# Preferences on Choice Sets 

Talk at Positivity IX, Edmonton

July 20, 2017
M. Ali Khan

Department of Economics
The Johns Hopkins University

## Structure of the Talk

- Background
- Decision theory
- Theory of large games * Large non-anonymous games * Large anonymous games
- Walrasian general equilibrium theory
- Eilenberg-Sonnenschein research program. Results with Metin Uyanik.


## Decision Theory

1. $T$ is a space of states,
2. $A$ is a space of consequences
3. $A^{T}$ is the space of acts,
4. $\succeq$ be a binary relation on $A^{T}$.

Savage's problem: Find assumptions on $\succeq$ that guarantee, and are guaranteed by, the existence of a finitely-additive (subjective) probability $\mu$ on $T$ and a real-valued (utility) function $u$ on $A$ such that

$$
f \succeq g \Longleftrightarrow \int_{S} u(f(t)) d \mu(t) \geq \int_{S} u(g(t)) d \mu(t)
$$

Remark: Anscombe-Aumann reformulate the question by considering binary relations on functions from $T$ to probability measures (lotteries) $\mathcal{M}(A)$ on $A$. This is to say binary relations on $\mathcal{M}(A)^{T}$.

## Large Non-Anonymous Games

A non-anonymous (individualized) game $\mathcal{G}$ is an element of $\operatorname{Meas}(T, \mathcal{U})$ where

1. $(T, \mathcal{T}, \lambda)$ is a probability space of players,
2. $A$ is a compact space of actions,
3. $\mathcal{M}(A)$ is the space of probability measures on $A$ endowed with the weak* topology,
4. $u$ is a continuous function on $A \times \mathcal{M}(A)$,
$5 . \mathcal{U}$ the space of payoff functions $u$ endowed with its Borel $\sigma$-algebra $\mathcal{B}(\mathcal{U})$ generated by the sup-norm topology.

We shall also denote $\mathcal{G}(t)$ by $u_{t}$, and since one can always rescale the payoffs, we assume that there is $M>0$ such that for all $t \in$ $T,\left\|u_{t}\right\| \leq M$.

Theorem 1 [Schmeidler] Let $(T, \mathcal{T}, \lambda)$ be an atomless probability space and $\mathcal{G}$ a large non-anonymous game with a finite action set $A$. Then there exists a measurable function $f: T \longrightarrow A$ such that for $\lambda$-almost all $t \in T$, $u_{t}\left(f(t), \lambda \circ f^{-1}\right) \geq u_{t}\left(a, \lambda \circ f^{-1}\right)$ for all $a \in A$.

Remark: If $A$ has a linear structure on it, then there is a straightforward reformulation of the above result in terms of the integral rather than the law of the function $f$.

## Large Non-Anonymous Games: A Purification Result

A mixed strategy profile $g$ (respectively a pure strategy profile $g^{*}$ ) is an element of $\operatorname{Meas}(T, \mathcal{M}(A))$.

A pure strategy profile $g^{*}$ is an element of $\operatorname{Meas}(T, A)$.

Theorem 2 Any mixed strategy equilibrium $g$ for the game $\mathcal{G}$ has a purification.

## Anonymous Games

An anonymous (distributionalized) game is a probability measure $\mu$ in $\mathcal{M}(\mathcal{U})$.

An anonymous game is said to be dispersed if $\mu$ is atomless.

An equilibrium $\tau$ of the game $\mu$ is an element of $\mathcal{M}(A \times \mathcal{U})$ with marginal measures $\tau_{A}$ and $\tau_{\mathcal{U}}$ such that

1. $\mathcal{T}_{\mathcal{U}}$ is $\mu$,
2. $\tau\left(B_{\tau}\right)=\tau\left(\left\{(u, a) \in(\mathcal{U} \times A): u\left(a, \tau_{A}\right) \geq\right.\right.$ $u\left(x, \tau_{A}\right)$ for all $\left.\left.x \in A\right\}\right)=1$.

