# The Bishop-Phelps-Bollobás property for bilinear forms 

Sun Kwang Kim

Kyonggi University, Korea

July, 2017

## 0. Back grounds

Consider finite dimensional space $X$.

$X, X_{i}, Y$ : Banach space.
$B_{X}$ : Closed unit ball of $X$.
$S_{X}$ : Closed unit sphere of $X$.
$\mathscr{L}\left(X_{1}, \ldots, X_{n} ; Y\right)$ : Banach space of all continuous n-linear mappings from $X_{1} \times \ldots \times X_{n}$ into $Y$.

## Definition

We say that an n-linear mapping $T \in \mathscr{L}\left(X_{1}, \ldots, X_{n} ; Y\right)$ attains its norm if there exists a point $x=\left(x_{1}, \ldots, x_{n}\right) \in S_{X_{1}} \times \ldots \times S_{X_{n}}$ such that $\|T(x)\|=\|T\|=\sup \left\{\|T(z)\|: z \in B_{X_{1}} \times \ldots \times B_{X_{n}}\right\}$. $N A\left(\mathscr{L}\left(X_{1}, \ldots, X_{N} ; Y\right)\right)$ : the set of all norm attaining multilinear mappings.

If a Banach space is finite dimensional, then every functionals attains its norm.

## Fact

If a Banach space is reflexive, then every functionals attains its norm.
For arbitrary Banach space? No!

$$
x^{*}=\left(\frac{1}{2^{i}}\right)_{i=1}^{\infty} \in \ell_{1}\left(=c_{0}^{*}\right) .
$$

For every $x=\left(x_{i}\right)_{i=1}^{\infty} \in B_{c_{0}}$,


If a Banach space is finite dimensional, then every functionals attains its norm.

## Fact

If a Banach space is reflexive, then every functionals attains its norm.
For arbitrary Banach space?


For every $x=\left(x_{i}\right)_{i=1}^{\infty} \in B_{c_{0}}$,


If a Banach space is finite dimensional, then every functionals attains its norm.

## Fact

If a Banach space is reflexive, then every functionals attains its norm.
For arbitrary Banach space? No!


For every $x=\left(x_{i}\right)_{i=1}^{\infty} \in B_{c_{0}}$,


If a Banach space is finite dimensional, then every functionals attains its norm.

## Fact

If a Banach space is reflexive, then every functionals attains its norm.
For arbitrary Banach space? No!
Let

$$
x^{*}=\left(\frac{1}{2^{i}}\right)_{i=1}^{\infty} \in \ell_{1}\left(=c_{0}^{*}\right)
$$

For every $x=\left(x_{i}\right)_{i=1}^{\infty} \in B_{c_{0}}$,


If a Banach space is finite dimensional, then every functionals attains its norm.

## Fact

If a Banach space is reflexive, then every functionals attains its norm.
For arbitrary Banach space? No!
Let

$$
x^{*}=\left(\frac{1}{2^{i}}\right)_{i=1}^{\infty} \in \ell_{1}\left(=c_{0}^{*}\right)
$$

For every $x=\left(x_{i}\right)_{i=1}^{\infty} \in B_{c_{0}}$,

$$
x^{*}(x)=\sum_{i} \frac{1}{2^{i}} x_{i}<\sum_{i} \frac{1}{2^{i}}=\left\|x^{*}\right\| .
$$

## Example Let us consider

$$
x^{*}=\left(a_{1}, a_{2}, a_{3}, \ldots, a_{n}, \ldots\right) \in c_{0}^{*}=\ell_{1}
$$

## Then, for every $\epsilon>0$ there exist $N \in \mathbb{N}$ so that



## This functional attains its norm at

$$
\left(\operatorname{sign}\left(a_{1}\right), \operatorname{sign}\left(a_{2}\right), \operatorname{sign}\left(a_{3}\right), \ldots, \operatorname{sign}\left(a_{n}\right), 0,0,0 \ldots\right) \in c_{0}
$$

## Example Let us consider

$$
x^{*}=\left(a_{1}, a_{2}, a_{3}, \ldots, a_{n}, \ldots\right) \in c_{0}^{*}=\ell_{1} .
$$

Then, for every $\epsilon>0$ there exist $N \in \mathbb{N}$ so that

$$
\sum_{i>N}\left|a_{i}\right|<\epsilon .
$$

This functional attains its norm at

$$
\left(\operatorname{sign}\left(a_{1}\right), \operatorname{sign}\left(a_{2}\right), \operatorname{sign}\left(a_{3}\right), \ldots, \operatorname{sign}\left(a_{n}\right), 0,0,0 \ldots\right) \in c_{0}
$$

## Example Let us consider

$$
x^{*}=\left(a_{1}, a_{2}, a_{3}, \ldots, a_{n}, \ldots\right) \in c_{0}^{*}=\ell_{1} .
$$

Then, for every $\epsilon>0$ there exist $N \in \mathbb{N}$ so that

$$
\sum_{i>N}\left|a_{i}\right|<\epsilon .
$$

Set

$$
y^{*}=\left(a_{1}, a_{2}, a_{3}, \ldots, a_{N}, 0,0,0 \ldots\right) . \text { Then, }\left\|x^{*}-y^{*}\right\|<\epsilon .
$$

This functional attains its norm at

$$
\left(\operatorname{sign}\left(a_{1}\right), \operatorname{sign}\left(a_{2}\right), \operatorname{sign}\left(a_{3}\right), \ldots, \operatorname{sign}\left(a_{n}\right), 0,0,0 \ldots\right) \in c_{0}
$$

## Example Let us consider

$$
x^{*}=\left(a_{1}, a_{2}, a_{3}, \ldots, a_{n}, \ldots\right) \in c_{0}^{*}=\ell_{1} .
$$

Then, for every $\epsilon>0$ there exist $N \in \mathbb{N}$ so that

$$
\sum_{i>N}\left|a_{i}\right|<\epsilon .
$$

Set

$$
y^{*}=\left(a_{1}, a_{2}, a_{3}, \ldots, a_{N}, 0,0,0 \ldots\right) . \text { Then, }\left\|x^{*}-y^{*}\right\|<\epsilon .
$$

