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Nonadditive measures

Definition (nonadditive measure)

Let (X ,A) be a measurable space. A set function µ : A → [0,∞] is called a
nonadditive measure if it satisfies:

1 µ(∅) = 0 (boundedness from below)

2 A ,B ∈ A, A ⊂ B ⇒ µ(A) ≤ µ(B) (monotonicity)

Nonadditive measures are widely used in theory as well as their applications and
have already appeared in many papers: Hausdorff dimension (Hausdorff 1918), lower/upper

numerical probability (Koopman 1940), Maharam’s submeasure problem (Maharam 1947), capacity (Choquet

1953/54), semivariation (Dunford-Schwartz 1955), quasimeasure (Alexiuk 1968), maxitive measure (Shilkret 1971),

participation measure (Tsichritzis 1971), submeasure (Drewnowski 1972, Dobrakov 1974), fuzzy measure (Sugeno

1974), k -triangular set function (Agafanova-Klimkin 1974), game of characteristic function form, distorted measure

(Aumann-Shapley 1974), belief/plausibility function (Shafer 1976), possibility measure (Zadeh 1978), pre-measure

(Šipoš 1979), necessity measure (Dubois-Prade 1980), approximately additive (Kalton-Roberts 1983), decomposable

measure (Weber 1984), Minkowski-Bouligrand dimension (Schroeder 1991), subjective probabilities in decision

making, · · · · · ·
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Notation

• (X ,A): a measurable space

• M :=
{
µ | µ : A → [0,∞] is a nonadditive measure

}
• Mb :=

{
µ ∈ M | µ(X) < ∞}

• F := {f | f : X → [−∞,∞] is a A-measurable function}
• F + := { f ∈ F | f ≥ 0}
• The µ-essential boundedness constant

∥f∥µ := inf
{
r > 0 | µ({f ≥ r}) = 0 and µ({f ≥ −r}) = µ(X)

}
, f ∈ F ,

which is the usual µ-essential supremum for f ∈ F +.
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Nonlinear integrals

INPUT AGGREGATION OUTPUT

(µ, f) 7−→ I(µ, f)

• Convergence theorem = Continuity of aggregation process
• Guarantee for certain robustness, consistency, and a non chaotic behavior

Nonlinear integrals appear when aggregating quantities supplied by a measurable
function f through a nonadditive measure µ. We consider four types of nonlinear
integrals. They are typical and widely used in theory and its applications, such as
• subjective evaluation
• decision-making
• expected-utility theory
• economic model under Knightian uncertainty
• data mining

among others.
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Definition (Choquet and Šipoš)

Let (µ, f) ∈ M × F +.

• Choquet integral: Ch(µ, f) :=
∫ ∞

0
µ({f ≥ t})dt

• Šipoš integral: Si(µ, f) := lim
P∈∆+

n∑
i=1

(ai − ai−1) µ({f ≥ ai}),

where ∆+ is the directed set with usual set inclusion of all partitions of [0,∞] of the
form P = {a1, . . . , an} with 0 = a0 < a1 < · · · < an < ∞.

■ G. Choquet, Theory of capacities, Ann. Inst. Fourier (Grenoble) 5 (1953–54) 131–295.
■ J. Šipoš, Integral with respect to a pre-measure, Math. Slovaca 29 (1979) 141–155.

Proposition (Honest extension of the Lebesgue integral)

1 Ch(µ, f) = Si(µ, f) = Le(µ, f) if µ is σ-additive.

2 Ch(µ, f) = Si(µ, f) for any (µ, f) ∈ M × F +.

Although the Šipoš and the Choquet integral are equal, the Šipoš integral remains
important, because it can be defined and developed without any essential knowledge of the
Lebesgue integral!
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Besides, we have another type of nonlinear integrals.
• The Sugeno integral is defined by lattice operations “∨ := sup” and “∧ := inf”

that are important in fuzzy theory originated by Zadeh in 1965.
• By contrast, the Shilkret integral is defined by “supremum” and the usual

“multiplication.”

