The Bishop-Phelps-Bollobás property for bilinear forms

Sun Kwang Kim

Kyonggi University, Korea

July, 2017

Sun Kwang Kim (Kyonggi University, Korea) The Bishop-Phelps-Bollobás property for bilinear

July, 2017 1 / 24

0. Back grounds

Consider finite dimensional space *X*.

- X, X_i, Y : Banach space.
- B_X : Closed unit ball of X.
- S_X : Closed unit sphere of *X*.

 $\mathcal{L}(X_1, ..., X_n; Y)$: Banach space of all continuous n-linear mappings from $X_1 \times ... \times X_n$ into Y.

Definition

We say that an n-linear mapping $T \in \mathcal{L}(X_1, ..., X_n; Y)$ attains its norm if there exists a point $x = (x_1, ..., x_n) \in S_{X_1} \times ... \times S_{X_n}$ such that $||T(x)|| = ||T|| = \sup\{||T(z)|| : z \in B_{X_1} \times ... \times B_{X_n}\}.$ $NA(\mathcal{L}(X_1, ..., X_N; Y))$: the set of all norm attaining multilinear mappings.

< ロト < 同ト < 三ト < 三ト

Fact

If a Banach space is reflexive, then every functionals attains its norm.

For arbitrary Banach space? No! Let

$$x^* = \left(\frac{1}{2^i}\right)_{i=1}^{\infty} \in \ell_1(=c_0^*).$$

$$x^*(x) = \sum_i \frac{1}{2^i} x_i < \sum_i \frac{1}{2^i} = ||x^*||.$$

Fact

If a Banach space is reflexive, then every functionals attains its norm.

For arbitrary Banach space? No!

Let

$$x^* = \left(\frac{1}{2^i}\right)_{i=1}^{\infty} \in \ell_1(=c_0^*).$$

$$x^*(x) = \sum_i \frac{1}{2^i} x_i < \sum_i \frac{1}{2^i} = ||x^*||.$$

Fact

If a Banach space is reflexive, then every functionals attains its norm.

For arbitrary Banach space? No!

Let

$$x^* = \left(\frac{1}{2^i}\right)_{i=1}^{\infty} \in \ell_1(=c_0^*).$$

$$x^*(x) = \sum_i \frac{1}{2^i} x_i < \sum_i \frac{1}{2^i} = ||x^*||.$$

Fact

If a Banach space is reflexive, then every functionals attains its norm.

For arbitrary Banach space? No! Let

$$x^* = \left(\frac{1}{2^i}\right)_{i=1}^{\infty} \in \ell_1(=c_0^*).$$

$$x^*(x) = \sum_i \frac{1}{2^i} x_i < \sum_i \frac{1}{2^i} = ||x^*||.$$

Fact

If a Banach space is reflexive, then every functionals attains its norm.

For arbitrary Banach space? No! Let

$$x^* = \left(\frac{1}{2^i}\right)_{i=1}^{\infty} \in \ell_1(=c_0^*).$$

$$x^*(x) = \sum_i \frac{1}{2^i} x_i < \sum_i \frac{1}{2^i} = ||x^*||.$$

$$x^* = (a_1, a_2, a_3, ..., a_n, ...) \in c_0^* = \ell_1.$$

Then, for every $\epsilon > 0$ there exist $N \in \mathbb{N}$ so that

$$\sum_{i>N} |a_i| < \epsilon.$$

Set

$$y^* = (a_1, a_2, a_3, ..., a_N, 0, 0, 0...)$$
. Then, $||x^* - y^*|| < \epsilon$.

This functional attains its norm at

 $(sign(a_1), sign(a_2), sign(a_3), ..., sign(a_n), 0, 0, 0, ...) \in c_0$

$$x^* = (a_1, a_2, a_3, ..., a_n, ...) \in c_0^* = \ell_1.$$

Then, for every $\epsilon > 0$ there exist $N \in \mathbb{N}$ so that

$$\sum_{i>N} |a_i| < \epsilon.$$

Set

$$y^* = (a_1, a_2, a_3, ..., a_N, 0, 0, 0...)$$
. Then, $||x^* - y^*|| < \epsilon$.

This functional attains its norm at

 $(sign(a_1), sign(a_2), sign(a_3), ..., sign(a_n), 0, 0, 0, ...) \in c_0$

$$x^* = (a_1, a_2, a_3, ..., a_n, ...) \in c_0^* = \ell_1.$$

Then, for every $\epsilon > 0$ there exist $N \in \mathbb{N}$ so that

$$\sum_{i>N} |a_i| < \epsilon.$$

Set

$$y^* = (a_1, a_2, a_3, ..., a_N, 0, 0, 0...)$$
. Then, $||x^* - y^*|| < \epsilon$.

This functional attains its norm at

 $(sign(a_1), sign(a_2), sign(a_3), ..., sign(a_n), 0, 0, 0, ...) \in c_0$

$$x^* = (a_1, a_2, a_3, ..., a_n, ...) \in c_0^* = \ell_1.$$

Then, for every $\epsilon > 0$ there exist $N \in \mathbb{N}$ so that

$$\sum_{i>N} |a_i| < \epsilon.$$

Set

$$y^* = (a_1, a_2, a_3, ..., a_N, 0, 0, 0...)$$
. Then, $||x^* - y^*|| < \epsilon$.