This functional attains its norm at

$$
\left(\operatorname{sign}\left(a_{1}\right), \operatorname{sign}\left(a_{2}\right), \operatorname{sign}\left(a_{3}\right), \ldots, \operatorname{sign}\left(a_{n}\right), 0,0,0 \ldots\right) \in c_{0}
$$

## Example Let us consider

$$
x^{*}=\left(a_{1}, a_{2}, a_{3}, \ldots, a_{n}, \ldots\right) \in c_{0}^{*}=\ell_{1} .
$$

Then, for every $\epsilon>0$ there exist $N \in \mathbb{N}$ so that

$$
\sum_{i>N}\left|a_{i}\right|<\epsilon .
$$

Set

$$
y^{*}=\left(a_{1}, a_{2}, a_{3}, \ldots, a_{N}, 0,0,0 \ldots\right) . \text { Then, }\left\|x^{*}-y^{*}\right\|<\epsilon .
$$

This functional attains its norm at

$$
\left(\operatorname{sign}\left(a_{1}\right), \operatorname{sign}\left(a_{2}\right), \operatorname{sign}\left(a_{3}\right), \ldots, \operatorname{sign}\left(a_{n}\right), 0,0,0 \ldots\right) \in c_{0}
$$

## Example Let us consider

$$
x^{*}=\left(a_{1}, a_{2}, a_{3}, \ldots, a_{n}, \ldots\right) \in c_{0}^{*}=\ell_{1} .
$$

Then, for every $\epsilon>0$ there exist $N \in \mathbb{N}$ so that

$$
\sum_{i>N}\left|a_{i}\right|<\epsilon .
$$

Set

$$
y^{*}=\left(a_{1}, a_{2}, a_{3}, \ldots, a_{N}, 0,0,0 \ldots\right) . \text { Then, }\left\|x^{*}-y^{*}\right\|<\epsilon .
$$

This functional attains its norm at

$$
\left(\operatorname{sign}\left(a_{1}\right), \operatorname{sign}\left(a_{2}\right), \operatorname{sign}\left(a_{3}\right), \ldots, \operatorname{sign}\left(a_{n}\right), 0,0,0 \ldots\right) \in c_{0}
$$

This implies that the set of norm attaining functionals is dense in $\ell_{1}$.

## Theorem

E. Bishop, R.R. Phelps(1961) For every Banach space X, the set of norm attaining functionals is dense in its dual space $X^{*}$. $(\overline{N A(\mathscr{L}(X ; \mathbb{K}))}=\mathscr{L}(X ; \mathbb{K}))$
(1) J. Lindenstrauss (1963)
$X$ :reflexive $\Longrightarrow \forall Y \overline{N A(\mathscr{L}(X ; Y))}=\mathscr{L}(X ; Y)$ $Y:$ property $(\beta) \Longrightarrow \forall X \overline{N A(\mathscr{L}(X ; Y))}=\mathscr{L}(X ; Y)$.
© J. Bourgain (1977)
$X:$ Radon-Nikodým property $\Longrightarrow \forall Y N A(\mathscr{L}(X ; Y))=\mathscr{L}(X ; Y)$.
© for other mappings ? Later...

## Theorem

E. Bishop, R.R. Phelps(1961) For every Banach space X, the set of norm attaining functionals is dense in its dual space $X^{*}$.
$(\overline{N A(\mathscr{L}(X ; \mathbb{K}))}=\mathscr{L}(X ; \mathbb{K}))$
© J. Lindenstrauss (1963)
$X$ :reflexive $\Longrightarrow \forall Y \overline{N A(\mathscr{L}(X ; Y))}=\mathscr{L}(X ; Y)$
© J. Bourgain (1977)
$X:$ Radon-Nikodým property $\Longrightarrow \forall Y \overline{N A}(\mathscr{L}(X ; Y))=\mathscr{L}(X ; Y)$.
© for other mappings? Later...

## Theorem

E. Bishop, R.R. Phelps(1961) For every Banach space X, the set of norm attaining functionals is dense in its dual space $X^{*}$.
$(\overline{N A(\mathscr{L}(X ; \mathbb{K}))}=\mathscr{L}(X ; \mathbb{K}))$
© J. Lindenstrauss (1963)
$X$ :reflexive $\Longrightarrow \forall Y \overline{N A(\mathscr{L}(X ; Y))}=\mathscr{L}(X ; Y)$
$Y:$ property $(\beta) \Longrightarrow \forall X N A(\mathscr{L}(X ; Y))=\mathscr{L}(X ; Y)$.
© J. Bourgain (1977)
$X:$ Radon-Nikodým property $\Longrightarrow \forall Y \overline{N A(\mathscr{L}(X ; Y))}=\mathscr{L}(X ; Y)$.
© for other mappings ? Later...

## Theorem

E. Bishop, R.R. Phelps(1961) For every Banach space X, the set of norm attaining functionals is dense in its dual space $X^{*}$.
$(\overline{N A(\mathscr{L}(X ; \mathbb{K}))}=\mathscr{L}(X ; \mathbb{K}))$
© J. Lindenstrauss (1963)
$X$ :reflexive $\Longrightarrow \forall Y \overline{N A(\underline{L}(X ; Y))}=\mathscr{L}(X ; Y)$
$Y:$ property $(\beta) \Longrightarrow \forall X \overline{N A}(\mathscr{L}(X ; Y))=\mathscr{L}(X ; Y)$.
(2) J. Bourgain (1977)
$X:$ Radon-Nikodým property $\Longrightarrow \forall Y \overline{N A(\mathscr{L}(X ; Y))}=\mathscr{L}(X ; Y)$.
© for other mappings ? Later...

## Theorem

E. Bishop, R.R. Phelps(1961) For every Banach space X, the set of norm attaining functionals is dense in its dual space $X^{*}$.
$(\overline{N A(\mathscr{L}(X ; \mathbb{K}))}=\mathscr{L}(X ; \mathbb{K}))$
© J. Lindenstrauss (1963)
$X$ :reflexive $\Longrightarrow \forall Y \overline{N A(\mathscr{L}(X ; Y))}=\mathscr{L}(X ; Y)$
$Y:$ property $(\beta) \Longrightarrow \forall X \overline{N A}(\mathscr{L}(X ; Y))=\mathscr{L}(X ; Y)$.
(2) J. Bourgain (1977)
$X:$ Radon-Nikodým property $\Longrightarrow \forall Y \overline{N A(\mathscr{L}(X ; Y))}=\mathscr{L}(X ; Y)$.
(3) for other mappings ? Later...