Definition (Sugeno and Shilkret)

Let (µ, f) ∈ M × F +.
• Sugeno integral:

Su(µ, f) := sup
t∈[0,∞]

[t ∧ µ({f ≥ t})]

• Shilkret integral:

Sh(µ, f) := sup
t∈[0,∞]

[t · µ({f ≥ t})]

■ M. Sugeno, Theory of fuzzy integrals and its applications, Ph.D. Dissertation, Tokyo Institute of Technology,
Tokyo, 1974.

■ D. Ralescu, G. Adams, The fuzzy integral, J. Math. Anal. Appl. 75 (1980) 562–570.
■ N. Shilkret, Maxitive measure and integration, Indag. Math. 33 (1971) 109–116.
■ Ru-Huai Zhao, (N) fuzzy integral (in Chinese), J. Math. Res. Exposition 2 (1981) 55–72.
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Some of known convergence theorems for nonlinear integrals

Let µ : A → [0,∞] be a nonadditive measure on a measurable space (X ,A). Let
f , fn : X → [0,∞] (n = 1, 2, . . . ) be A-measurable functions. Among others the MCT and
the BCT are very important and in fact yield other convergence theorems such as the FL
and the DCT.

• The monotone increasing convergence theorem (MICT): Assume that µ is continuous
from below and fn ↑ f pointwise.

⋆ I(µ, fn)→ I(µ, f) for I = Ch,Si,Su,Sh.

Wang1997 for Ch, Šipoš1979 for Si, Ralescu-Adams1980 for Su, Zhao1981 for Sh

• The monotone decreasing convergence theorem (MDCT): Assume that µ is
continuous from above and fn ↓ f pointwise.

⋆ I(µ, fn)→ I(µ, f) for I = Ch,Si if I(µ, f1) < ∞. Wang1997 for Ch, Šipoš1979 for Si

⋆ Su(µ, fn)→ Su(µ, f) if µ({f1 > Su(µ, f)}) < ∞. Wang1984

⋆ Sh(µ, fn)→ Sh(µ, f) if µ(X) < ∞ and f1 is µ-essentially bounded. Zhao1981

• The bounded convergence theorem (BCT): Assume that µ is autocontinuous, {fn}n∈N is
uniformly µ-essentially bounded and fn → f in µ-measure.

⋆ Ch(µ, fn)→ Ch(µ, f). Murofushi et al.1997
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The purpose of the talk

Propose a unified approach to those convergence theorems for nonlinear integrals
and give “one-size-fits-all” results!

1 Regard nonlinear integrals as a nonlinear functional I : M×F + → [0,∞],
whereM is the set of all nonadditive measures on (X ,A) and F + is the set
of all A-measurable functions f : X → [0,∞].

2 The key concept is a perturbation of functional I, that is,
there are two families of control functions {φp}p>0, {ψq}q>0 ⊂ Φ satisfying the
following perturbation: for any µ ∈ M, f , g ∈ F +, ε ≥ 0, δ ≥ 0, p > 0, and
q > 0, it holds that

I(µ, f) ≤ I(µ, g) + φp(δ) + ψq(ε)

if ∥f∥µ < p, µ(X) < q, and µ({f ≥ t}) ≤ µ({g + ε ≥ t}) + δ for all t ∈ R, where
Φ is the set of all functions φ : [0,∞)→ [0,∞) satisfying
φ(0) = limt→+0 φ(t) = 0.

This perturbation manages not only the monotonicity of functional but also
the small change of the functional value arising as a result of adding small
amounts to the function f and its µ-distribution function µ({f ≥ t}).
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Some classes of nonlinear integral functionals

To discuss convergence theorems regardless of the type of nonlinear integrals
and develop a unifying approach to formulation and proof, we introduce some
classes of nonlinear functionals.

• I : M×F + → [0,∞] is an integral, i.e.,

1 I (µ, 0) = 0 for every µ ∈ M
2 I (µ, f) ≤ I (µ, g) for every µ ∈ M and f , g ∈ F + with f ≤ g

• The functional value I(µ, f) is often called the µ-integral of f .