This functional attains its norm at

 $(sign(a_1), sign(a_2), sign(a_3), ..., sign(a_n), 0, 0, 0...) \in c_0$

$$x^* = (a_1, a_2, a_3, ..., a_n, ...) \in c_0^* = \ell_1.$$

Then, for every $\epsilon > 0$ there exist $N \in \mathbb{N}$ so that

$$\sum_{i>N} |a_i| < \epsilon.$$

Set

$$y^* = (a_1, a_2, a_3, ..., a_N, 0, 0, 0...)$$
. Then, $||x^* - y^*|| < \epsilon$.

This functional attains its norm at

$$(sign(a_1), sign(a_2), sign(a_3), ..., sign(a_n), 0, 0, 0...) \in c_0$$

$$x^* = (a_1, a_2, a_3, ..., a_n, ...) \in c_0^* = \ell_1.$$

Then, for every $\epsilon > 0$ there exist $N \in \mathbb{N}$ so that

$$\sum_{i>N} |a_i| < \epsilon.$$

Set

$$y^* = (a_1, a_2, a_3, ..., a_N, 0, 0, 0...)$$
. Then, $||x^* - y^*|| < \epsilon$.

This functional attains its norm at

$$(sign(a_1), sign(a_2), sign(a_3), ..., sign(a_n), 0, 0, 0...) \in c_0$$

E. Bishop, R.R. Phelps(1961) For every Banach space X, the set of norm attaining functionals is dense in its dual space X^* . ($\overline{NA(\mathscr{L}(X;\mathbb{K}))} = \mathscr{L}(X;\mathbb{K})$)

- J. Lindenstrauss (1963)

 X :reflexive ⇒ ∀Y NA(ℒ(X;Y)) = ℒ(X;Y)
 Y : property (β)⇒ ∀X NA(ℒ(X;Y)) = ℒ(X;Y).

 J. Bourgain (1977)
 - *X* :Radon-Nikodým property $\Longrightarrow \forall Y NA(\mathcal{L}(X;Y)) = \mathcal{L}(X;Y).$
- for other mappings ? Later...

E. Bishop, R.R. Phelps(1961) For every Banach space *X*, the set of norm attaining functionals is dense in its dual space X^* . $(\overline{NA(\mathscr{L}(X;\mathbb{K}))} = \mathscr{L}(X;\mathbb{K}))$

J. Lindenstrauss (1963) X :reflexive ⇒ ∀Y NA(ℒ(X;Y)) = ℒ(X;Y) Y : property (β) ⇒ ∀X NA(ℒ(X;Y)) = ℒ(X;Y). J. Bourgain (1977)

X :Radon-Nikodým property $\Longrightarrow \forall Y NA(\mathcal{L}(X;Y)) = \mathcal{L}(X;Y).$

If or other mappings ? Later...

E. Bishop, R.R. Phelps(1961) For every Banach space X, the set of norm attaining functionals is dense in its dual space X^* . $(\overline{NA(\mathscr{L}(X;\mathbb{K}))} = \mathscr{L}(X;\mathbb{K}))$

• J. Lindenstrauss (1963) $X : \text{reflexive} \implies \forall Y \ \overline{NA(\mathscr{L}(X;Y))} = \mathscr{L}(X;Y)$ $Y : \text{ property } (\beta) \implies \forall X \ \overline{NA(\mathscr{L}(X;Y))} = \mathscr{L}(X;Y)$.

- J. Bourgain (1977)
 - *X* :Radon-Nikodým property $\Longrightarrow \forall Y NA(\mathcal{L}(X;Y)) = \mathcal{L}(X;Y).$
- for other mappings ? Later...

E. Bishop, R.R. Phelps(1961) For every Banach space X, the set of norm attaining functionals is dense in its dual space X^* . $(\overline{NA(\mathscr{L}(X;\mathbb{K}))} = \mathscr{L}(X;\mathbb{K}))$

- J. Lindenstrauss (1963)

 X :reflexive ⇒ ∀Y NA(ℒ(X;Y)) = ℒ(X;Y)
 Y : property (β) ⇒ ∀X NA(ℒ(X;Y)) = ℒ(X;Y).

 J. Bourgain (1977)
 - *X* :Radon-Nikodým property $\Longrightarrow \forall Y \overline{NA(\mathscr{L}(X;Y))} = \mathscr{L}(X;Y).$
- I for other mappings ? Later...

E. Bishop, R.R. Phelps(1961) For every Banach space X, the set of norm attaining functionals is dense in its dual space X^* . $(\overline{NA(\mathscr{L}(X;\mathbb{K}))} = \mathscr{L}(X;\mathbb{K}))$

- J. Lindenstrauss (1963)

 X :reflexive ⇒ ∀Y NA(ℒ(X;Y)) = ℒ(X;Y)
 Y : property (β) ⇒ ∀X NA(ℒ(X;Y)) = ℒ(X;Y).