## 1. Bishop-Phelps-Bollobás Theorem

## Theorem

B. Bollobás(1970) For an arbitrary $\epsilon>0$, if $x \in B_{X}$ and $x^{*} \in S_{X^{*}}$ satisfy $\left|1-x^{*}(x)\right|<\frac{\epsilon^{2}}{4}$, then there are $y \in S_{X}$ and $y^{*} \in S_{X^{*}}$ such that $y^{*}(y)=1$, $\|y-x\|<\epsilon$ and $\left\|y^{*}-x^{*}\right\|<\epsilon$.

[^0]
## 1. Bishop-Phelps-Bollobás Theorem

## Theorem

B. Bollobás(1970) For an arbitrary $\epsilon>0$, if $x \in B_{X}$ and $x^{*} \in S_{X^{*}}$ satisfy $\left|1-x^{*}(x)\right|<\frac{\epsilon^{2}}{4}$, then there are $y \in S_{X}$ and $y^{*} \in S_{X^{*}}$ such that $y^{*}(y)=1$, $\|y-x\|<\epsilon$ and $\left\|y^{*}-x^{*}\right\|<\epsilon$.

## Question

(1) Can we extend Bishop-Phelps-Bollobás Theorem to operator space between Banach spaces?
(2) Does Bishop-Phelps-Bollobás Theorem hold for nonlinear mapping(ex. bilinear form)?

## Definition

M.D. Acosta, R.M. Aron, D. García and M. Maestre (2008) Let X and Y be real or complex Banach spaces. We say that the couple ( $X, Y$ ) has the Bishop-Phelps-Bollobás property for operators (BPBP), if given $\epsilon>0$ there exist $\beta(\epsilon)>0$ and $\eta(\epsilon)>0$ with $\lim _{\epsilon \rightarrow 0^{+}} \beta(\epsilon)=0$ such that for $T \in S_{\mathscr{L}(X, Y)}$, if $x_{0} \in S_{X}$ is such that $\left\|T x_{0}\right\|>1-\eta(\epsilon)$, then there exist a point $u_{0} \in S_{X}$ and an operator $S \in S_{\mathscr{L}(X, Y)}$ that satisfy the following conditions :

$$
\left\|S u_{0}\right\|=1,\left\|x_{0}-u_{0}\right\|<\beta(\epsilon) \text { and }\|T-S\|<\epsilon
$$

(1) The couple $(X, Y)$ has the the BPBP for finite dimensional Banach spaces $X$ and $Y$.
(2) If $Y$ has property $(\beta)$, then the couple $(X, Y)$ has the $B P B P$ for every Banach space $X$.

## 2. The Bishop-Phelps-Bollobás property for operators on $\ell_{1}$ and $c_{0}$

## Definition

M.D. Acosta, R.M. Aron, D. García and M. Maestre (2008) A Banach space $X$ is said to have the $A H S P$ if for every $\epsilon>0$ there exists $0<\eta<\epsilon$ such that for every sequence $\left(x_{k}\right) \subset S_{X}$ and for every convex series $\sum_{n=1}^{\infty} \alpha_{k}$ with

$$
\left\|\sum_{n=1}^{\infty} \alpha_{k} x_{k}\right\|>1-\eta
$$

there exist a subset $A \subset \mathbb{N}$ and a subset $\left\{z_{k}: k \in A\right\} \subset S_{X}$ satisfying
(1) $\sum_{k \in A} \alpha_{k}>1-\epsilon$
(2) (1) $\left\|z_{k}-x_{k}\right\|<\epsilon$ for all $k \in A$
(2) $x^{*}\left(z_{k}\right)=1$ for a certain $x^{*} \in S_{X^{*}}$ and all $k \in A$

The following Banach spaces have the AHSP:
(1) a finite dimensional space
(2) Lush space (ex. $L_{1}(\mu)$ and $C(K)$ )
(3) a uniformly convex space

## Theorem

M.D. Acosta, R.M. Aron, D. García and M. Maestre (2008) The couple $\left(\ell_{1}, Y\right)$ has the BPBP if and only if $Y$ has the AHSP.

Tool : Representation of operator from $\ell_{1}$ to $Y$.


$$
T z=\sum z_{i} T e_{i}, z=\left(z_{i}\right)
$$

The following Banach spaces have the AHSP:
(1) a finite dimensional space
(2) Lush space (ex. $L_{1}(\mu)$ and $C(K)$ )
(3) a uniformly convex space

## Theorem

M.D. Acosta, R.M. Aron, D. García and M. Maestre (2008) The couple $\left(\ell_{1}, Y\right)$ has the BPBP if and only if $Y$ has the AHSP.

Tool : Representation of operator from $\ell_{1}$ to $Y$.
$T: \ell_{1} \longrightarrow Y$ can be identified with $\left(y_{i}\right)_{i=1}^{\infty}$ where $y_{i}=T e_{i}$.

$$
T z=\sum z_{i} T e_{i}, z=\left(z_{i}\right)
$$

The following Banach spaces have the AHSP:
(1) a finite dimensional space
(2) Lush space (ex. $L_{1}(\mu)$ and $C(K)$ )
(3) a uniformly convex space

## Theorem

M.D. Acosta, R.M. Aron, D. García and M. Maestre (2008) The couple $\left(\ell_{1}, Y\right)$ has the BPBP if and only if $Y$ has the AHSP.

Tool : Representation of operator from $\ell_{1}$ to $Y$.
$T: \ell_{1} \longrightarrow Y$ can be identified with $\left(y_{i}\right)_{i=1}^{\infty}$ where $y_{i}=T e_{i}$.

$$
T z=\sum z_{i} T e_{i}, z=\left(z_{i}\right)
$$

## Picture of the AHSP.



Picture 1: $x=\sum_{i} \alpha_{i} x_{i}$, and $y^{*}(x)>1-\eta$.
Picture 2: $\left\|z_{i}-x_{i}\right\|<\epsilon$, and $x^{*}\left(z_{i}\right)=1$
for $i \in A$ with $\sum_{k \in A} \alpha_{k}>1-\epsilon$

## Definition

For every $\epsilon \in(0,2]$, the modulus of convexity of a Banach space $(X,\|\cdot\|)$ is defined by

$$
\delta(\epsilon)=\inf \left\{1-\left\|\frac{x+y}{2}\right\|: x, y \in B_{X},\|x-y\|>\epsilon\right\}
$$

A Banach space $(X,\|\cdot\|)$ is said to be uniformly convex if $\delta(\epsilon)>0$ for all $\epsilon \in(0,2]$.

