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0. Back grounds

Consider finite dimensional space X.

{x : x*(x)=1},||x||=1

{x : x*(x)=1},||x||=1

0 0

z

z
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X, Xi, Y : Banach space.

BX : Closed unit ball of X.

SX : Closed unit sphere of X.

L (X1, ..., Xn; Y) : Banach space of all continuous n-linear mappings from
X1 × ...× Xn into Y.

Definition
We say that an n-linear mapping T ∈ L (X1, ..., Xn; Y) attains its norm if
there exists a point x = (x1, ...,xn) ∈ SX1

× ...× SXn
such that

‖T(x)‖= ‖T‖= sup{‖T(z)‖ : z ∈ BX1
× ...× BXn

}.
NA(L (X1, . . . , XN; Y)) : the set of all norm attaining multilinear mappings.
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If a Banach space is finite dimensional, then every functionals attains its
norm.

Fact
If a Banach space is reflexive, then every functionals attains its norm.

For arbitrary Banach space? No!
Let

x∗ =
�

1
2i

�∞

i=1
∈ `1(= c0

∗).

For every x = (xi)∞i=1 ∈ Bc0
,

x∗(x) =
∑

i

1
2i

xi <
∑

i

1
2i
= ‖x∗‖.
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Example Let us consider

x∗ = (a1, a2, a3, ..., an, ...) ∈ c∗0 = `1.

Then, for every ε > 0 there exist N ∈ N so that
∑

i>N

|ai|< ε.

Set
y∗ = (a1, a2, a3, ..., aN, 0, 0, 0...). Then, ‖x∗ − y∗‖< ε.

This functional attains its norm at
�

sign(a1), sign(a2), sign(a3), ..., sign(an), 0, 0, 0...
�

∈ c0

This implies that the set of norm attaining functionals is dense in `1.
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Theorem
E. Bishop, R.R. Phelps(1961) For every Banach space X, the set of norm
attaining functionals is dense in its dual space X∗.
(NA(L (X;K)) =L (X;K))

1 J. Lindenstrauss (1963)
X :reflexive =⇒ ∀Y NA(L (X; Y)) =L (X; Y)
Y : property (β)=⇒ ∀X NA(L (X; Y)) =L (X; Y) .

2 J. Bourgain (1977)
X :Radon-Nikodým property =⇒ ∀Y NA(L (X; Y)) =L (X; Y).

3 for other mappings ? Later...
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1. Bishop-Phelps-Bollobás Theorem

Theorem
B. Bollobás(1970) For an arbitrary ε > 0, if x ∈ BX and x∗ ∈ SX∗ satisfy
|1− x∗(x)|< ε2

4 , then there are y ∈ SX and y∗ ∈ SX∗ such that y∗(y) = 1,
‖y− x‖< ε and ‖y∗ − x∗‖< ε.

Question
1 Can we extend Bishop-Phelps-Bollobás Theorem to operator space

between Banach spaces?
2 Does Bishop-Phelps-Bollobás Theorem hold for nonlinear

mapping(ex. bilinear form)?
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Definition
M.D. Acosta, R.M. Aron, D. García and M. Maestre (2008) Let X and Y be
real or complex Banach spaces. We say that the couple (X, Y) has the
Bishop-Phelps-Bollobás property for operators (BPBP), if given ε > 0 there
exist β(ε)> 0 and η(ε)> 0 with limε→0+ β(ε) = 0 such that for
T ∈ SL (X,Y), if x0 ∈ SX is such that ‖Tx0‖> 1−η(ε), then there exist a point
u0 ∈ SX and an operator S ∈ SL (X,Y) that satisfy the following conditions :

‖Su0‖= 1,‖x0 − u0‖< β(ε) and ‖T − S‖< ε

1 The couple (X, Y) has the the BPBP for finite dimensional Banach
spaces X and Y.

2 If Y has property (β), then the couple (X, Y) has the BPBP for every
Banach space X.
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2. The Bishop-Phelps-Bollobás property for operators on
`1 and c0

Definition
M.D. Acosta, R.M. Aron, D. García and M. Maestre (2008) A Banach space
X is said to have the AHSP if for every ε > 0 there exists 0< η < ε such
that for every sequence (xk) ⊂ SX and for every convex series