 J. Bourgain (1977)
 - *X* :Radon-Nikodým property $\Longrightarrow \forall Y \overline{NA(\mathscr{L}(X;Y))} = \mathscr{L}(X;Y).$
- If or other mappings ? Later...

B. Bollobás(1970) For an arbitrary $\epsilon > 0$, if $x \in B_X$ and $x^* \in S_{X^*}$ satisfy $|1-x^*(x)| < \frac{\epsilon^2}{4}$, then there are $y \in S_X$ and $y^* \in S_{X^*}$ such that $y^*(y) = 1$, $||y-x|| < \epsilon$ and $||y^*-x^*|| < \epsilon$.

Question

Can we extend Bishop-Phelps-Bollobás Theorem to operator space between Banach spaces?

Ooes Bishop-Phelps-Bollobás Theorem hold for nonlinear mapping(ex. bilinear form)?

B. Bollobás(1970) For an arbitrary $\epsilon > 0$, if $x \in B_X$ and $x^* \in S_{X^*}$ satisfy $|1-x^*(x)| < \frac{\epsilon^2}{4}$, then there are $y \in S_X$ and $y^* \in S_{X^*}$ such that $y^*(y) = 1$, $||y-x|| < \epsilon$ and $||y^*-x^*|| < \epsilon$.

Question

- Can we extend Bishop-Phelps-Bollobás Theorem to operator space between Banach spaces?
- Ooes Bishop-Phelps-Bollobás Theorem hold for nonlinear mapping(ex. bilinear form)?

Definition

M.D. Acosta, R.M. Aron, D. García and M. Maestre (2008) Let X and Y be real or complex Banach spaces. We say that the couple (*X*, *Y*) has the Bishop-Phelps-Bollobás property for operators (*BPBP*), if given $\epsilon > 0$ there exist $\beta(\epsilon) > 0$ and $\eta(\epsilon) > 0$ with $\lim_{\epsilon \to 0^+} \beta(\epsilon) = 0$ such that for $T \in S_{\mathscr{L}(X,Y)}$, if $x_0 \in S_X$ is such that $||Tx_0|| > 1 - \eta(\epsilon)$, then there exist a point $u_0 \in S_X$ and an operator $S \in S_{\mathscr{L}(X,Y)}$ that satisfy the following conditions :

$$||Su_0|| = 1, ||x_0 - u_0|| < \beta(\epsilon) \text{ and } ||T - S|| < \epsilon$$

- The couple (*X*, *Y*) has the the *BPBP* for finite dimensional Banach spaces *X* and *Y*.
- **2** If *Y* has property (β) , then the couple (X, Y) has the *BPBP* for every Banach space *X*.

2. The Bishop-Phelps-Bollobás property for operators on ℓ_1 and c_0

Definition

M.D. Acosta, R.M. Aron, D. García and M. Maestre (2008) A Banach space *X* is said to have the *AHSP* if for every $\epsilon > 0$ there exists $0 < \eta < \epsilon$ such that for every sequence $(x_k) \subset S_X$ and for every convex series $\sum_{n=1}^{\infty} \alpha_k$ with

$$\big\|\sum_{n=1}^{\infty}\alpha_k x_k\big\|>1-\eta$$

there exist a subset $A \subset \mathbb{N}$ and a subset $\{z_k : k \in A\} \subset S_X$ satisfying

The following Banach spaces have the AHSP:

- a finite dimensional space
- 2 Lush space (ex. $L_1(\mu)$ and C(K))
- a uniformly convex space

Theorem

M.D. Acosta, R.M. Aron, D. García and M. Maestre (2008) The couple (ℓ_1, Y) has the BPBP if and only if Y has the AHSP.

Tool : Representation of operator from ℓ_1 to *Y*.

 $T : \ell_1 \longrightarrow Y$ can be identified with $(y_i)_{i=1}^{\infty}$ where $y_i = Te_i$.

$$Tz = \sum z_i Te_i, z = (z_i)$$

July, 2017 10 / 24

The following Banach spaces have the AHSP:

- a finite dimensional space
- 2 Lush space (ex. $L_1(\mu)$ and C(K))
- a uniformly convex space

Theorem

M.D. Acosta, R.M. Aron, D. García and M. Maestre (2008) The couple (ℓ_1, Y) has the BPBP if and only if Y has the AHSP.

Tool : Representation of operator from ℓ_1 to *Y*.

 $T : \ell_1 \longrightarrow Y$ can be identified with $(y_i)_{i=1}^{\infty}$ where $y_i = Te_i$.

$$Tz = \sum z_i Te_i, z = (z_i)$$

The following Banach spaces have the AHSP:

- a finite dimensional space
- 2 Lush space (ex. $L_1(\mu)$ and C(K))
- a uniformly convex space

Theorem

M.D. Acosta, R.M. Aron, D. García and M. Maestre (2008) The couple (ℓ_1, Y) has the BPBP if and only if Y has the AHSP.

Tool : Representation of operator from ℓ_1 to *Y*.