## Definition

A Banach space $X$ is said to be lush if for every $x, y \in S_{X}$ and for every $\epsilon>0$ there is a slice $S=S\left(B_{X}, x^{*}, \epsilon\right) \subset B_{X}, x^{*} \in S_{X^{*}}$, such that $x \in S$ and $\operatorname{dist}(y, \operatorname{aconv}(S))<\epsilon$, where $S\left(B_{X}, x^{*}, \epsilon\right)=\left\{x \in B_{X}: \operatorname{Re} x^{*}(x)>1-\epsilon\right\}$.


## Study about the BPBP on $c_{0}$.

$$
\text { Problem : Which space } Y \text { satisfy that }\left(c_{0}, Y\right) \text { has BPBP? }
$$

- S.K. Kim (2013) The couple of Banach spaces $\left(c_{0}, Y\right)$ has the BPBP for uniformly convex $Y$.
- M. D. Acosta (2017) The couple of Banach spaces $\left(c_{0}, Y\right)$ has the BPBP for complex uniformly convex $Y$.
- How to describe an operator from $c_{0}$ to $Y$ ?
- How to use it?


## Study about the BPBP on $c_{0}$.

## Problem : Which space $Y$ satisfy that $\left(c_{0}, Y\right)$ has BPBP?

- S.K. Kim (2013) The couple of Banach spaces $\left(c_{0}, Y\right)$ has the BPBP for uniformly convex Y.
- M. D. Acosta (2017) The couple of Banach spaces $\left(c_{0}, Y\right)$ has the BPBP for complex uniformly convex $Y$.
- How to describe an operator from $c_{0}$ to $Y$ ?
- How to use it?


## Study about the BPBP on $c_{0}$.

## Problem : Which space $Y$ satisfy that $\left(c_{0}, Y\right)$ has BPBP?

- S.K. Kim (2013) The couple of Banach spaces $\left(c_{0}, Y\right)$ has the BPBP for uniformly convex $Y$.
- M. D. Acosta (2017) The couple of Banach spaces $\left(c_{0}, Y\right)$ has the BPBP for complex uniformly convex $Y$.
- How to describe an operator from $c_{0}$ to $Y$ ?
- How to use it?


## 3. The Bishop-Phelps-Bollobás property for bilinear forms

## Definition

Let $X_{1}, \ldots, X_{N}$ and $Y$ be Banach spaces. We say that $\left(X_{1}, \ldots, X_{N} ; Y\right)$ has the Bishop-Phelps-Bollobás property for multilinear mappings (BPBP for multilinear mappings, for short) if given $\varepsilon>0$, there exists $\eta(\varepsilon)>0$ such that whenever $A \in \mathscr{L}\left(X_{1}, \ldots, X_{N} ; Y\right)$ with $\|A\|=1$ and $\left(x_{1}^{0}, \ldots, x_{N}^{0}\right) \in S_{X_{1}} \times \ldots \times S_{X_{N}}$ satisfy

$$
\left\|A\left(x_{1}^{0}, \ldots, x_{N}^{0}\right)\right\|>1-\eta(\varepsilon),
$$

there are $B \in \mathscr{L}\left(X_{1}, \ldots, X_{N} ; Y\right)$ with $\|B\|=1$ and $\left(z_{1}^{0}, \ldots, z_{N}^{0}\right) \in S_{X_{1}} \times \ldots \times S_{X_{N}}$ such that

$$
\left\|B\left(z_{1}^{0}, \ldots, z_{N}^{0}\right)\right\|=1, \quad \max _{1 \leq j \leq N}\left\|z_{j}^{0}-x_{j}^{0}\right\|<\varepsilon \text { and }\|B-A\|<\varepsilon .
$$

Known results :

## Theorem <br> R.M. Aron, C. Finet, E. Werner (1995) $\forall i \in\{1, \ldots, n\} X_{i}:$ Radon-Nikodým property $\Longrightarrow N A\left(\mathscr{L}\left(X_{1}, \ldots, X_{n} ; \mathbb{K}\right)\right)=\mathscr{L}\left(X_{1}, \ldots, X_{n} ; \mathbb{K}\right)$

## Theorem

M. D. Acosta, J. Becerra-Guerrero, D. García and M. Maestre (2013) Assume that $X, X_{i}$ for every $i \in 1, \ldots, n$ are uniformly convex with modulus of convexity $0<\delta(\epsilon)<1$. Then for every Banach space $Y,\left(X_{1}, \cdots, X_{n}, Y\right)$ has the BPBP for $n$-linear mappings.

In the same paper, the spaces $Y$ such that $\left(\ell_{1}, Y ; \mathbb{K}\right)$ has the BPBP for bilinear mappings had been characterized.

## Known results :

## Theorem

R.M. Aron, C. Finet, E. Werner (1995) $\forall i \in\{1, \ldots, n\} X_{i}:$ Radon-Nikodým property $\Longrightarrow N A\left(\mathscr{L}\left(X_{1}, \ldots, X_{n} ; \mathbb{K}\right)\right)=\mathscr{L}\left(X_{1}, \ldots, X_{n} ; \mathbb{K}\right)$

## Theorem

M. D. Acosta, J. Becerra-Guerrero, D. García and M. Maestre (2013) Assume that $X, X_{i}$ for every $i \in 1, \ldots, n$ are uniformly convex with modulus of convexity $0<\delta(\epsilon)<1$. Then for every Banach space $Y$, $\left(X_{1}, \cdots, X_{n}, Y\right)$ has the $B P B P$ for $n$-linear mappings.

In the same paper, the spaces $Y$ such that $\left(\ell_{1}, Y ; \mathbb{K}\right)$ has the BPBP for bilinear mappings had been characterized.