An equilibrium $\tau$ can be symmetrized if there exist $h \in \operatorname{Meas}(\mathcal{U}, A)$ and another equilibrium $\tau^{s}$ such that $\tau_{A}=\tau_{A}^{S}$ and $\tau^{s}\left(\operatorname{Graph}_{h}\right)=$ 1, where $\mathrm{Graph}_{h}=\{(u, h(u)) \in(\mathcal{U} \times A)$ : $u \in \mathcal{U}\}$. In this case, $\tau^{s}$ is said to be a symmetric equilibrium.

## Large Anonymous Games: A Symmetrization Result

Theorem 3 Every anonymous game $\mu$ has an equilibrium.

Theorem 4 Let $\mu$ be a dispersed anonymous game such that $A$ is a finite set. Then there exists a symmetric equilibrium.

Theorem 5 Every equilibrium of a dispersed large anonymous game $\mu$ can be symmetrized with a countable action set $A$.

Corollary 1 A symmetric Cournot-Nash equilibrium distribution exists for a game $\mu$ with action set $A$ whenever $\mu$ is atomless and $A$ is countable.

# Topological Connectedness and Behavioral Assumptions 

 on Preferences: A Two-Way RelationshipM. Ali Khan Metin Uyanık

Positivity IX, July 17-21, 2017, Edmonton, Canada

## Eilenberg-Sonnenschein Research Program:

Eilenberg 1941
Sonnenschein 1965
Schmeidler 1971

## Utility Representation:

Eilenberg 1941
Debreu 1954

Rader 1963

## Binary Relations

Let $X$ be a set. A binary relation $R$ on $X$ is a subset $R \subset X \times X$. Define

$$
\begin{aligned}
R^{-1} & =\{(x, y) \mid(y, x) \in R\}, \\
R(x) & =\{y \mid(x, y) \in R\}, \\
R^{-1}(x) & =\{y \mid(y, x) \in R\},
\end{aligned}
$$

where
$R^{-1}$ denote the transpose of $R$,
$R(x)$ the upper section of $R$ at $x$ and
$R^{-1}(x)$ the lower section of $R$ at $x$.
Let
$\Delta=\{(x, x) \mid x \in X\}$ and
$R^{c}$ denote the complement of $R$.

## Properties of Binary Relations

Let $R$ be a binary relation on a set $X$ and define $I=R \cap R^{-1}$ and $P=R \backslash R^{-1}$. Then, $R$ is

```
reflexive if \(\Delta \subset R\),
complete if \(X \times X=R \cup R^{-1}\),
symmetric if \(R=R^{-1}\),
asymmetric if \(R \cap R^{-1}=\emptyset\),
nontrivial if \(R \neq \emptyset\),
transitive if \(R^{-1}(x) \times R(x) \subset R\) for all \(x \in X\),
negatively transitive if \(R^{c}\) is transitive,
semitransitive if \(P^{-1}(x) \times I(x) \subset P\) and \(I^{-1}(x) \times P(x) \subset P\) for all \(x \in X\).
```

A topological space $X$ is connected if it is not the union of two nonempty, disjoint open sets. A subset of $X$ is connected if it is connected as a subspace.

## Theorem (Eilenberg)

If $X$ is a connected topological space, then every complete and antisymmetric binary relation on it with closed sections is transitive.

## Theorem (Sonnenschein)

(a) If $X$ is a connected topological space, then every complete and semitransitive binary relation on it with closed sections is transitive.
(b) If $X$ is a connected topological space, then every complete binary relation on it with closed sections such that its symmetric part is transitive with connected sections, is transitive.

## Theorem (Schmeidler)

If $X$ is a connected topological space, then every transitive binary relation on it with closed sections such that its asymmetric part is nontrivial with open sections, is complete.

## Theorem (1)

Let $X$ be a topological space and $R$ denote a binary relation on it with symmetric part I and asymmetric part $P$. Then the following are equivalent.
(a) $X$ is connected.
(b) Every $R$ that is antisymmetric with closed sections, and whose $P$ is nontrivial with open sections, is complete and transitive.
(c) Every $R$ that is semitransitive with closed sections, and whose I is transitive, and whose $P$ is nontrivial with open sections, is complete and transitive.
(d) Every $R$ that has closed sections, and whose I is transitive with connected sections, and whose $P$ is nontrivial with open sections, is complete and transitive.
(e) Every $R$ that is transitive with closed sections, and whose $P$ is nontrivial with open sections, is complete.