 $T : \ell_1 \longrightarrow Y$ can be identified with $(y_i)_{i=1}^{\infty}$ where $y_i = Te_i$.

$$Tz = \sum z_i Te_i, z = (z_i)$$

Picture of the AHSP.

Picture 1 :
$$x = \sum_i \alpha_i x_i$$
, and $y^*(x) > 1 - \eta$.
Picture 2 : $||z_i - x_i|| < \epsilon$, and $x^*(z_i) = 1$
for $i \in A$ with $\sum_{k \in A} \alpha_k > 1 - \epsilon$

July, 2017 11 / 24

Definition

For every $\epsilon \in (0, 2]$, the *modulus of convexity* of a Banach space $(X, \|\cdot\|)$ is defined by

$$\delta(\epsilon) = \inf\{1 - \|\frac{x+y}{2}\| : x, y \in B_X, \|x-y\| > \epsilon\}.$$

A Banach space $(X, \|\cdot\|)$ is said to be uniformly convex if $\delta(\epsilon) > 0$ for all $\epsilon \in (0, 2]$.

Definition

A Banach space *X* is said to be *lush* if for every $x, y \in S_X$ and for every $\epsilon > 0$ there is a slice $S = S(B_X, x^*, \epsilon) \subset B_X$, $x^* \in S_{X^*}$, such that $x \in S$ and $dist(y, aconv(S)) < \epsilon$, where $S(B_X, x^*, \epsilon) = \{x \in B_X : \operatorname{Re} x^*(x) > 1 - \epsilon\}$.

< □ > < 同

• • = • •

Study about the *BPBP* on c_0 .

Problem : Which space *Y* satisfy that (c_0, Y) has BPBP?

- S.K. Kim (2013) The couple of Banach spaces (c_0, Y) has the *BPBP* for uniformly convex *Y*.
- M. D. Acosta (2017) The couple of Banach spaces (*c*₀, *Y*) has the *BPBP* for complex uniformly convex *Y*.
- How to describe an operator from *c*₀ to *Y*?
- How to use it?

Study about the *BPBP* on c_0 .

Problem : Which space *Y* satisfy that (c_0, Y) has BPBP?

- S.K. Kim (2013) The couple of Banach spaces (*c*₀, *Y*) has the *BPBP* for uniformly convex *Y*.
- M. D. Acosta (2017) The couple of Banach spaces (*c*₀, *Y*) has the *BPBP* for complex uniformly convex *Y*.
- How to describe an operator from *c*₀ to *Y*?
- How to use it?

Study about the *BPBP* on c_0 .

Problem : Which space *Y* satisfy that (c_0, Y) has BPBP?

- S.K. Kim (2013) The couple of Banach spaces (*c*₀, *Y*) has the *BPBP* for uniformly convex *Y*.
- M. D. Acosta (2017) The couple of Banach spaces (*c*₀, *Y*) has the *BPBP* for complex uniformly convex *Y*.
- How to describe an operator from *c*₀ to *Y*?
- How to use it?

Definition

Let X_1, \ldots, X_N and Y be Banach spaces. We say that $(X_1, \ldots, X_N; Y)$ has the *Bishop-Phelps-Bollobás property for multilinear mappings* (BPBP for multilinear mappings, for short) if given $\varepsilon > 0$, there exists $\eta(\varepsilon) > 0$ such that whenever $A \in \mathcal{L}(X_1, \ldots, X_N; Y)$ with ||A|| = 1 and $(x_1^0, \ldots, x_N^0) \in S_{X_1} \times \ldots \times S_{X_N}$ satisfy

$$\left\|A\left(x_1^0,\ldots,x_N^0\right)\right\|>1-\eta(\varepsilon),$$

there are $B \in \mathcal{L}(X_1, \dots, X_N; Y)$ with ||B|| = 1 and $(z_1^0, \dots, z_N^0) \in S_{X_1} \times \dots \times S_{X_N}$ such that

$$\left\|B\left(z_1^0,\ldots,z_N^0\right)\right\|=1,\quad \max_{1\leq j\leq N}\|z_j^0-x_j^0\|<\varepsilon\quad \text{and}\quad \|B-A\|<\varepsilon.$$

Known results :

Theorem

R.M. Aron, C. Finet, E. Werner (1995) $\forall i \in \{1, ..., n\} X_i$: Radon-Nikodým property $\Longrightarrow \overline{NA(\mathscr{L}(X_1, ..., X_n; \mathbb{K}))} = \mathscr{L}(X_1, ..., X_n; \mathbb{K})$

Theorem

M. D. Acosta, J. Becerra-Guerrero, D. García and M. Maestre (2013) Assume that X, X_i for every $i \in 1, ..., n$ are uniformly convex with modulus of convexity $0 < \delta(\epsilon) < 1$. Then for every Banach space Y, (X_1, \dots, X_n, Y) has the BPBP for n-linear mappings.

In the same paper, the spaces *Y* such that $(\ell_1, Y; \mathbb{K})$ has the *BPBP* for bilinear mappings had been characterized.