## Known results :

## Theorem

R.M. Aron, C. Finet, E. Werner (1995) $\forall i \in\{1, \ldots, n\} X_{i}:$ Radon-Nikodým property $\Longrightarrow N A\left(\mathscr{L}\left(X_{1}, \ldots, X_{n} ; \mathbb{K}\right)\right)=\mathscr{L}\left(X_{1}, \ldots, X_{n} ; \mathbb{K}\right)$

## Theorem

M. D. Acosta, J. Becerra-Guerrero, D. García and M. Maestre (2013)

Assume that $X, X_{i}$ for every $i \in 1, \ldots, n$ are uniformly convex with modulus of convexity $0<\delta(\epsilon)<1$. Then for every Banach space $Y$, $\left(X_{1}, \cdots, X_{n}, Y\right)$ has the $B P B P$ for $n$-linear mappings.

In the same paper, the spaces $Y$ such that $\left(\ell_{1}, Y ; \mathbb{K}\right)$ has the $B P B P$ for bilinear mappings had been characterized.

## versions of Bishop-Phelps and Bollobás theorem

- $\forall Y \overline{N A\left(\mathscr{L}\left(\ell_{1} ; Y\right)\right)}=\mathscr{L}\left(\ell_{1} ; Y\right)$
- $\overline{N A\left(\mathscr{L}\left(\ell_{1}, \ldots, \ell_{1} ; \mathbb{K}\right)\right)}=\mathscr{L}\left(\ell_{1}, \ldots, \ell_{1} ; \mathbb{K}\right)$


## Theorem



- $\left(\ell_{1} ; Y\right)$ has BPBp for some $Y$ (with AHSP)


## Theorem

Y.S. Choi, H.G. Song (2011) $\left(\ell_{1}, \ell_{1} ; \mathbb{K}\right)$ does not have BPBP for bilinear forms.

- $\mathscr{L}\left(\ell_{1} ; \ell_{\infty}\right) \simeq \mathscr{L}\left(\ell_{1}, \ell_{1} ; \mathbb{K}\right)$
- BPBp for operators holds for $\left(\ell_{1} ; \ell_{\infty}\right)$.


## versions of Bishop-Phelps and Bollobás theorem

- $\forall Y \overline{N A\left(\mathscr{L}\left(\ell_{1} ; Y\right)\right)}=\mathscr{L}\left(\ell_{1} ; Y\right)$
- $\overline{N A\left(\mathscr{L}\left(\ell_{1}, \ldots, \ell_{1} ; \mathbb{K}\right)\right)}=\mathscr{L}\left(\ell_{1}, \ldots, \ell_{1} ; \mathbb{K}\right)$


## Theorem

Y.S. Choi (1997) $N A(\mathscr{L}(L[0,1], L[0,1] ; \mathbb{K}))$ is not dense in $\mathscr{L}(L[0,1], L[0,1] ; \mathbb{K})$.

- $\left(\ell_{1} ; Y\right)$ has BPBp for some $Y$ (with AHSP)


## Theorem

V.S. Choi H. G. Song (2011) ( $\left.\ell_{1}, \ell_{1} ; \mathbb{K}\right)$ does not have BPBP for bilinear forms.

- $\mathscr{L}\left(\ell_{1} ; \ell_{\infty}\right) \simeq \mathscr{L}\left(\ell_{1}, \ell_{1} ; \mathbb{K}\right)$
- BPBp for operators holds for $\left(\ell_{1} ; \ell_{\infty}\right)$.


## versions of Bishop-Phelps and Bollobás theorem

- $\forall Y \overline{N A\left(\mathscr{L}\left(\ell_{1} ; Y\right)\right)}=\mathscr{L}\left(\ell_{1} ; Y\right)$
- $\overline{N A\left(\mathscr{L}\left(\ell_{1}, \ldots, \ell_{1} ; \mathbb{K}\right)\right)}=\mathscr{L}\left(\ell_{1}, \ldots, \ell_{1} ; \mathbb{K}\right)$


## Theorem

Y.S. Choi (1997) $N A(\mathscr{L}(L[0,1], L[0,1] ; \mathbb{K}))$ is not dense in $\mathscr{L}(L[0,1], L[0,1] ; \mathbb{K})$.

- $\left(\ell_{1} ; Y\right)$ has BPBp for some $Y$ (with AHSP)


## Theorem <br> V.S. Choi, H.G. Song (2011) $\left(\ell_{1}, \ell_{1} ; \mathbb{K}\right)$ does not have BPBP for bilinear forms.

- $\mathscr{L}\left(\ell_{1} ; \ell_{\infty}\right) \simeq \mathscr{L}\left(\ell_{1}, \ell_{1} ; \mathbb{K}\right)$
- BPBp for operators holds for $\left(\ell_{1} ; \ell_{\infty}\right)$.


## versions of Bishop-Phelps and Bollobás theorem

- $\forall Y \overline{N A\left(\mathscr{L}\left(\ell_{1} ; Y\right)\right)}=\mathscr{L}\left(\ell_{1} ; Y\right)$
- $\overline{N A\left(\mathscr{L}\left(\ell_{1}, \ldots, \ell_{1} ; \mathbb{K}\right)\right)}=\mathscr{L}\left(\ell_{1}, \ldots, \ell_{1} ; \mathbb{K}\right)$


## Theorem

Y.S. Choi (1997) $N A(\mathscr{L}(L[0,1], L[0,1] ; \mathbb{K}))$ is not dense in $\mathscr{L}(L[0,1], L[0,1] ; \mathbb{K})$.

- $\left(\ell_{1} ; Y\right)$ has BPBp for some $Y$ (with AHSP)


## Theorem

Y.S. Choi, H.G. Song (2011) $\left(\ell_{1}, \ell_{1} ; \mathbb{K}\right)$ does not have BPBP for bilinear forms.

- $\mathscr{L}\left(\ell_{1} ; \ell_{\infty}\right) \simeq \mathscr{L}\left(\ell_{1}, \ell_{1} ; \mathbb{K}\right)$
- BPBp for operators holds for $\left(\ell_{1} ; \ell_{\infty}\right)$.


## versions of Bishop-Phelps and Bollobás theorem

- $\forall Y \overline{N A\left(\mathscr{L}\left(\ell_{1} ; Y\right)\right)}=\mathscr{L}\left(\ell_{1} ; Y\right)$
- $\overline{N A\left(\mathscr{L}\left(\ell_{1}, \ldots, \ell_{1} ; \mathbb{K}\right)\right)}=\mathscr{L}\left(\ell_{1}, \ldots, \ell_{1} ; \mathbb{K}\right)$


## Theorem

Y.S. Choi (1997) $N A(\mathscr{L}(L[0,1], L[0,1] ; \mathbb{K}))$ is not dense in $\mathscr{L}(L[0,1], L[0,1] ; \mathbb{K})$.