Definition (generative)

I is generative
def⇐⇒ there is θ : [0,∞]2 → [0,∞] such that

I (µ, rχA ) = θ (r , µ(A))

for every µ ∈ M, r ∈ [0,∞], and A ∈ A. The function θ is called a generator of I.
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Among others, θ(a, b) := a · b and θ(a, b) := a ∧ b are typical examples of

generators of integral functionals satisfying the following useful properties:

Definition (limit preserving generator of finite and continuous type)

• θ is limit preserving
def⇐⇒ for any {bn}n∈N ⊂ [0,∞] and b ∈ [0,∞], it holds that

bn → b whenever θ(r , bn)→ θ(r , b) for every r ∈ (0,∞).

• θ is of finite type
def⇐⇒ θ(a, b) < ∞ whenever a, b ∈ [0,∞).

• θ is of continuous type
def⇐⇒ θ is continuous on D := [0,∞]2 \ {(0,∞), (∞, 0)}.
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Definition (elementary)

I is elementary
def⇐⇒ I is generative with generator θ and there is a pseudo-addition

⊕ : [0,∞]2 → [0,∞] such that

I

µ, n⊕
i=1

(ri ⊖ ri−1) χAi

 = n⊕
i=1

θ
(
ri ⊖ ri−1, µ(Ai)

)
for any µ ∈ M, n ∈ N, A1, . . . ,An ∈ A, and r1, . . . , rn ∈ (0,∞) with A1 ⊃ · · · ⊃ An

and 0 = r0 < r1 < · · · < rn.

• Pseudo-addition ⊕ : [0,∞]2 → [0,∞] is a binary operation that is
commutative, associative, non-decreasing in both components, continuous,
and 0 is its neutral element.

• Pseudo-difference ⊖ : [0,∞]2 → [0,∞] is defined by

a ⊖ b := inf
{
x ∈ [0,∞] : b ⊕ x ≥ a

}
for each a, b ∈ [0,∞].

• a ⊖ b = a − b if a ⊕ b = a + b and a > b.
• a ⊖ b = a if a ⊕ b = a ∨ b and a > b.
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Proposition (elementariness of Ch, Si, Su, and Sh)

The integral functionals Le, Ch, Si, Su, Sh are all generative and elementary with
limit preserving generators

θ(a, b) := a · b , a · b , a · b , a ∧ b , a · b

of finite and continuous type with respect to the pseudo-addition +, +, +, ∨, ∨,
respectively.
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• In this talk, a perturbation of integral functional is a key concept for
formulating “one-size-fits-all” convergence theorems for nonlinear integrals.

• To formulate a perturbation of functional, we need the following notion of the
dominance of pairs of a set function and a function.

Definition (dominance of pairs of a set function and a function)

Let µ, ν : A → [0,∞] be set functions and f , g ∈ F .

• (µ, f) ≺ (ν, g)
def⇐⇒ µ({f ≥ t}) ≤ ν({g ≥ t}) for every t ∈ R.

Then (µ, f) is called dominated by (ν, g).

In what follows, let

Φ :=
{
φ
∣∣∣ φ : [0,∞)→ [0,∞), φ(0) = lim

t→+0
φ(t) = 0

}
be the set of control functions.
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Recall that

Φ :=
{
φ
∣∣∣ φ : [0,∞)→ [0,∞), φ(0) = lim

t→+0
φ(t) = 0

}
is the set of all control functions.

Definition (perturbation)

Let I : M×F + → [0,∞] be a functional.

• I is perturbative
def⇐⇒ there are two families of control functions {φp}p>0,

{ψq}q>0 ⊂ Φ satisfying the following perturbation: for any µ ∈ M, f , g ∈ F +,
ε ≥ 0, δ ≥ 0, p > 0, and q > 0, it holds that

I (µ, f) ≤ I (µ, g) + φp(δ) + ψq(ε)

whenever ∥f∥µ < p, µ(X) < q, and (µ, f) ≺ (µ+ δ, g + ε).