∑∞
n=1αk with







∞
∑

n=1

αkxk





> 1−η

there exist a subset A ⊂ N and a subset {zk : k ∈ A} ⊂ SX satisfying
1
∑

k∈Aαk > 1− ε
2 1 ‖zk − xk‖< ε for all k ∈ A

2 x∗(zk) = 1 for a certain x∗ ∈ SX∗ and all k ∈ A
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The following Banach spaces have the AHSP:
1 a finite dimensional space
2 Lush space (ex. L1(µ) and C(K))
3 a uniformly convex space

Theorem
M.D. Acosta, R.M. Aron, D. García and M. Maestre (2008) The couple (`1, Y)
has the BPBP if and only if Y has the AHSP.

Tool : Representation of operator from `1 to Y.

T : `1 −→ Y can be identified with (yi)∞i=1 where yi = Tei.

Tz=
∑

ziTei, z= (zi)
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Picture of the AHSP.

x

Xi’s

0

{y : y*(y)>1-e}. ||y*||=1.

Zi’s

0

{y : x*(y)=1}. ||y*||=1.

Picture 1 : x =
∑

iαixi, and y∗(x)> 1−η.
Picture 2 : ‖zi − xi‖< ε, and x∗(zi) = 1
for i ∈ A with

∑

k∈Aαk > 1− ε
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Definition
For every ε ∈ (0, 2], the modulus of convexity of a Banach space (X,‖ · ‖) is
defined by

δ(ε) = inf{1− ‖
x+ y

2
‖ : x, y ∈ BX ,‖x− y‖> ε}.

A Banach space (X,‖ · ‖) is said to be uniformly convex if δ(ε)> 0 for all
ε ∈ (0, 2].

Definition
A Banach space X is said to be lush if for every x, y ∈ SX and for every ε > 0
there is a slice S= S(BX , x∗,ε) ⊂ BX , x∗ ∈ SX∗ , such that x ∈ S and
dist(y, aconv(S))< ε, where S(BX , x∗,ε) = {x ∈ BX : Re x∗(x)> 1− ε}.
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000000000

{x : x*(x)>1-e}

{-x : x*(x)>1-e}

x

y

d(e)

e

0

x y

Lushness Uniform Convexity
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Study about the BPBP on c0.

Problem : Which space Y satisfy that (c0, Y) has BPBP?

S.K. Kim (2013) The couple of Banach spaces (c0, Y) has the BPBP for
uniformly convex Y.

M. D. Acosta (2017) The couple of Banach spaces (c0, Y) has the BPBP
for complex uniformly convex Y.

How to describe an operator from c0 to Y?

How to use it?
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3. The Bishop-Phelps-Bollobás property for bilinear forms

Definition
Let X1, . . . , XN and Y be Banach spaces. We say that (X1, . . . , XN; Y) has the
Bishop-Phelps-Bollobás property for multilinear mappings (BPBP for
multilinear mappings, for short) if given ε > 0, there exists η(ε)> 0 such
that whenever A ∈ L (X1, . . . , XN; Y) with ‖A‖= 1 and
�

x0
1, . . . , x0

N

�

∈ SX1
× . . .× SXN

satisfy





A
�

x0
1, . . . , x0

N

�



> 1−η(ε),

there are B ∈ L (X1, . . . , XN; Y) with ‖B‖= 1 and
�

z0
1, . . . , z0

N

�

∈ SX1
× . . .× SXN

such that





B
�

z0
1, . . . , z0

N

�



= 1, max
1≤j≤N

‖z0
j − x0

j ‖< ε and ‖B− A‖< ε.
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Known results :

Theorem
R.M. Aron, C. Finet, E. Werner (1995) ∀i ∈ {1, ..., n} Xi : Radon-Nikodým
property =⇒ NA(L (X1, ...,Xn;K)) =L (X1, ...,Xn;K)

Theorem
M. D. Acosta, J. Becerra-Guerrero, D. García and M. Maestre (2013)
Assume that X, Xi for every i ∈ 1, ..., n are uniformly convex with modulus of
convexity 0< δ(ε)< 1. Then for every Banach space Y, (X1, · · · , Xn, Y) has
the BPBP for n-linear mappings.