- $\left(\ell_{1} ; Y\right)$ has BPBp for some $Y$ (with AHSP)


## Theorem

Y.S. Choi, H.G. Song (2011) $\left(\ell_{1}, \ell_{1} ; \mathbb{K}\right)$ does not have BPBP for bilinear forms.

- $\mathscr{L}\left(\ell_{1} ; \ell_{\infty}\right) \simeq \mathscr{L}\left(\ell_{1}, \ell_{1} ; \mathbb{K}\right)$
- BPBp for operators holds for $\left(\ell_{1} ; \ell_{\infty}\right)$.


## versions of Bishop-Phelps and Bollobás theorem

- $\forall Y \overline{N A\left(\mathscr{L}\left(\ell_{1} ; Y\right)\right)}=\mathscr{L}\left(\ell_{1} ; Y\right)$
- $\overline{N A\left(\mathscr{L}\left(\ell_{1}, \ldots, \ell_{1} ; \mathbb{K}\right)\right)}=\mathscr{L}\left(\ell_{1}, \ldots, \ell_{1} ; \mathbb{K}\right)$


## Theorem

Y.S. Choi (1997) $N A(\mathscr{L}(L[0,1], L[0,1] ; \mathbb{K}))$ is not dense in $\mathscr{L}(L[0,1], L[0,1] ; \mathbb{K})$.

- $\left(\ell_{1} ; Y\right)$ has BPBp for some $Y$ (with AHSP)


## Theorem

Y.S. Choi, H.G. Song (2011) $\left(\ell_{1}, \ell_{1} ; \mathbb{K}\right)$ does not have BPBP for bilinear forms.

- $\mathscr{L}\left(\ell_{1} ; \ell_{\infty}\right) \simeq \mathscr{L}\left(\ell_{1}, \ell_{1} ; \mathbb{K}\right)$
- BPBp for operators holds for $\left(\ell_{1} ; \ell_{\infty}\right)$.

A bilinear form $B \in \mathscr{L}\left(\ell_{1}, \ell_{1} ; \mathbb{K}\right)$ can be represented by $\left(\alpha_{i, j}\right)_{(i, j) \in \mathbb{N}}$

$$
\begin{gathered}
B(x, y)=\sum_{(i, j) \in \mathbb{N}} \quad x_{i} y_{i} \alpha_{i, j}, x-\left(x_{i}\right), y=\left(y_{i}\right), \alpha_{i, j}-B\left(e_{i}, e_{j}\right) \\
\text { Note. B attains its norm at }(x, y) \text { then } B\left(e_{i}, e_{j}\right)=\|B\| \\
\text { where } i \in \operatorname{supp}(x) \text { and } j \in \operatorname{supp}(y) .
\end{gathered}
$$

## Tool :

A bilinear form $B \in \mathscr{L}\left(\ell_{1}, \ell_{1} ; \mathbb{K}\right)$ can be represented by $\left(\alpha_{i, j}\right)_{(i, j) \in \mathbb{N}}$

$$
B(x, y)=\sum_{(i, j) \in \mathbb{N}} x_{i} y_{i} \alpha_{i, j}, x=\left(x_{i}\right), y=\left(y_{i}\right), \alpha_{i, j}=B\left(e_{i}, e_{j}\right)
$$

Note. B attains its norm at $(x, y)$ then $B\left(e_{i}, e_{j}\right)=\|B\|$ where $i \in \operatorname{supp}(x)$ and $j \in \operatorname{supp}(y)$.

$$
B \in \mathscr{L}\left(\ell_{1}, \ell_{1} ; \mathbb{K}\right) \text { by } B\left(e_{i}, e_{j}\right)=1-\delta_{i, j} .
$$

$$
\begin{gathered}
\text { For } n \in \mathbb{N}, \mathbf{a}_{n}=\left(a_{i}^{n}\right) \\
\text { where } a_{i}^{n}=\frac{1}{2 n^{2}} \text { for } 1 \leq i \leq 2 n^{2} \text { and } a_{i}=0 \text { otherwise. }
\end{gathered}
$$

(1) $\|B\|=1$ and $B\left(\mathbf{a}_{n}, \mathbf{a}_{n}\right)=1-\frac{1}{2 n^{2}}$.

> Sumnose that $S$ is a bilinea form on $l_{1}$ such that $\|S\|=|S(\tilde{\mathrm{a}}, \tilde{\mathrm{b}})|$ for some $\tilde{\mathrm{a}}, \mathrm{b}$ in $S_{l_{1}}$ and $\|T-S\|<1 / 2$ Then we have either $\left\|\mathrm{a}_{n}-\tilde{\mathrm{a}}\right\| \geq 1 / 2$ or $\left\|\mathrm{a}_{n}-\tilde{\mathrm{b}}\right\| \geq 1 / 2$.

- $\left|S\left(e_{i}, e_{j}\right)\right|=\|S\|$ for every $(i, j) \in A \times B$, where $A=\operatorname{supp}(\tilde{\mathbf{a}})$ and $B=\operatorname{supp}(\tilde{\mathbf{b}})$
- $A \cap B=\emptyset$
- $\min \left\{\#\left(\operatorname{supp}\left(\mathbf{a}_{n}\right) \cap A\right), \#\left(\operatorname{supp}\left(\mathbf{a}_{n}\right) \cap B\right)\right\} \leq n^{2}$.
- $\max \left\{\left\|\mathbf{a}_{n}-\tilde{\mathbf{a}}\right\|,\left\|\mathbf{a}_{n}-\tilde{\mathbf{b}}\right\|\right\}>1 / 2$.

$$
B \in \mathscr{L}\left(\ell_{1}, \ell_{1} ; \mathbb{K}\right) \text { by } B\left(e_{i}, e_{j}\right)=1-\delta_{i, j} .
$$

$$
\text { For } n \in \mathbb{N}, \mathbf{a}_{n}=\left(a_{i}^{n}\right)
$$

$$
\text { where } a_{i}^{n}=\frac{1}{2 n^{2}} \text { for } 1 \leq i \leq 2 n^{2} \text { and } a_{i}=0 \text { otherwise. }
$$

$$
\|B\|=1 \text { and } B\left(\mathrm{a}_{n}, \mathrm{a}_{n}\right)=1-\frac{1}{2 n^{2}} .
$$

> Suppose that $S$ is a bilinear form on $l_{1}$ such that $\|S\|=|S(\tilde{\mathbf{a}}, \tilde{\mathbf{b}})|$ for some $\tilde{\mathbf{a}}, \tilde{\mathbf{b}}$ in $S_{l_{1}}$ and $\|T-S\|<1 / 2$ Then we have either $\left\|a_{n}-\mathrm{a}\right\| \geq 1 / 2$ or $\left\|a_{n}-\tilde{b}\right\| \geq 1 / 2$.