Known results :

Theorem

R.M. Aron, C. Finet, E. Werner (1995) $\forall i \in \{1, ..., n\} X_i$: Radon-Nikodým property $\Longrightarrow \overline{NA(\mathscr{L}(X_1, ..., X_n; \mathbb{K}))} = \mathscr{L}(X_1, ..., X_n; \mathbb{K})$

Theorem

M. D. Acosta, J. Becerra-Guerrero, D. García and M. Maestre (2013) Assume that X, X_i for every $i \in 1, ..., n$ are uniformly convex with modulus of convexity $0 < \delta(\epsilon) < 1$. Then for every Banach space Y, (X_1, \dots, X_n, Y) has the BPBP for n-linear mappings.

In the same paper, the spaces Y such that $(\ell_1, Y; \mathbb{K})$ has the *BPBP* for bilinear mappings had been characterized.

Known results :

Theorem

R.M. Aron, C. Finet, E. Werner (1995) $\forall i \in \{1, ..., n\} X_i$: Radon-Nikodým property $\Longrightarrow \overline{NA(\mathscr{L}(X_1, ..., X_n; \mathbb{K}))} = \mathscr{L}(X_1, ..., X_n; \mathbb{K})$

Theorem

M. D. Acosta, J. Becerra-Guerrero, D. García and M. Maestre (2013) Assume that X, X_i for every $i \in 1, ..., n$ are uniformly convex with modulus of convexity $0 < \delta(\epsilon) < 1$. Then for every Banach space $Y, (X_1, \dots, X_n, Y)$ has the BPBP for n-linear mappings.

In the same paper, the spaces *Y* such that $(\ell_1, Y; \mathbb{K})$ has the *BPBP* for bilinear mappings had been characterized.

•
$$\forall Y \ NA(\mathscr{L}(\ell_1; Y)) = \mathscr{L}(\ell_1; Y)$$

•
$$\overline{NA(\mathscr{L}(\ell_1,...,\ell_1;\mathbb{K}))} = \mathscr{L}(\ell_1,...,\ell_1;\mathbb{K})$$

Theorem

Y.S. Choi (1997) $NA(\mathcal{L}[0,1],L[0,1];\mathbb{K}))$ is not dense in $\mathcal{L}(L[0,1],L[0,1];\mathbb{K})$.

• $(\ell_1; Y)$ has BPBp for some Y (with AHSP)

Theorem

Y.S. Choi, H.G. Song (2011) $(\ell_1, \ell_1; \mathbb{K})$ does not have BPBP for bilinear forms.

•
$$\mathscr{L}(\ell_1;\ell_\infty) \simeq \mathscr{L}(\ell_1,\ell_1;\mathbb{K})$$

• BPBp for operators holds for $(\ell_1; \ell_{\infty})$.

•
$$\forall Y \ NA(\mathscr{L}(\ell_1; Y)) = \mathscr{L}(\ell_1; Y)$$

•
$$NA(\mathscr{L}(\ell_1,...,\ell_1;\mathbb{K})) = \mathscr{L}(\ell_1,...,\ell_1;\mathbb{K})$$

Theorem

Y.S. Choi (1997) $NA(\mathcal{L}(L[0,1],L[0,1];\mathbb{K}))$ is not dense in $\mathcal{L}(L[0,1],L[0,1];\mathbb{K})$.

• $(\ell_1; Y)$ has BPBp for some Y (with AHSP)

Theorem

Y.S. Choi, H.G. Song (2011) $(\ell_1, \ell_1; \mathbb{K})$ does not have BPBP for bilinear forms.

•
$$\mathscr{L}(\ell_1;\ell_\infty) \simeq \mathscr{L}(\ell_1,\ell_1;\mathbb{K})$$

• BPBp for operators holds for $(\ell_1; \ell_{\infty})$.

July, 2017 17 / 24

•
$$\forall Y \ \overline{NA(\mathscr{L}(\ell_1;Y))} = \mathscr{L}(\ell_1;Y)$$

•
$$\overline{NA(\mathscr{L}(\ell_1,...,\ell_1;\mathbb{K}))} = \mathscr{L}(\ell_1,...,\ell_1;\mathbb{K})$$

Theorem

Y.S. Choi (1997) $NA(\mathcal{L}(L[0,1],L[0,1];\mathbb{K}))$ is not dense in $\mathcal{L}(L[0,1],L[0,1];\mathbb{K})$.

• $(\ell_1; Y)$ has BPBp for some Y (with AHSP)

Theorem

Y.S. Choi, H.G. Song (2011) $(\ell_1, \ell_1; \mathbb{K})$ does not have BPBP for bilinear forms.

•
$$\mathscr{L}(\ell_1;\ell_\infty) \simeq \mathscr{L}(\ell_1,\ell_1;\mathbb{K})$$

• BPBp for operators holds for $(\ell_1; \ell_{\infty})$.

•
$$\forall Y \ \overline{NA(\mathscr{L}(\ell_1;Y))} = \mathscr{L}(\ell_1;Y)$$

•
$$\overline{NA(\mathscr{L}(\ell_1,...,\ell_1;\mathbb{K}))} = \mathscr{L}(\ell_1,...,\ell_1;\mathbb{K})$$

Theorem

Y.S. Choi (1997) $NA(\mathcal{L}[0,1],L[0,1];\mathbb{K}))$ is not dense in $\mathcal{L}(L[0,1],L[0,1];\mathbb{K})$.