## A Weakening of Connectedness and Eilenberg-Sonnenschein

A topological space $X$ is connected if it is not the union of two nonempty, disjoint open sets.

A component of a topological space is a maximal connected set in the space, that is, a connected subset which is not properly contained in any connected subset.

A topological space is $k$-connected if it has at most $k$ components.

1-connectedness is equivalent to connectedness
Any $k$-connected space is $I$-connected for all $I \geq k$.

## Nontriviality

$R$ is a binary relation on a topological space $X$ and $\mathcal{C}=\left\{C_{k}\right\}_{k \in K}$ denote the collection of the components of $X$.
$R$ is called nontrivial if there exists $x, y \in X$ such that $(x, y) \in R \cup R^{-1}$.
$R$ is called $|K|$-nontrivial if or all components $C, C^{\prime}$ of $X$, there exists $x \in C$ and $y \in C^{\prime}$ such that $(x, y) \in R \cup R^{-1}$.

For a connected space, the nontriviality and 1-nontriviality are equivalent. nontriviality within and across the components.

For $\ell \leq|K|, R$ is called $\ell$-nontrivial if there exist subcollections
$\mathcal{C}^{1}=\left\{C_{1}^{1}, \ldots, C_{\ell}^{1}\right\}$ and $\mathcal{C}^{2}=\left\{C_{1}^{2}, \ldots, C_{\ell}^{2}\right\}$ of $\mathcal{C}$ such that for all $i, j \leq \ell$, there exists $(x, y) \in\left(C_{i}^{1} \times C_{j}^{2}\right) \cup\left(C_{j}^{1} \times C_{i}^{2}\right)$ such that $(x, y) \in R$.

For $\ell=|K|, \ell$-nontriviality and $|K|$-nontriviality are equivalent.

## Theorem (2)

Let $X$ be a topological space and $R$ denote a binary relation on it with symmetric part I and asymmetric part $P$. Then the following are equivalent.
(a) $X$ is 2-connected.
(b) Every $R$ that is complete and antisymmetric with closed sections, is transitive.
(c) Every $R$ that is complete and semitransitive with closed sections, is transitive.
(d) Every $R$ that is antisymmetric with closed sections, and whose $P$ is 2-nontrivial with open sections, is complete and transitive.
(e) Every $R$ that is semitransitive with closed sections, and whose I is transitive, and whose $P$ is 2-nontrivial with open sections, is complete and transitive.
(f) Every $R$ that has closed sections, and whose I is transitive with connected sections, and whose $P$ is 2-nontrivial with open sections, is complete and transitive.

## Theorem (3)

Let $X$ be a topological space and $k$ be a positive integer. Then the following are equivalent.
(a) $X$ is $k$-connected.
(b) Every $R$ that is that is antisymmetric with closed sections, and whose $P$ is $k$-nontrivial with open sections, is complete.
(c) Every $R$ that is semitransitive with closed sections, and whose I is transitive, and whose $P$ is $k$-nontrivial with open sections, is complete.
(d) Every $R$ that has closed sections, and whose I is transitive with connected sections, and whose $P$ is $k$-nontrivial with open sections, is complete.

## An Example of a Nontransitive Binary Relation

$R$ is not necessarily transitive for $k>2$
$X=(0,1) \cup(1,2) \cup(2,3)$ endowed with Euclidean metric
$X$ is 3 -connected
Let $R$ be an asymmetric binary relation defined as follows: $(x, y) \in R$ if $x, y \in C_{k}, x \leq y$, if $x \in(0,1)$ and $y \in(1,2)$, if $x \in(1,2)$ and $y \in(2,3)$, and if $x \in(2,3)$ and $y \in(0,1)$
$R$ is complete and has closed sections
$R$ is nontransitive

## Notions of Transitivity

Let $R$ be a relation on a set $X, I$ denote its symmetric part and $P$ denote its asymmetric part.
$T$ : denote $R$ is transitive,
$N T$ : denote $P$ is negatively transitive,
$P P$ : denote $P$ is transitive,
II : denote I is transitive,
$P I$ : denote $P^{-1}(x) \times I(x) \subset P$ for all $x \in X$,
$I P$ : denote $I^{-1}(x) \times P(x) \subset P$ for all $x \in X$.

