguity we will identify f ∈ C(K) and m(f) ∈ L(X).

Let X be a Banach C(K)-module and $x \in X$. We introduce the *cyclic* subspace X(x) of X as $X(x) = cl\{fx : f \in C(K)\}$.

Let X be a Banach C(K)-module and $x \in X$. We introduce the *cyclic* subspace X(x) of X as $X(x) = cl\{fx : f \in C(K)\}$.

۲

• The following proposition was proved by Veksler in the case when the compact space *K* is extremally disconnected and in full generality by Hadwin and Orhon.

Let X be a Banach C(K)-module and $x \in X$. We introduce the cyclic subspace X(x) of X as $X(x) = cl\{fx : f \in C(K)\}$.

۰

- The following proposition was proved by Veksler in the case when the compact space *K* is extremally disconnected and in full generality by Hadwin and Orhon.
- Proposition. Let X be a Banach C(K)-module, x ∈ X, and X(x) be the corresponding cyclic subspace. Then, endowed with the cone X(x)₊ = cl{fx : f ∈ C(K), f ≥ 0} and the norm inherited from X, X(x) is a Banach lattice with positive quasi-interior point x.

くほと くほと くほと

Proposition. (Orhon) The center Z(X(x)) of the Banach lattice X(x) is isometrically isomorphic to the weak operator closure of m(C(K)) in L(X(x)).

< ロト < 同ト < ヨト < ヨト

- Proposition. (Orhon) The center Z(X(x)) of the Banach lattice X(x) is isometrically isomorphic to the weak operator closure of m(C(K)) in L(X(x)).
- Now we can introduce one of our two main objects of interest.

10 / 20

- Proposition. (Orhon) The center Z(X(x)) of the Banach lattice X(x) is isometrically isomorphic to the weak operator closure of m(C(K)) in L(X(x)).
- Now we can introduce one of our two main objects of interest.

Let X be a Banach C(K)-module. We say that X is finitely generated if there are an $n \in \mathbb{N}$ and $x_1, \ldots, x_n \in X$ such that the set $\sum_{i=1}^n X(x_i)$ is dense in X.

۲

Arkady Kitover (Community College of Phila(The dual Radon-Nikodym property for finitely

- Proposition. (Orhon) The center Z(X(x)) of the Banach lattice X(x) is isometrically isomorphic to the weak operator closure of m(C(K)) in L(X(x)).
- Now we can introduce one of our two main objects of interest.

Let X be a Banach C(K)-module. We say that X is finitely generated if there are an $n \in \mathbb{N}$ and $x_1, \ldots, x_n \in X$ such that the set $\sum_{i=1}^n X(x_i)$ is dense in X.

۲

 Introduction of the second main object of this talk requires some additional preliminaries.

・ 何 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Let X be a Banach space and \mathcal{B} be a Boolean algebra of projections on X. The algebra \mathcal{B} is called Bade complete if (1) \mathcal{B} is a complete Boolean algebra. (2) Let $\{\chi_{\gamma}\}_{\gamma\in\Gamma}$ be an increasing net in \mathcal{B} , χ be the supremum of this net, and $x \in X$. Then the net $\{\chi_{\gamma}x\}$ converges to χx in norm in X.

Let X be a Banach space and \mathcal{B} be a Boolean algebra of projections on X. The algebra \mathcal{B} is called Bade complete if (1) \mathcal{B} is a complete Boolean algebra. (2) Let $\{\chi_{\gamma}\}_{\gamma\in\Gamma}$ be an increasing net in \mathcal{B} , χ be the supremum of this net, and $x \in X$. Then the net $\{\chi_{\gamma}x\}$ converges to χx in norm in X.

۲

Definition 10

Let \mathcal{B} be a Bade complete Boolean algebra of projections on X. \mathcal{B} is said to be of *uniform multiplicity n*, if there exist a set of nonzero pairwise disjoint idempotents $\{e_{\alpha}\}$ in \mathcal{B} with $\sup e_{\alpha} = 1$ such that for any e_{α} and for any $e \in \mathcal{B}$, $e \leq e_{\alpha}$ the C(K)-module eX has exactly *n* generators.

• When $\mathcal B$ is of uniform multiplicity 1 we have the following result.

<ロ> (日) (日) (日) (日) (日)

- 2

• When $\mathcal B$ is of uniform multiplicity 1 we have the following result.

Theorem 11

(Rall) Let \mathcal{B} be of uniform multiplicity one on X. Then X may be represented as a Banach lattice with order continuous norm such that \mathcal{B} is the Boolean algebra of band projections on X.

۲

Arkady Kitover (Community College of Phila(The dual Radon-Nikodym property for finitely

• When $\mathcal B$ is of uniform multiplicity 1 we have the following result.

Theorem 11

(Rall) Let \mathcal{B} be of uniform multiplicity one on X. Then X may be represented as a Banach lattice with order continuous norm such that \mathcal{B} is the Boolean algebra of band projections on X.

٥

Definition 12

A Bade complete Boolean algebra of projections \mathcal{B} on X is said to be of finite multiplicity on X if there exists a collection of disjoint idempotents $\{e_{\alpha}\}$ in \mathcal{B} such that, for each α , $e_{\alpha}X$ is n_{α} -generated and sup $e_{\alpha} = 1$.

۰

くほと くほと くほと

イロト イポト イヨト イヨト

- 2

Definition 13

A Banach C(K)-module X is said to be of finite multiplicity (of uniform multiplicity n) if the Boolean algebra of idempotents in C(K) is of finite multiplicity (respectively of uniform multiplicity n) on X.