This perturbation manages not only the monotonicity of I but also the small
change of the functional value I(µ, f) arising as a result of adding small amounts ε
and δ to the function f and its µ-decreasing distribution function µ{f ≥ t}).
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We also need the following supplementary classes of functionals.

Definition (upper marginal continuous, measure-truncated)

Let I : M×F + → [0,∞] be a functional.

• I is upper marginal continuous
def⇐⇒ for every (µ, f) ∈ M × F +, it holds that

I(µ, f) = supr>0 I(µ, f ∧ r).

• I is measure-truncated
def⇐⇒ for every (µ, f) ∈ M × F +, it holds that

I(µ, f) = sups>0 I(µ ∧ s, f).

Proposition (perturbation of Ch, Si, Su, and Sh)

The integral functionals Le, Ch, Si, Su, Sh are all perturbative with control functions

φp,q(t) := pt , pt , pt , p ∧ t , pt and ψp,q(t) := qt , qt , qt , q ∧ t , qt, respectively. Moreover, they

are all upper marginal continuous and measure-truncated.
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Limit theorems for integral functionals

Using the perturbation of integral functional, together with a perturbative method
of proof, we obtain “one-size-fits-all” convergence theorems for nonlinear
integrals. As to the MICT, we have

Theorem (MICT: The Monotone Increasing Convergence Theorem)

Let I : M×F + → [0,∞] be an integral functional. Let µ ∈ M. Consider the
following two assertions:

1 µ is continuous from below.

2 The MICT holds for I(µ, ·), that is, I(µ, fn)→ I(µ, f) for every increasing
{fn}n∈N ⊂ F + with pointwise limit f ∈ F +.

(1) If I is upper marginal continuous, measure-truncated, perturbative, and
elementary with generator of continuous type, then❶ implies❷.

(2) If I is generative with limit preserving generator, then❷ implies❶.
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Since I = Ch,Si,Su,Sh are upper marginal continuous, measure-truncated,
perturbative, and elementary with generator of continuous type, as an immediate
corollary to our “one-size-fits-all” MICT we have the following MICT for the
integrals Ch, Si, Su, and Sh.

Corollary (MICT for I = Ch,Si,Su,Sh)

Let I = Ch,Si,Su,Sh. If µ ∈ M is continuous from below and {fn}n∈N ⊂ F + is an
increasing sequence with pointwise limit f ∈ F +, then I(µ, fn)→ I(µ, f).

Next we turn to the MDCT that is NOT an easy consequence of the MICT for the
lack of linearity of nonlinear integrals!
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As to the monotone decreasing convergence theorem, we need some finiteness
assumptions on the functional I, the measure µ, and the function f1.

Theorem (MDCT: The Monotone Decreasing Convergence Theorem)

Let I : M×F + → [0,∞] be an integral functional. Let µ ∈ M. Consider the
following two assertions:

1 µ is continuous from above.

2 The MDCT holds for I(µ, ·), that is, I(µ, fn)→ I(µ, f) for every decreasing
{fn}n∈N ⊂ F + with pointwise limit f satisfying the following conditions:
(i) I(µ, f1) < ∞
(ii) uniformly µ-truncated for I, that is, for any ε > 0, there is c > 0 such that

I(µ, fn) − ε ≤ I(µ, fn ∧ c) for all n ∈ N.

(1) If µ is finite and I is perturbative and elementary with generator of continuous
type, then❶ implies❷.

(2) If I is upper marginal continuous and generative with limit preserving
generator of finite type, then❷ implies❶.
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Thus we have the following.

Corollary (MDCT for I = Ch,Si,Su,Sh)

Let µ ∈ M be continuous from above and {fn}n∈N ⊂ F + a decreasing sequence
with pointwise limit f ∈ F +.