## Theorem (4)

Let $R$ be a binary relation on a set $X$ such that I and $P$ denote its symmetric and asymmetric parts, respectively. Then,
(a) PP is independent of PI, IP, II, severally and collectively,
(b) $T$ is independent of $N T$,
(c) $T \Leftrightarrow P P, P I, I P, I I$,
(d) $N T \Rightarrow P P, P I, I P$,
(e) $N T \& I I \Rightarrow T$,
(f) if $X$ is a connected topological space and the sections of $R$ are closed and of $P$ are open, then PI\&IP $\Rightarrow N T, T \Rightarrow N T, P I \& I P \& I I \Rightarrow T$,
(g) if $X$ is a connected topological space and the sections of I are connected, of $R$ are closed and of $P$ are open, then II $\Rightarrow$ PI\&IP.

## Disontinuous Binary Relations

Let $X$ be a topological space, $R$ be a binary relation on it and $P$ denote its asymmetric part. $R$ is nonsatiated in $A \subset X$ if $P(x) \neq \emptyset$ for all $x \in A$.

A subset $A$ of $X$ is called $R$-bounded above if there exists $y \in X$ such that $y \in \cap_{x \in A} R(x)$.
(A1) $R$ has closed upper sections, $P$ has open upper sections, and there exists $\bar{x} \in X$ such that $P(\bar{x}) \neq \emptyset$ and $R$ is nonsatiated in $P(\bar{x})$.
(A2) $R$ has closed upper sections, $P$ has open upper sections, and there exists $\bar{x} \in X$ such that $P(\bar{x}) \neq \emptyset$ and every two-element subset of $P(\bar{x})$ is $R$-bounded above.

## Theorem (5)

Let $R$ be a binary relation on a connected topological space $X$ such that its symmetric part is transitive and its asymmetric part is negatively transitive. Then, $R$ is complete and transitive if $R$ or $R^{-1}$ satisfies either (A1) or (A2).

## Further Equivalence Results: Definitions

A binary relation $R$ on a topological space $X$ is fragile if there exist $x, y \in X$ such that
(i) $(x, y) \in R \backslash R^{-1}$,
(ii) every open neighborhood of ( $x, y$ ) contains $\left(x^{\prime}, y^{\prime}\right) \notin R \cup R^{-1}$.

An asymmetric binary relation $P$ on a topological space $X$ has a continuous representation if there exist two continuous real valued functions $u$ and $v$ on $X$ such that for all $x, y \in X,(x, y) \in P$ if and only if $u(x)<v(y)$.

Let $P$ be a binary relation on a set $X$ and define $R=\{(x, y) \mid(y, x) \notin P\}$. Then $P$ is called strongly separable if there exists a countable subset $A$ of $X$ such that
$(x, y) \in P$ implies $\exists x^{\prime}, y^{\prime} \in A$ such that $\left(x, x^{\prime}\right) \in P,\left(x^{\prime}, y^{\prime}\right) \in R$ and $\left(y^{\prime}, y\right) \in P$.

## Further Equivalence Results

Gerasimou 2013
Chateauneuf 1987

## Theorem (1')

Let $X$ be a topological space and $R$ denote a binary relation on it with symmetric part I and asymmetric part $P$. Then the following are equivalent.
(a) $X$ is connected.
(b) Every $R, R^{\prime}$ that are antisymmetric, complete and transitive with closed sections, are either identical or inverse to each other.
(c) Every $R$ that is incomplete and transitive with closed sections, and whose $P$ is nontrivial, is fragile.
(d) Every $R$ that is asymmetric and has a continuous representation, is strongly separable.