• $(\ell_1; Y)$ has BPBp for some Y (with AHSP)

Theorem

Y.S. Choi, *H.G. Song* (2011) $(\ell_1, \ell_1; \mathbb{K})$ does not have BPBP for bilinear forms.

•
$$\mathscr{L}(\ell_1;\ell_\infty) \simeq \mathscr{L}(\ell_1,\ell_1;\mathbb{K})$$

• BPBp for operators holds for $(\ell_1; \ell_{\infty})$.

July, 2017 17 / 24

•
$$\forall Y \ \overline{NA(\mathscr{L}(\ell_1;Y))} = \mathscr{L}(\ell_1;Y)$$

•
$$\overline{NA(\mathscr{L}(\ell_1,...,\ell_1;\mathbb{K}))} = \mathscr{L}(\ell_1,...,\ell_1;\mathbb{K})$$

Theorem

Y.S. Choi (1997) $NA(\mathcal{L}[0,1],L[0,1];\mathbb{K}))$ is not dense in $\mathcal{L}(L[0,1],L[0,1];\mathbb{K})$.

• $(\ell_1; Y)$ has BPBp for some Y (with AHSP)

Theorem

Y.S. Choi, *H.G. Song* (2011) $(\ell_1, \ell_1; \mathbb{K})$ does not have BPBP for bilinear forms.

•
$$\mathscr{L}(\ell_1; \ell_\infty) \simeq \mathscr{L}(\ell_1, \ell_1; \mathbb{K})$$

• BPBp for operators holds for $(\ell_1; \ell_{\infty})$.

•
$$\forall Y \ \overline{NA(\mathscr{L}(\ell_1;Y))} = \mathscr{L}(\ell_1;Y)$$

•
$$\overline{NA(\mathscr{L}(\ell_1,...,\ell_1;\mathbb{K}))} = \mathscr{L}(\ell_1,...,\ell_1;\mathbb{K})$$

Theorem

Y.S. Choi (1997) $NA(\mathcal{L}[0,1],L[0,1];\mathbb{K}))$ is not dense in $\mathcal{L}(L[0,1],L[0,1];\mathbb{K})$.

• $(\ell_1; Y)$ has BPBp for some Y (with AHSP)

Theorem

Y.S. Choi, *H.G. Song* (2011) $(\ell_1, \ell_1; \mathbb{K})$ does not have BPBP for bilinear forms.

•
$$\mathscr{L}(\ell_1;\ell_\infty) \simeq \mathscr{L}(\ell_1,\ell_1;\mathbb{K})$$

• BPBp for operators holds for $(\ell_1; \ell_{\infty})$.

Tool

A bilinear form $B \in \mathcal{L}(\ell_1, \ell_1; \mathbb{K})$ can be represented by $(\alpha_{i,j})_{(i,j) \in \mathbb{N}}$ $B(x,y) = \sum_{(i,j) \in \mathbb{N}} x_i y_i \alpha_{i,j}, \ x = (x_i), y = (y_i), \ \alpha_{i,j} = B(e_i, e_j)$

Note. B attains its norm at (x, y) then $B(e_i, e_j) = ||B||$ where $i \in supp(x)$ and $j \in supp(y)$. Tool:

A bilinear form $B \in \mathcal{L}(\ell_1, \ell_1; \mathbb{K})$ can be represented by $(\alpha_{i,j})_{(i,j) \in \mathbb{N}}$ $B(x,y) = \sum_{(i,j) \in \mathbb{N}} x_i y_i \alpha_{i,j}, \ x = (x_i), y = (y_i), \alpha_{i,j} = B(e_i, e_j)$

> Note. B attains its norm at (x, y) then $B(e_i, e_j) = ||B||$ where $i \in supp(x)$ and $j \in supp(y)$.

For $n \in \mathbb{N}$, $\mathbf{a}_n = (a_i^n)$ where $a_i^n = \frac{1}{2n^2}$ for $1 \le i \le 2n^2$ and $a_i = 0$ otherwise.

• ||B|| = 1 and $B(\mathbf{a}_n, \mathbf{a}_n) = 1 - \frac{1}{2n^2}$.

Suppose that *S* is a bilinear form on l_1 such that $||S|| = |S(\tilde{\mathbf{a}}, \tilde{\mathbf{b}})|$ for some $\tilde{\mathbf{a}}, \tilde{\mathbf{b}}$ in S_{l_1} and ||T - S|| < 1/2. Then we have either $||\mathbf{a}_n - \tilde{\mathbf{a}}|| \ge 1/2$ or $||\mathbf{a}_n - \tilde{\mathbf{b}}|| \ge 1/2$.