- $\left|S\left(e_{i}, e_{j}\right)\right|=\|S\|$ for every $(i, j) \in A \times B$, where $A=\operatorname{supp}(\tilde{\mathbf{a}})$ and $B=\operatorname{supp}(\tilde{\mathbf{b}})$
- $A \cap B=\emptyset$
- $\min \left\{\#\left(\operatorname{supp}\left(\mathbf{a}_{n}\right) \cap A\right), \#\left(\operatorname{supp}\left(\mathbf{a}_{n}\right) \cap B\right)\right\} \leq n^{2}$.
- $\max \left\{\left\|\mathbf{a}_{n}-\tilde{\mathbf{a}}\right\|,\left\|\mathbf{a}_{n}-\tilde{\mathbf{b}}\right\|\right\}>1 / 2$.

$$
B \in \mathscr{L}\left(\ell_{1}, \ell_{1} ; \mathbb{K}\right) \text { by } B\left(e_{i}, e_{j}\right)=1-\delta_{i, j} .
$$

For $n \in \mathbb{N}, \mathbf{a}_{n}=\left(a_{i}^{n}\right)$
where $a_{i}^{n}=\frac{1}{2 n^{2}}$ for $1 \leq i \leq 2 n^{2}$ and $a_{i}=0$ otherwise.
(1) $\|B\|=1$ and $B\left(\mathbf{a}_{n}, \mathbf{a}_{n}\right)=1-\frac{1}{2 n^{2}}$.

Suppose that $S$ is a bilinear form on $l_{1}$ such that
$\|S\|=|S(\tilde{\mathbf{a}}, \tilde{\mathbf{b}})|$ for some $\tilde{\mathbf{a}}, \tilde{\mathbf{b}}$ in $S_{l_{1}}$ and $\|T-S\|<1 / 2$
Then we have either $\left\|\mathbf{a}_{n}-\tilde{\mathbf{a}}\right\| \geq 1 / 2$ or $\left\|\mathbf{a}_{n}-\tilde{\mathbf{b}}\right\| \geq 1 / 2$.

- $\left|S\left(e_{i}, e_{j}\right)\right|=\|S\|$ for every $(i, j) \in A \times B$, where $A=\operatorname{supp}(\tilde{a})$ and

$$
B \in \mathscr{L}\left(\ell_{1}, \ell_{1} ; \mathbb{K}\right) \text { by } B\left(e_{i}, e_{j}\right)=1-\delta_{i, j} .
$$

$$
\text { For } n \in \mathbb{N}, \mathbf{a}_{n}=\left(a_{i}^{n}\right)
$$

where $a_{i}^{n}=\frac{1}{2 n^{2}}$ for $1 \leq i \leq 2 n^{2}$ and $a_{i}=0$ otherwise.
(1) $\|B\|=1$ and $B\left(\mathbf{a}_{n}, \mathbf{a}_{n}\right)=1-\frac{1}{2 n^{2}}$.

Suppose that $S$ is a bilinear form on $l_{1}$ such that
$\|S\|=|S(\tilde{\mathbf{a}}, \tilde{\mathbf{b}})|$ for some $\tilde{\mathbf{a}}, \tilde{\mathbf{b}}$ in $S_{l_{1}}$ and $\|T-S\|<1 / 2$
Then we have either $\left\|\mathbf{a}_{n}-\tilde{\mathbf{a}}\right\| \geq 1 / 2$ or $\left\|\mathbf{a}_{n}-\tilde{\mathbf{b}}\right\| \geq 1 / 2$.

- $\left|S\left(e_{i}, e_{j}\right)\right|=\|S\|$ for every $(i, j) \in A \times B$, where $A=\operatorname{supp}(\tilde{\mathbf{a}})$ and $B=\operatorname{supp}(\tilde{\mathbf{b}})$
- $A \cap B=\emptyset$
- $\min \left\{\#\left(\operatorname{supp}\left(\mathbf{a}_{n}\right) \cap A\right), \#\left(\operatorname{supp}\left(\mathbf{a}_{n}\right) \cap B\right)\right\} \leq n^{2}$.
- $\max \left\{\left\|\mathbf{a}_{n}-\tilde{\mathbf{a}}\right\|,\left\|\mathbf{a}_{n}-\tilde{\mathbf{b}}\right\|\right\}>1 / 2$.


## How about $c_{0}$ ?

- $\exists Y$ such that $\overline{N A\left(\mathscr{L}\left(c_{0} ; Y\right)\right)} \neq \mathscr{L}\left(c_{0} ; Y\right)$


## Theorem

J. Alaminos, Y.S. Choi, S.G. Kim, and R. Payá, (1998).
$N A\left(\mathscr{L}\left(c_{0}, c_{0} ; \mathbb{K}\right)\right)=\mathscr{L}\left(c_{0}, c_{0} ; \mathbb{K}\right)$

## Main problem : $\left(c_{0}, c_{0} ; \mathbb{K}\right)$ has BPBP for bilinear forms?

## Theorem

S.K. Kim, H.J. Lee, M. Martín (2017) ( $\left.c_{0}, c_{0} ; \mathbb{K}\right)$ has BPBP for bilinear forms. (complex case only).