## Sketch of the proof of Theorem 1

Assume (a).
(e) is due to Schmeidler (Theorem, 1971)
(c) follows from (e) since Theorem 4 (f) implies that $R$ is transitive.
(d) follows from (c) since Theorem 4 (g) implies $R$ is semitransitive and

Theorem 4 (f) implies $R$ is transitive.
Thm4
(b) follows from (c) and the observation that any antisymmetric binary relation is semitransitive and its symmetric part is transitive.

## Converse:

Assume $X$ is disconnected. Then there exists a nonempty open set $Y \subsetneq X$ which has an open complement $Y^{c}$.

Define $R=Y \times Y^{c}$. Then $P=R$. It is easy to check that $R$ and $P$ satisfy the assumptions of $(\mathbf{b}),(\mathbf{c}),(\mathbf{d}),(\mathbf{e})$.

Since $Y$ and $Y^{c}$ are nonempty, therefore $R$ is not complete.

## Sketch of the proof of Theorem 2

Assume (a), i.e. $X$ is 2 -connected. If $X$ has only one component, then (b) follows from Theorem 1 (b). Assume $X$ has two components $C_{1}, C_{2}$.
(b) Let $P$ denote the asymmetric part of $R$.

Since $R$ is a complete with closed sections, $P$ has open sections.
Claim. $R^{-1}(x) \cap C_{i}$ is connected for all $x \in X$ and $i=1,2$. Proof. Assume $R^{-1}(x) \cap C_{i}$ is disconnected. Then there exist $Y, Y^{c}$ nonempty and open subsets of the subspace $R^{-1}(x) \cap C_{i}$. Since $P(x)$ and $R^{-1}(x)$ are disjoint and covers $X$, therefore $\left\{Y,\left[Y^{c} \cup\left(P(y) \cap C_{i}\right)\right]\right\}$ form an open partition of $C_{i}$, hence $C_{i}$ is disconnected. This furnishes us a contradiction.
Pick $x, y, z \in X$ such that $y \in R(x)$ and $z \in R(y)$. If $x=y$ or $y=z$, then the proof is trivial. For $x \neq y \neq z$, the definition of $P$ implies $y \in P(x)$ and $z \in P(y)$.
Assume $x \notin P^{-1}(z)$. Since $z \neq x, R$ is complete and antisymmetric, therefore $z \in P^{-1}(x)$. Since $z \in P(y)$, therefore $X \backslash P(y) \subset X \backslash\{z\}$. Since $y \in P(x)$, therefore $X \backslash P(x) \subset X \backslash\{y\}$. Since $x \in P(z)$, therefore $X \backslash P(z) \subset X \backslash\{x\}$.

Since $R$ is complete and antisymmetric, therefore $R^{-1}(y) \subset P^{-1}(z) \cup P(z), \quad R^{-1}(x) \subset P^{-1}(y) \cup P(y), \quad R^{-1}(z) \subset P^{-1}(x) \cup P(x)$.