In the same paper, the spaces Y such that (`1, Y;K) has the BPBP for
bilinear mappings had been characterized.
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versions of Bishop-Phelps and Bollobás theorem

∀Y NA(L (`1; Y)) =L (`1; Y)

NA(L (`1, ...,`1;K)) =L (`1, ...,`1;K)

Theorem
Y.S. Choi (1997) NA(L (L[0,1], L[0,1];K)) is not dense in
L (L[0, 1], L[0,1];K).

(`1; Y) has BPBp for some Y (with AHSP)

Theorem
Y.S. Choi, H.G. Song (2011) (`1,`1;K) does not have BPBP for bilinear forms.

L (`1;`∞)'L (`1,`1;K)
BPBp for operators holds for (`1;`∞).
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Tool :

A bilinear form B ∈ L (`1,`1;K) can be represented by (αi,j)(i,j)∈N

B(x, y) =
∑

(i,j)∈N xiyiαi,j, x = (xi), y = (yi),αi,j = B(ei, ej)

Note. B attains its norm at (x, y) then B(ei, ej) = ‖B‖
where i ∈ supp(x) and j ∈ supp(y).
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B ∈ L (`1,`1;K) by B(ei, ej) = 1−δi,j.

For n ∈ N, an = (an
i )

where an
i =

1
2n2 for 1≤ i≤ 2n2 and ai = 0 otherwise.

1 ‖B‖= 1 and B(an,an) = 1− 1
2n2 .

Suppose that S is a bilinear form on l1 such that
‖S‖= |S(ã, b̃)| for some ã, b̃ in Sl1 and ‖T − S‖< 1/2

Then we have either ‖an − ã‖ ≥ 1/2 or ‖an − b̃‖ ≥ 1/2.

|S(ei, ej)|= ‖S‖ for every (i, j) ∈ A× B, where A= supp(ã) and
B= supp(b̃)

A∩ B= ;
min{#

�

supp(an)∩ A
�

,#
�

supp(an)∩ B
�

} ≤ n2.

max{‖an − ã‖,‖an − b̃‖}> 1/2.
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Then we have either ‖an − ã‖ ≥ 1/2 or ‖an − b̃‖ ≥ 1/2.

|S(ei, ej)|= ‖S‖ for every (i, j) ∈ A× B, where A= supp(ã) and
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How about c0?

∃Y such that NA(L (c0; Y)) 6=L (c0; Y)

Theorem
J. Alaminos, Y.S. Choi, S.G. Kim, and R. Payá, (1998).
NA(L (c0, c0;K)) =L (c0, c0;K)

Main problem : (c0, c0;K) has BPBP for bilinear forms?

Theorem
S.K. Kim, H.J. Lee, M. Martín (2017) (c0, c0;K) has BPBP for bilinear forms.
(complex case only).
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Tool :

A bilinear form B ∈ L (c0, c0;K) can be represented by an operator
T ∈ L (c0,`1)

B(x, y) = (Tx)(y)

Note

`1 is complex uniformly convex

(c0, Y) has BPBP for operators whenever Y is complex uniformly
convex.
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The modulus of complex convexity HX for a Banach space X is define by,
for ε ≥ 0,

HX(ε) = inf

�

sup
0≤θ≤2π

‖x+ eiθy‖ − 1 : x ∈ SX ,‖y‖ ≥ ε
�

.

A complex Banach space is said to be uniformly complex convex if
HX(ε)> 0 for all ε > 0.

Lemma
M.D. Acosta (2016)
Let Y be a uniformly complex convex space, L a locally compact Hausdorff
space, and A a Borel set of L. For given 0< λ < 1, if T ∈ SL (C0(L),Y) satisfy

that ‖T∗∗PA‖> 1− HY (λ)
1+HY (λ)

, then ‖T∗∗(I− PA)‖ ≤ λ.
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Theorem
Let X, X1, . . . , XN and Y be finite dimensional Banach spaces. Then

(i) (X1, . . . , XN; Y) has the BPBp for multilinear mappings,

(ii) (NX; Y) has the BPBp for symmetric multilinear mappings and

(iii) (X; Y) has the BPBp for N-homogeneous polynomials.

Theorem
M. D. Acosta, J. Becerra-Guerrero, D. García and M. Maestre (2013) For the
infinite dimensional Banach space L1(µ), (L1(µ), L1(µ);K) does no have the
BPBp for bilinear mappings.
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Thank you for listening!
presented by Sun Kwang Kim.
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