Definition 13

A Banach C(K)-module X is said to be of finite multiplicity (of uniform multiplicity n) if the Boolean algebra of idempotents in C(K) is of finite multiplicity (respectively of uniform multiplicity n) on X.

۲

• The following theorem describes the structure of Banach C(K)-modules of finite multiplicity.

Definition 13

A Banach C(K)-module X is said to be of finite multiplicity (of uniform multiplicity n) if the Boolean algebra of idempotents in C(K) is of finite multiplicity (respectively of uniform multiplicity n) on X.

۲

۵

• The following theorem describes the structure of Banach C(K)-modules of finite multiplicity.

Theorem 14

(Bade). Let X be a Banach C(K)-module of finite multiplicity. Then there exists a sequence of disjoint idempotents $\{e_n\}$ in \mathcal{B} such that, for each n, \mathcal{B} is of uniform multiplicity n on $e_n X$ and $\sup e_n = 1$. Also the norm closure of the sum of the sequence of the spaces $\{e_n X\}$ is equal to X.

◆□▶ ◆圖▶ ◆圖▶ ◆圖▶ ─ 圖

• The following two results were proved in our previous papers with Mehmet.

3

14 / 20

 The following two results were proved in our previous papers with Mehmet.

Theorem 15

Let X be a finitely generated Banach C(K)-module or a Banach C(K)-module of finite multiplicity. Then the following conditions are equivalent.

X is reflexive.

- 2 X does not contain a copy of either c_0 or ℓ^1 .
- Solution Series Series 2 Seri
- Every cyclic subspace of X, represented as a Banach lattice, does not contain a copy of either c₀ or of l¹ as a sublattice.

۰

. Let X be a finitely generated Banach C(K)-module or a Banach C(K)-module of finite multiplicity. Then the following conditions are equivalent.

- X is weakly sequentially complete.
 - 2 X does not contain a copy of c_0 .
 - Severy cyclic subspace of X does not contain a copy of c₀.
 - Every cyclic subspace of X, represented as a Banach lattice, does not contain a copy of c₀ as a sublattice.

• Finally, it is time to present our current results concerning analogues of Lotz's Theorem 4 for Banach C(K)-modules.

(日) (同) (三) (三)

3

16 / 20

• Finally, it is time to present our current results concerning analogues of Lotz's Theorem 4 for Banach *C*(*K*)-modules.

Theorem 17

Let X be a finitely generated Banach C(K)-module. Then the following are equivalent: (1) X* has the Radon-Nikodym property. (2) X does not contain any copy of ℓ^1 .

• Finally, it is time to present our current results concerning analogues of Lotz's Theorem 4 for Banach *C*(*K*)-modules.

Theorem 17

Let X be a finitely generated Banach C(K)-module. Then the following are equivalent: (1) X* has the Radon-Nikodym property. (2) X does not contain any copy of ℓ^1 .

0

 We do not know if, under conditions of Theorem 17, the condition that every cyclic subspace of X does not contain a copy of ℓ¹ is sufficient for X* to have RNP. But we can prove it if we put additional constraints on Banach C(K)-module X.

٠

Let K be a hyperstonian compact space and let X be a finitely generated Banach C(K)-module such that the algebra \mathcal{B} of the idempotents in C(K), is a Bade complete Boolean algebra of projections on X. Then the following conditions are equivalent

- X* has the Radon-Nikodym property.
 - 2 X does not contain any copy of ℓ^1 .
 - Solution No cyclic subspace of X contains a copy of ℓ^1 .
 - No cyclic subspace of X, when represented as a Banach lattice, contains a copy of l¹ as a sublattice.

• The last result can be extended to Banach *C*(*K*)-modules of finite multiplicity.

æ

18 / 20

 The last result can be extended to Banach C(K)-modules of finite multiplicity.

Theorem 19

Let X be a Banach C(K)-module of finite multiplicity. Then the following conditions are equivalent.
(1) X* has RNP.
(2) X does not contain a copy of l¹.
(3) Any cyclic subspace of X does not contain a copy of l¹.
(4) Any cyclic subspace of X represented as a Banach lattice does not contain l¹ as a sublattice.

۰

Arkady Kitover (Community College of Phila The dual Radon-Nikodym property for finitely

• Final Remarks.

◆□> ◆圖> ◆臣> ◆臣> □臣

Final Remarks.

• As it is the case with reflexivity and weak sequential completeness, it is easy to see that condition (3) in Theorem 18 cannot be changed to a weaker condition: there is a system of generators $\{x_1, \ldots, x_n\}$ such that any cyclic subspace $X(x_i), i = 1, \ldots, n$ does not contain a copy of ℓ^1 .

Final Remarks.

- As it is the case with reflexivity and weak sequential completeness, it is easy to see that condition (3) in Theorem 18 cannot be changed to a weaker condition: there is a system of generators {x₁,..., x_n} such that any cyclic subspace X(x_i), i = 1,..., n does not contain a copy of l¹.
- It is not difficult to produce examples of finitely generated Banach C(K)-modules that do not allow a structure of Banach lattice compatible with its structure as a module.

Still, we do not know any example of a finitely generated Banach C(K)-module which is either reflexive, or weakly sequentially complete, or has dual RNP, but is not linearly isomorphic to a closed subspace of a Banach lattice with order continuous norm.

- 4 回 ト - 4 回 ト - 4 回 ト

- There is an example of a Banach C(K)-module X with the following properties.
 - **1** X is of uniform multiplicity n, n > 1.
 - X is not separable.
 - Every cyclic subspace of X is separable and has separable dual. In particular, X cannot be finitely (or even countably) generated.
 - There are cyclic subspaces of X that are not weakly sequentially complete.

Thus, while Theorem 18 cannot be applied, by Theorem 19 X has dual RNP.