Since $C_{1}, C_{2}$ are components of $X$, each of $x, y, z$ are contained in one and only one of the components. The following three cases cover all possibilities: (i) $x, y \in C_{i}$, (ii) $x, z \in C_{i}, y \in C_{j}$ and (iii) $x \in C_{i}, y, z \in C_{j}$ where $i=1,2, i \neq j$. If $x, y \in C_{i}$, then Claim implies $R^{-1}(y) \cap C_{i}$ is connected. Note that $x, y \in R^{-1}(y) \cap C_{i}$. Moreover, $x \in P(z)$ and $y \in P^{-1}(z)$. Hence, $\left\{P^{-1}(z) \cap C_{i}, P(z) \cap C_{i}\right\}$ is an open cover of $R^{-1}(y) \cap C_{i}$. This furnishes us a contradiction. If $x, z \in C_{i}, y \in C_{j}$, then Claim implies $R^{-1}(x) \cap C_{i}$ is connected. Note that $x, z \in R^{-1}(x) \cap C_{i}$. Moreover, $z \in P(y)$ and $x \in P^{-1}(y)$. Hence, $\left\{P^{-1}(x) \cap C_{i}, P(y) \cap C_{i}\right\}$ is an open cover of $R^{-1}(x) \cap C_{i}$. This furnishes us a contradiction. If $x \in C_{i}, y, z \in C_{j}$, then Claim implies $R^{-1}(z) \cap C_{j}$ is connected. Note that $y, z \in R^{-1}(z) \cap C_{j}$. Moreover, $y \in P(x)$ and $z \in P^{-1}(x)$. Hence, $\left\{P^{-1}(z) \cap C_{j}, P(z) \cap C_{j}\right\}$ is an open cover of $R^{-1}(z) \cap C_{j}$. This furnishes us a contradiction.
Therefore, $x \in P^{-1}(z)$, hence $R$ is transitive.
(c) Let $I$ denote the symmetric part of $R$ and $P$ denote its asymmetric part. Since $R$ is complete and $I$ is transitive, therefore, $I$ is an equivalence relation. Define a relation $\hat{R}$ on the quotient space $X \mid I$ with respect to $I$ as $([x],[y]) \in \hat{R}$ if $\left(x^{\prime}, y^{\prime}\right) \in R$ for all $x^{\prime} \in[x]$ and $y^{\prime} \in[y]$. Define $\hat{P}$ as the asymmetric part of $\hat{R}$. It follows from $X$ is 2 -connected that $X \mid I$ is 2 -connected. If $X \mid I$ has one component, then $P$ is 2 -connected implies $\hat{P}$ is nontrivial. Hence, Theorem 1 $\mathbf{a} \Rightarrow \mathbf{c}$ implies $\hat{R}$ is transitive. If $X \mid I$ has two components, then it follows from $P$ is 2-connected that $\hat{P}$ is 2-connected. Hence, $\mathbf{a} \Rightarrow \mathbf{e}$ above implies $\hat{R}$ is transitive. Therefore, it follows from the construction of $\hat{R}$ that $R$ is transitive.
(d) Theorem 3 implies that $R$ is complete. It follows from (b) that $R$ is also transitive.
(e), (f) Theorem 3 implies that $R$ is complete. It follows from (c) that $R$ is also transitive.
$(\mathbf{d}),(\mathbf{e}),(\mathbf{f}) \Rightarrow(\mathbf{a})$ Assume $X$ has at least three components. Then, as illustrated in the argument in $\mathbf{b} \Rightarrow \mathbf{a}$, there exists a partition $\left\{Y_{1}, Y_{2}, Y_{3}\right\}$ of $X$ which is both open and closed. Define a binary relation on $X$ as $R=\left(Y_{1} \times Y_{2}\right) \cup\left(Y_{1} \times Y_{3}\right) \cup\left(Y_{2} \times Y_{3}\right)$. Then, its symmetric part is $I=\emptyset$ and its asymmetric part is $P=R$. By construction, the sections of $R$ is closed and the sections of $P$ are open. Moreover, $R$ is semitransitive and antisymmetric, and $I$ is transitive. Defining $\mathcal{C}^{1}=\left\{Y_{1}, Y_{2}\right\}$ and $\mathcal{C}^{2}=\left\{Y_{2}, Y_{3}\right\}$ implies $P$ is 2-nontrivial. Finally, it is clear that $R$ is incomplete.
(b), (c) $\Rightarrow \mathbf{a}$ The construction is illustrated in the example following Theorem 3.

