Positive representations of $C_0(X)$

Xingni Jiang joint work with Marcel de Jeu

Mathematical Institute, Leiden University

Introduction

Representation of $C_0(X, \mathbb{C})$ on Hilbert space

Let X be a locally compact Hausdorff space, \mathcal{H} is a complex Hilbert space. A *-homomorphism $\pi \colon C_0(X, \mathbb{C}) \to B(\mathcal{H})$ is given by a spectral measure P:

$$\pi(f) = \int f dP, \ \forall f \in \mathcal{C}_0(X, \mathbb{C}),$$

where P takes its values in the orthogonal projections on \mathcal{H} .

Question

Is there any similar result for a positive representation of $C_0(X, \mathbb{R})$ on a real Banach lattice E? That is, for an algebra homomorphism

 $\pi\colon \mathrm{C}_0(X,\mathbb{R})\to \mathcal{L}_\mathrm{r}(E),$

where $\mathcal{L}_{\mathbf{r}}(E)$ is the space of all regular operators on E, and $\pi(\mathcal{C}_0(X)_+) \subseteq \mathcal{L}_{\mathbf{r}}(E)_+$.

A B M A B M
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Question

Is there any similar result for a positive representation of $C_0(X, \mathbb{R})$ on a real Banach lattice E? That is, for an algebra homomorphism

 $\pi\colon \mathrm{C}_0(X,\mathbb{R})\to \mathcal{L}_\mathrm{r}(E),$

where $\mathcal{L}_{\mathbf{r}}(E)$ is the space of all regular operators on E, and $\pi(\mathcal{C}_0(X)_+) \subseteq \mathcal{L}_{\mathbf{r}}(E)_+$.

If E is a KB-space, then π is given by a spectral measure that takes its values in the positive projections on E; see [1] (M. de Jeu, F. Ruoff).

Question

Is there any similar result for a positive representation of $C_0(X, \mathbb{R})$ on a real Banach lattice E? That is, for an algebra homomorphism

 $\pi\colon \mathrm{C}_0(X,\mathbb{R})\to \mathcal{L}_\mathrm{r}(E),$

where $\mathcal{L}_{\mathbf{r}}(E)$ is the space of all regular operators on E, and $\pi(\mathcal{C}_0(X)_+) \subseteq \mathcal{L}_{\mathbf{r}}(E)_+$.

If E is a KB-space, then π is given by a spectral measure that takes its values in the positive projections on E; see [1] (M. de Jeu, F. Ruoff). Everything is in \mathbb{R} -setting from now on.

イロト イボト イヨト イヨト

■ Riesz representation theorem

イロン イロン イヨン イヨン

Ξ.

■ Riesz representation theorem in order context

イロン イロン イヨン イヨン

æ

- Measure theory
- Integration
- Riesz representation theorem in order context

Image: Image:

3 🕨 3

- Measure theory
- Integration
- Riesz representation theorem in order context
- Positive representations of $C_0(X)$

Definition

- A partially ordered vector space E is called
 - a. monotone σ -complete

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

э

ъ

Definition

- A partially ordered vector space E is called
 - a. monotone σ -complete if $\forall \{a_n\}_{n=1}^{\infty} \subseteq E$ such that

 $a_n \uparrow$ and $a_n \leq x \in E \ (\forall n)$,

we have that $\bigvee_{n=1}^{\infty} a_n$ exists in E;

(日) (同) (三)

Definition

- A partially ordered vector space E is called
 - a. monotone σ -complete if $\forall \{a_n\}_{n=1}^{\infty} \subseteq E$ such that

 $a_n \uparrow$ and $a_n \leq x \in E \ (\forall n),$

we have that $\bigvee_{n=1}^{\infty} a_n$ exists in E; b. monotone complete if $\forall \{a_\lambda\}_{\lambda \in \Lambda} \subseteq E$ such that

$$a_{\lambda} \uparrow \text{ and } a_{\lambda} \leq x \in E \ (\forall \lambda),$$

5/26

A B M A B M
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

we have that $\bigvee_{\lambda \in \Lambda} a_{\lambda}$ exists in *E*.

Definition: Positive E-valued measure (J.D.M. Wright [2])

 $E \cup \{+\infty\}$

イロン イロン イヨン イヨン

Definition: Positive E-valued measure (J.D.M. Wright [2])

 $m\colon\Omega\to E\cup\{+\infty\}$

イロト イポト イヨト イヨト

Ξ.