## How about $c_{0}$ ?

- $\exists Y$ such that $\overline{N A\left(\mathscr{L}\left(c_{0} ; Y\right)\right)} \neq \mathscr{L}\left(c_{0} ; Y\right)$


## Theorem

```
J. Alaminos, Y.S. Choi, S.G. Kim, and R. Payá, (1998)
NA(\mathscr{L}(\mp@subsup{c}{0}{},\mp@subsup{c}{0}{};\mathbb{K}))=\mathscr{L}(\mp@subsup{c}{0}{},\mp@subsup{c}{0}{};\mathbb{K})
```


## Main problem : $\left(c_{0}, c_{0} ; \mathbb{K}\right)$ has BPBP for bilinear forms?

## Theomem

S.K. Kim, H.J. Lee, M. Martín (2017) ( $c_{0}, c_{0} ; \mathbb{K}$ ) has BPBP for bilinear forms. (complex case only).

## How about $c_{0}$ ?

- $\exists Y$ such that $\overline{N A\left(\mathscr{L}\left(c_{0} ; Y\right)\right)} \neq \mathscr{L}\left(c_{0} ; Y\right)$


## Theorem

J. Alaminos, Y.S. Choi, S.G. Kim, and R. Payá, (1998).
$\overline{N A\left(\mathscr{L}\left(c_{0}, c_{0} ; \mathbb{K}\right)\right)}=\mathscr{L}\left(c_{0}, c_{0} ; \mathbb{K}\right)$
Main problem : $\left(c_{0}, c_{0} ; \mathbb{K}\right)$ has BPBP for bilinear forms?

## Theorem

S.K. Kim. H.J. Lee, M. Martín (2017) ( $c_{0}, c_{0} ; \mathbb{K}$ ) has BPBP for bilinear forms. (complex case only).

## How about $c_{0}$ ?

- $\exists Y$ such that $\overline{N A\left(\mathscr{L}\left(c_{0} ; Y\right)\right)} \neq \mathscr{L}\left(c_{0} ; Y\right)$


## Theorem

J. Alaminos, Y.S. Choi, S.G. Kim, and R. Payá, (1998).
$\overline{N A\left(\mathscr{L}\left(c_{0}, c_{0} ; \mathbb{K}\right)\right)}=\mathscr{L}\left(c_{0}, c_{0} ; \mathbb{K}\right)$
Main problem : $\left(c_{0}, c_{0} ; \mathbb{K}\right)$ has BPBP for bilinear forms?

## Theorem

S.K. Kim, H.J. Lee, M. Martín (2017) ( $\left.c_{0}, c_{0} ; \mathbb{K}\right)$ has BPBP for bilinear forms. (complex case only).

## How about $c_{0}$ ?

- $\exists Y$ such that $\overline{N A\left(\mathscr{L}\left(c_{0} ; Y\right)\right)} \neq \mathscr{L}\left(c_{0} ; Y\right)$


## Theorem

J. Alaminos, Y.S. Choi, S.G. Kim, and R. Payá, (1998).
$\overline{N A\left(\mathscr{L}\left(c_{0}, c_{0} ; \mathbb{K}\right)\right)}=\mathscr{L}\left(c_{0}, c_{0} ; \mathbb{K}\right)$
Main problem : $\left(c_{0}, c_{0} ; \mathbb{K}\right)$ has BPBP for bilinear forms?

## Theorem

S.K. Kim, H.J. Lee, M. Martín (2017) ( $\left.c_{0}, c_{0} ; \mathbb{K}\right)$ has BPBP for bilinear forms. (complex case only).

Tool :
A bilinear form $B \in \mathscr{L}\left(c_{0}, c_{0} ; \mathbb{K}\right)$ can be represented by an operator

$$
\begin{gathered}
T \in \mathscr{L}\left(c_{0}, \ell_{1}\right) \\
B(x, y)=(T x)(y)
\end{gathered}
$$

Note

- $\ell_{1}$ is complex uniformly convex
- $\left(c_{0}, Y\right)$ has BPBP for operators whenever $Y$ is complex uniformly convex.

The modulus of complex convexity $H_{X}$ for a Banach space $X$ is define by, for $\varepsilon \geq 0$,

$$
H_{X}(\varepsilon)=\inf \left\{\sup _{0 \leq \theta \leq 2 \pi}\left\|x+e^{i \theta} y\right\|-1: x \in S_{X},\|y\| \geq \varepsilon\right\}
$$

A complex Banach space is said to be uniformly complex convex if $H_{X}(\varepsilon)>0$ for all $\varepsilon>0$.


The modulus of complex convexity $H_{X}$ for a Banach space $X$ is define by, for $\varepsilon \geq 0$,

$$
H_{X}(\varepsilon)=\inf \left\{\sup _{0 \leq \theta \leq 2 \pi}\left\|x+e^{i \theta} y\right\|-1: x \in S_{X},\|y\| \geq \varepsilon\right\}
$$

A complex Banach space is said to be uniformly complex convex if $H_{X}(\varepsilon)>0$ for all $\varepsilon>0$.

## Lemma

M.D. Acosta (2016)

Let $Y$ be a uniformly complex convex space, $L$ a locally compact Hausdorff space, and $A$ a Borel set of $L$. For given $0<\lambda<1$, if $T \in S_{\mathscr{L}\left(C_{0}(L), Y\right)}$ satisfy that $\left\|T^{* *} P_{A}\right\|>1-\frac{H_{Y}(\lambda)}{1+H_{Y}(\lambda)}$, then $\left\|T^{* *}\left(I-P_{A}\right)\right\| \leq \lambda$.

## Theorem

Let $X, X_{1}, \ldots, X_{N}$ and $Y$ be finite dimensional Banach spaces. Then
(i) $\left(X_{1}, \ldots, X_{N} ; Y\right)$ has the BPBp for multilinear mappings,
(ii) $\left({ }^{N} X ; Y\right)$ has the BPBp for symmetric multilinear mappings and
(iii) $(X ; Y)$ has the BPBp for $N$-homogeneous polynomials.

## Theorem

M. D. Acosta, J. Becerra-Guerrero, D. García and M. Maestre (2013) For the infinite dimensional Banach space $L_{1}(\mu),\left(L_{1}(\mu), L_{1}(\mu) ; \mathbb{K}\right)$ does no have the BPBp for bilinear mappings.

## Thank you for listening!

presented by Sun Kwang Kim.


[^0]:    Question
    © Can we extend Bishop-Phelps-Bollobás Theorem to operator space between Banach spaces?
    (2) Does Bishop-Phelps-Bollobás Theorem hold for nonlinear mapping(ex. bilinear form)?