## Sketch of the proof of Theorem 3

(a) $\Rightarrow$ (c) Assume $X$ is $k$-connected and $\left\{C_{1}, \ldots, C_{k}\right\}$ denote the set of components of $X$. Define $K=\{1, \ldots, k\}$.
Claim 1. Let $x_{i} \in C_{i}, x_{j} \in C_{j}$. If $\left(x_{i}, x_{j}\right) \in P$, then $P\left(x_{i}\right) \cup P^{-1}\left(x_{j}\right)$ is both open and closed and contains $C_{i} \cup C_{j}$.
Assume there exists $x, y \in X$ such that $(x, y) \notin R \cup R^{-1}$. Then, there exists $i, j \in K$ such that $x \in C_{i}$ and $y \in C_{j}$. Since $P$ is $k$-nontrivial, there exists $x_{i} \in C_{i}, x_{j} \in C_{j}$ such that $\left(x_{i}, x_{j}\right) \in P \cup P^{*}$. Without loss of generality, assume $\left(x_{i}, x_{j}\right) \in P$. Then, it follows from Claim 1 that $x \in P\left(x_{i}\right) \cup P^{-1}\left(x_{j}\right)$.
Claim 2. If $x \in P^{-1}\left(x_{j}\right)$, then $y \in P^{-1}\left(x_{j}\right)$. If $x \in P\left(x_{i}\right)$, then $y \in P\left(x_{i}\right)$.
It follows from Claim 2 that $x_{i} \in P^{-1}(x) \cap P^{-1}(y)$ or $x_{j} \in P(x) \cap P(y)$.
Therefore, $\left[P^{-1}(x) \cap P^{-1}(y)\right] \cap C_{i} \neq \emptyset$ or $[P(x) \cap P(y)] \cap C_{j} \neq \emptyset$. Since $x \in C_{i}, y \in C_{j}$ and $x, y \notin P^{-1}(x) \cap P^{-1}(y)$, therefore $C_{i}, C_{j} \not \subset P^{-1}(x) \cap P^{-1}(y)$.
Claim 3. $P(x) \cap P(y)$ and $P^{-1}(x) \cap P^{-1}(y)$ are both open and closed.

It follows from Claim 3 that $\left\{P^{-1}(x) \cap P^{-1}(y) \cap C_{i},\left[P^{-1}(x) \cap P^{-1}(y)\right]^{c} \cap C_{i}\right\}$ is an open partition of $C_{i}$ or $\left\{P(x) \cap P(y) \cap C_{j},[P(x) \cap P(y)]^{c} \cap C_{j}\right\}$ is an open partition of $C_{j}$. This furnishes us a contradiction with $C_{i}$ and $C_{j}$ being components of $X$. Therefore, $R$ is complete.
Parts (b), (d) follows from Theorem 4 (g).
(c), (b), (d) $\Rightarrow \mathbf{a}$ Assume $X$ has at least three components. Then, as illustrated in the argument in Theorem 2, $(b) \Rightarrow(a)$, there exists a partition $\left\{Y_{1}, \ldots, Y_{k+1}\right\}$ of $X$ which is both open and closed. Define a binary relation on $X$ as

$$
R=\bigcup_{i=1}^{k}\left(\bigcup_{j=2}^{k+1} Y_{i} \times Y_{j}\right) .
$$

Then, its symmetric part is $I=\emptyset$ and its asymmetric part is $P=R$. By construction, the sections of $R$ is closed and the sections of $P$ are open. Moreover, $R$ is semitransitive and antisymmetric, and $I$ is transitive. Defining $\mathcal{C}^{1}=\left\{Y_{1}, \ldots, Y_{k}\right\}$ and $\mathcal{C}^{2}=\left\{Y_{2}, \ldots, Y_{k+1}\right\}$ implies $P$ is $k$-nontrivial. Finally, it is clear that $R$ is incomplete.