- $|S(e_i, e_j)| = ||S||$ for every $(i, j) \in A \times B$, where $A = supp(\tilde{\mathbf{a}})$ and $B = supp(\tilde{\mathbf{b}})$
- $A \cap B = \emptyset$
- min{ $\#(supp(\mathbf{a}_n) \cap A), \#(supp(\mathbf{a}_n) \cap B)$ } $\leq n^2$.
- max{ $\|\mathbf{a}_n \tilde{\mathbf{a}}\|, \|\mathbf{a}_n \tilde{\mathbf{b}}\|$ } > 1/2.

For $n \in \mathbb{N}$, $\mathbf{a}_n = (a_i^n)$ where $a_i^n = \frac{1}{2n^2}$ for $1 \le i \le 2n^2$ and $a_i = 0$ otherwise.

• ||B|| = 1 and $B(\mathbf{a}_n, \mathbf{a}_n) = 1 - \frac{1}{2n^2}$.

Suppose that *S* is a bilinear form on l_1 such that $||S|| = |S(\tilde{\mathbf{a}}, \tilde{\mathbf{b}})|$ for some $\tilde{\mathbf{a}}, \tilde{\mathbf{b}}$ in S_{l_1} and ||T - S|| < 1/2Then we have either $||\mathbf{a}_n - \tilde{\mathbf{a}}|| \ge 1/2$ or $||\mathbf{a}_n - \tilde{\mathbf{b}}|| \ge 1/2$

- $|S(e_i, e_j)| = ||S||$ for every $(i, j) \in A \times B$, where $A = supp(\tilde{\mathbf{a}})$ and $B = supp(\tilde{\mathbf{b}})$
- $A \cap B = \emptyset$
- min{ $\#(supp(\mathbf{a}_n) \cap A), \#(supp(\mathbf{a}_n) \cap B)$ } $\leq n^2$.
- max{ $\|\mathbf{a}_n \tilde{\mathbf{a}}\|, \|\mathbf{a}_n \tilde{\mathbf{b}}\|$ } > 1/2.

For $n \in \mathbb{N}$, $\mathbf{a}_n = (a_i^n)$ where $a_i^n = \frac{1}{2n^2}$ for $1 \le i \le 2n^2$ and $a_i = 0$ otherwise.

1 ||B|| = 1 and $B(\mathbf{a}_n, \mathbf{a}_n) = 1 - \frac{1}{2n^2}$.

Suppose that *S* is a bilinear form on l_1 such that $||S|| = |S(\tilde{\mathbf{a}}, \tilde{\mathbf{b}})|$ for some $\tilde{\mathbf{a}}, \tilde{\mathbf{b}}$ in S_{l_1} and ||T - S|| < 1/2. Then we have either $||\mathbf{a}_n - \tilde{\mathbf{a}}|| \ge 1/2$ or $||\mathbf{a}_n - \tilde{\mathbf{b}}|| \ge 1/2$.

- $|S(e_i, e_j)| = ||S||$ for every $(i, j) \in A \times B$, where $A = supp(\tilde{\mathbf{a}})$ and $B = supp(\tilde{\mathbf{b}})$
- $A \cap B = \emptyset$
- min{ $\#(supp(\mathbf{a}_n) \cap A), \#(supp(\mathbf{a}_n) \cap B)$ } $\leq n^2$.
- max{ $\|\mathbf{a}_n \tilde{\mathbf{a}}\|, \|\mathbf{a}_n \tilde{\mathbf{b}}\|$ } > 1/2.

For $n \in \mathbb{N}$, $\mathbf{a}_n = (a_i^n)$ where $a_i^n = \frac{1}{2n^2}$ for $1 \le i \le 2n^2$ and $a_i = 0$ otherwise.

1 ||B|| = 1 and $B(\mathbf{a}_n, \mathbf{a}_n) = 1 - \frac{1}{2n^2}$.

Suppose that *S* is a bilinear form on l_1 such that $||S|| = |S(\tilde{\mathbf{a}}, \tilde{\mathbf{b}})|$ for some $\tilde{\mathbf{a}}, \tilde{\mathbf{b}}$ in S_{l_1} and ||T - S|| < 1/2. Then we have either $||\mathbf{a}_n - \tilde{\mathbf{a}}|| \ge 1/2$ or $||\mathbf{a}_n - \tilde{\mathbf{b}}|| \ge 1/2$.

- $|S(e_i, e_j)| = ||S||$ for every $(i, j) \in A \times B$, where $A = supp(\tilde{\mathbf{a}})$ and $B = supp(\tilde{\mathbf{b}})$
- $A \cap B = \emptyset$
- min{#(supp(\mathbf{a}_n) $\cap A$), #(supp(\mathbf{a}_n) $\cap B$)} $\leq n^2$.
- max{ $\|\mathbf{a}_n \tilde{\mathbf{a}}\|, \|\mathbf{a}_n \tilde{\mathbf{b}}\|$ } > 1/2.

• $\exists Y$ such that $\overline{NA(\mathscr{L}(c_0; Y))} \neq \mathscr{L}(c_0; Y)$

Theorem

J. Alaminos, Y.S. Choi, S.G. Kim, and R. Payá, (1998). $\overline{NA(\mathscr{L}(c_0, c_0; \mathbb{K}))} = \mathscr{L}(c_0, c_0; \mathbb{K})$

Main problem : $(c_0, c_0; \mathbb{K})$ has BPBP for bilinear forms?