1 Let I = Ch,Si. If I(µ, f1) < ∞, then I(µ, fn)→ I(µ, f).

2 If µ({f1 > Su(µ, f)}) < ∞, then Su(µ, fn)→ Su(µ, f).

3 If µ({f1 > 0}) < ∞ and f1 is µ-essentially bounded, then Sh(µ, fn)→ Sh(µ, f).

The finiteness assumptions on I, µ, and f1 such as
• I(µ, f1) < ∞ for I = Ch,Si
• µ({f1 > Su(u, f)}) < ∞
• µ({f1 > 0}) < ∞ and f1 is µ-essentially bounded
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The finiteness assumptions on I, µ, and f1 such as

• I(µ, f1) < ∞ for I = Ch,Si

• µ({f1 > Su(u, f)}) < ∞
• µ({f1 > 0}) < ∞ and f1 is µ-essentially bounded

1 assure that every decreasing {fn}n∈N ⊂ F + is uniformly µ-truncated for I, that

is, for any ε > 0, there is c > 0 such that

I(µ, fn) − ε ≤ I(µ, fn ∧ c) for all n ∈ N.

2 reduce the MDCT, which is in fact valid for even infinite nonadditive measures,

to our “one-size-fits-all” MDCT proved for finite ones by defining the
corresponding finite nonadditive measures by
• ν(A) := µ(A ∩ {(f1 > r0}) for I = Ch,Si, where r0 > 0 is chosen so that

I(µ, f1 ∧ r0) is sufficiently small (It is possible since I(µ, f1) < ∞!)

• ν(A) := µ(A ∩ {f1 > Su(µ, f)}) for I = Su

• ν(A) := µ(A ∩ {f1 > 0}) for I = Si

depending on each integral.

In addition, they cannot be dropped.
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As to a “one-size-fits-all” bounded convergence theorem, we have

Theorem (BCT: The Bounded Convergence Theorem)

Let I : M×F + → [0,∞] be an integral functional. Let µ ∈ Mb . Consider the
following two assertions:

1 µ is autocontinuous, that is, µ(A△Bn)→ µ(A) whenever A ,Bn ∈ A and
µ(Bn)→ 0.

2 The BCT holds for I(µ, ·), that is, I(µ, fn)→ I(µ, f) for every uniformly
µ-essentially bounded {fn}n∈N ⊂ F + converging in µ-measure to f ∈ F +.

If I is perturbative, then❶ implies❷. If I is generative with limit preserving
generator, then❷ implies❶.

Example (autocontinuous measures)

1 Every subadditive measure λ and its distortion, for example,

µ(A) := λ(A)2 +
√
λ(A).

2 Every nonadditive measure satisfying inf
{
µ(A) : A , ∅} > 0.
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Since I = Ch,Si,Su,Sh are perturbative, we have the following corollary.

Corollary (BCT for I = Ch,Si,Su,Sh)

Let I = Ch,Si,Su,Sh. If µ ∈ Mb is autocontinuous and {fn}n∈N ⊂ F + is a uniformly
µ-essentially bounded sequence converging in µ-measure to f ∈ F +, then
I(µ, fn)→ I(µ, f).
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Concluding remarks

• If µ is null-additive, that is, µ(A ∪ B) = µ(A) whenever A ,B ∈ A and
µ(B) = 0, then I(µ, f) = I(µ, g) for I = Ch,Si,Su,Sh whenever f = g µ-a.e.
We thus have a.e. versions of the MICT and MDCT.

• If µ is strongly order continuous, that is, µ(An)→ 0 whenever An,A ∈ A,
An ↓ A, and µ(A) = 0, then by the Lebesgue theorem fn → f µ-a.e. implies
fn → f in µ-measure. Thus we have a.e. versions of the BCT.

• Let I : M×F + → [0,∞] be an integral functional. The symmetric extension
of I is defined by

Is(µ, f) := I(µ, f+) − I(µ, f−), (µ, f) ∈ M × F

and the asymmetric extension of I is defined by

Ia(µ, f) := I(µ, f+) − I(µ̄, f−), (µ, f) ∈ Mb × F ,

where both extensions are not defined if the right hand side is ∞−∞. Then
we can extend our MICT/MDCT and BCT for such extensions.
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Thank you very much for your attention!

Jun Kawabe (Shinshu University) Convergence theorems of nonlinear integral functionals Positivity IX 31 / 31


	Main results
	GNPT