## Sketch of the proof of Theorem 4

(b) Let $X=\{1,2,3\}, R=\{(1,2)\}$. It is clear that $R$ is transitive and $P=R$. It follows from $(1,3) \notin P,(3,2) \notin P$ and $(1,2) \in P$ that $N T$ is not satisfied. Now define a relation $R^{\prime}=\{(1,2),(2,1)\}$. Then, $P=\emptyset$, hence $N T$ holds. Since $(1,1),(2,2) \notin R$, therefore $T$ is not satisfied.
(d) Assume $y \in P(x)$ and $z \in P(y)$. It follows from $y \in P(x)$ and $N T$ that either $z \in P(x)$ or $y \in P(z)$. Since $z \in P(y)$, therefore $z \in P(x)$, hence $P P$ holds. Now, assume $y \in P(x), z \in I(y)$ and $z \notin P(x)$. It follows from $z \in I(y)$ that $y \notin P(z)$. Then NT implies $y \notin P(x)$. This furnishes us a contradiction. Hence, $P I$ holds. An analogous argument implies IP.
(e) Assume $y \in R(x)$ and $z \in R(y)$. First, recall that d implies $P P, P I$, IP. If $y \in R^{-1}(x)$ and $z \in R^{-1}(y)$, then II implies $z \in I(x)$, hence $z \in R(x)$. If $y \notin R^{-1}(x)$ or $z \notin R^{-1}(y)$, then it follows from $P P, P I$, IP that $z \in P(x)$, hence $z \in R(x)$.
(f) Note that $P$ is negatively transitive if and only if $(x, y) \in P$ implies either $(x, z) \in P$ of $(z, y) \in P$ for all $x, y, z \in X$. Pick $x, y \in X$ such that $(x, y) \in P$. Now we will show that $P(x) \cup P^{-1}(y)=R(x) \cup R^{-1}(y)$. It is clear that $P(x) \cup P^{-1}(y) \subset R(x) \cup R^{-1}(y)$. In order to show the converse inclusion, pick $z \in R(x)$. Assume $z \notin P(x) \cup P^{-1}(y)$, i.e. $z \notin P(x)$ and $y \notin P(z)$. It follows from $z \notin P(x)$ and $z \in R(x)$ that $x \in R(z)$. Hence $(z, x) \in I$. It follows from IP and $(z, x) \in I,(x, y) \in P$ that $y \in P(z)$. This furnishes us a contradiction. Now pick $z \in R^{-1}(y)$. Assume $z \notin P(x) \cup P^{-1}(y)$, i.e. $z \notin P(x)$ and $y \notin P(z)$. It follows from $y \notin P(z)$ and $y \in R(z)$ that $z \in R(y)$. Hence $(y, z) \in I$. It follows from $P I$ and $(y, z) \in I,(x, y) \in P$ that $z \in P(x)$. This furnishes us a contradiction. Hence, $P(x) \cup P^{-1}(y)=R(x) \cup R^{-1}(y)$. Since the left side of the equality is an open set and the right side is closed, and $X$ is connected, $P(x) \cup P^{-1}(y)=X$. Therefore $P$ is negatively transitive.
(g) Pick $x, y, z \in X$ such that $y \in P(x)$ and $z \in I(y)$. Assume $z \notin P(x)$. Then, one and only one of the following holds: (a) $z \in I(x)$, (b) $x \in P(z)$, (c) $z \in(R(x))^{c} \cap\left(R^{-1}(x)\right)^{c}$. If $z \in I(x)$, then II implies $y \in I(x)$. This furnishes us a contradiction. Then, it follows from $I /$ that $I(x) \cap I(z)=\emptyset$. Since $X=I(x) \cup P(x) \cup P^{-1}(x) \cup\left[(R(x))^{c} \cap\left(R^{-1}(x)\right)^{c}\right]$, therefore

$$
I(z)=[P(x) \cap I(z)] \cup\left[P^{-1}(x) \cap I(z)\right] \cup\left[(R(x))^{c} \cap\left(R^{-1}(x)\right)^{c} \cap I(z)\right] .
$$

It is clear that the three sets in square brackets are pairwise disjoint. Since $P$ has open sections and $R$ has closed sections, the three sets in square brackets are open in $I(z)$. If $x \in P(z)$, then $P(x) \cap I(z)$ and $P^{-1}(x) \cap I(z)$ are nonempty. Then $P(x) \cap I(z)$ and the union of the remaining two sets in square brackets form an open partition of $I(z)$ which contradicts the connectedness of $I(z)$. Analogously, $z \in(R(x))^{c} \cap\left(R^{-1}(x)\right)^{c}$ furnishes us a contradiction with the connectedness of $I(z)$. Therefore, $z \in P(x)$, and hence $P I$ holds. An analogous argument implies IP holds.