Theorem

• $\exists Y$ such that $\overline{NA(\mathscr{L}(c_0;Y))} \neq \mathscr{L}(c_0;Y)$

Theorem

J. Alaminos, Y.S. Choi, S.G. Kim, and R. Payá, (1998). $\overline{NA(\mathscr{L}(c_0, c_0; \mathbb{K}))} = \mathscr{L}(c_0, c_0; \mathbb{K})$

Main problem : $(c_0, c_0; \mathbb{K})$ has BPBP for bilinear forms?

Theorem

•
$$\exists Y \text{ such that } \overline{NA(\mathscr{L}(c_0;Y))} \neq \mathscr{L}(c_0;Y)$$

J. Alaminos, Y.S. Choi, S.G. Kim, and R. Payá, (1998). $\overline{NA(\mathscr{L}(c_0, c_0; \mathbb{K}))} = \mathscr{L}(c_0, c_0; \mathbb{K})$

Main problem : $(c_0, c_0; \mathbb{K})$ has BPBP for bilinear forms?

Theorem

•
$$\exists Y \text{ such that } \overline{NA(\mathscr{L}(c_0;Y))} \neq \mathscr{L}(c_0;Y)$$

J. Alaminos, Y.S. Choi, S.G. Kim, and R. Payá, (1998). $\overline{NA(\mathscr{L}(c_0, c_0; \mathbb{K}))} = \mathscr{L}(c_0, c_0; \mathbb{K})$

Main problem : $(c_0, c_0; \mathbb{K})$ has BPBP for bilinear forms?

Theorem

•
$$\exists Y \text{ such that } \overline{NA(\mathscr{L}(c_0;Y))} \neq \mathscr{L}(c_0;Y)$$

J. Alaminos, Y.S. Choi, S.G. Kim, and R. Payá, (1998). $\overline{NA(\mathscr{L}(c_0, c_0; \mathbb{K}))} = \mathscr{L}(c_0, c_0; \mathbb{K})$

Main problem : $(c_0, c_0; \mathbb{K})$ has BPBP for bilinear forms?

Theorem

Tool:

A bilinear form $B \in \mathcal{L}(c_0, c_0; \mathbb{K})$ can be represented by an operator $T \in \mathcal{L}(c_0, \ell_1)$

B(x,y) = (Tx)(y)

Note

- ℓ_1 is complex uniformly convex
- (*c*₀, *Y*) has BPBP for operators whenever *Y* is complex uniformly convex.

The modulus of complex convexity H_X for a Banach space *X* is define by, for $\varepsilon \ge 0$,

$$H_X(\varepsilon) = \inf \left\{ \sup_{0 \le \theta \le 2\pi} \|x + e^{i\theta}y\| - 1 : x \in S_X, \|y\| \ge \varepsilon \right\}.$$

A complex Banach space is said to be uniformly complex convex if $H_X(\varepsilon) > 0$ for all $\varepsilon > 0$.

Lemma

M.D. Acosta (2016) Let Y be a uniformly complex convex space, L a locally compact Hausdorff space, and A a Borel set of L. For given $0 < \lambda < 1$, if $T \in S_{\mathscr{L}(C_0(L),Y)}$ satisfy that $||T^{**}P_A|| > 1 - \frac{H_Y(\lambda)}{1+H_Y(\lambda)}$, then $||T^{**}(I-P_A)|| \leq \lambda$. The modulus of complex convexity H_X for a Banach space *X* is define by, for $\varepsilon \ge 0$,

$$H_X(\varepsilon) = \inf \left\{ \sup_{0 \le \theta \le 2\pi} \|x + e^{i\theta}y\| - 1 : x \in S_X, \|y\| \ge \varepsilon \right\}.$$

A complex Banach space is said to be uniformly complex convex if $H_X(\varepsilon) > 0$ for all $\varepsilon > 0$.

Lemma

M.D. Acosta (2016)

Let Y be a uniformly complex convex space, L a locally compact Hausdorff space, and A a Borel set of L. For given $0 < \lambda < 1$, if $T \in S_{\mathscr{L}(C_0(L),Y)}$ satisfy that $||T^{**}P_A|| > 1 - \frac{H_Y(\lambda)}{1+H_Y(\lambda)}$, then $||T^{**}(I-P_A)|| \leq \lambda$.

Let X, X_1, \ldots, X_N and Y be finite dimensional Banach spaces. Then

- (i) $(X_1, \ldots, X_N; Y)$ has the BPBp for multilinear mappings,
- (ii) $(^{N}X; Y)$ has the BPBp for symmetric multilinear mappings and
- (iii) (X; Y) has the BPBp for N-homogeneous polynomials.

Theorem

M. D. Acosta, J. Becerra-Guerrero, D. García and M. Maestre (2013) For the infinite dimensional Banach space $L_1(\mu)$, $(L_1(\mu), L_1(\mu); \mathbb{K})$ does no have the BPBp for bilinear mappings.

Thank you for listening!

presented by Sun Kwang Kim.