Definition: Positive E-valued measure (J.D.M. Wright [2])

$$m: \Omega \to E \cup \{+\infty\}$$

1 $m(\emptyset) = 0;$

イロト イヨト イヨト イヨト

Definition: Positive E-valued measure (J.D.M. Wright [2])

$$m: \Omega \to E \cup \{+\infty\}$$

1 $m(\emptyset) = 0;$
2 $m(\triangle) \in E_+ \cup \{+\infty\}$ for all $\triangle \in \Omega;$

イロト イヨト イヨト イヨト

Definition: Positive E-valued measure (J.D.M. Wright [2])

$$m\colon\Omega\to E\cup\{+\infty\}$$

 $1 m(\emptyset) = 0;$

2
$$m(\triangle) \in E_+ \cup \{+\infty\}$$
 for all $\triangle \in \Omega$;

3 σ -additivity: whenever $\{\triangle_n\}_{n=1}^{\infty}$ is a pairwise disjoint sequence in Ω with $\bigcup_{n=1}^{\infty} \triangle_n \in \Omega$, then

・ロト ・ 同ト ・ ヨト・

< ∃ >

э

Definition: Positive E-valued measure (J.D.M. Wright [2])

$$m\colon\Omega\to E\cup\{+\infty\}$$

 $1 m(\emptyset) = 0;$

- 2 $m(\triangle) \in E_+ \cup \{+\infty\}$ for all $\triangle \in \Omega$;
- **3** σ -additivity: whenever $\{\triangle_n\}_{n=1}^{\infty}$ is a pairwise disjoint sequence in Ω with $\bigcup_{n=1}^{\infty} \triangle_n \in \Omega$, then

$$m(\bigcup_{n=1}^{\infty} \triangle_n) = \bigvee_{N=1}^{\infty} \sum_{n=1}^{N} m(\triangle_n).$$

Definition: Positive E-valued measure (J.D.M. Wright [2])

 Ω is an algebra of subsets of X and E is a monotone σ -complete partially ordered vector space. A positive E-valued measure is a set map $m: \Omega \to E \cup \{+\infty\}$ such that

$$1 \ m(\emptyset) = 0;$$

2
$$m(\triangle) \in E_+ \cup \{+\infty\}$$
 for all $\triangle \in \Omega$;

3 σ -additivity: whenever $\{\triangle_n\}_{n=1}^{\infty}$ is a pairwise disjoint sequence in Ω with $\bigcup_{n=1}^{\infty} \triangle_n \in \Omega$, then

$$m(\bigcup_{n=1}^{\infty} \triangle_n) = \bigvee_{N=1}^{\infty} \sum_{n=1}^{N} m(\triangle_n).$$

If $m(X) \in E$, then we say m is finite.

Integration with respect to a positive E-valued measure

The spaces of (real valued) functions to work with:

- $\beta(X)$: the set of all Ω -measurable functions on X;
- $\beta_0(X)$: $f \in \beta(X)$ and $\forall c \in \mathbb{R}, m\{\omega : |f(\omega)| > c\} \in E$

Integration with respect to a positive E-valued measure

The spaces of (real valued) functions to work with:

- $\beta(X)$: the set of all Ω -measurable functions on X;
- $\beta_0(X)$: $f \in \beta(X)$ and $\forall c \in \mathbb{R}, m\{\omega : |f(\omega)| > c\} \in E$
- S(X): $\varphi = \sum_{i=1}^{n} \alpha_i \chi_{\Delta_i}$, where $\{\Delta_i\}_{i=1}^{n}$ is a finite partition of X in Ω and each $\alpha_i \in \mathbb{R}$;
- $S_0(X)$: $\varphi \in S(X)$ and $m(supp(\varphi)) \in E$.

For the above sets, we use the pointwise ordering.

A B M A B M
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Integration

 $\mathcal{S}(X)_+$

For $\varphi \in \mathcal{S}(X)_+$ with $\varphi = \sum_{i=1}^n \alpha_i \chi_{\Delta_i}$,

$$I_m(\varphi) = \int_X \varphi dm := \sum_{i=1}^n \alpha_i m(\Delta_i).$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Ξ.

 $\mathcal{S}(X)_+$

For
$$\varphi \in \mathcal{S}(X)_+$$
 with $\varphi = \sum_{i=1}^n \alpha_i \chi_{\Delta_i}$,

$$I_m(\varphi) = \int_X \varphi dm := \sum_{i=1}^n \alpha_i m(\triangle_i).$$

If $\varphi \in \mathcal{S}_0(X)_+$, then $I_m(\varphi) \in E$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

æ

Integration

 $S(X)_+ \dashrightarrow \beta(X)_+$

メロト メロト メヨト メヨト

Integration

 $\mathrm{S}(X)_+\dashrightarrow \beta(X)_+$

For $f \in \beta(X)_+$, $\exists \{\varphi_n\}_{n=1}^{\infty} \subseteq \mathcal{S}(X)_+$ such that $\varphi_n \uparrow f$;

< 日 > < 同 > < 回 > < 回 > < 回 > <

 $S(X)_+ \dashrightarrow \beta(X)_+$

For $f \in \beta(X)_+$, $\exists \{\varphi_n\}_{n=1}^{\infty} \subseteq \mathcal{S}(X)_+$ such that $\varphi_n \uparrow f$; if $f \in \beta_0(X)_+$, the sequence can be choose from $\mathcal{S}_0(X)_+$. We define,

$$I_m(f) = \begin{cases} \bigvee_{n=1}^{\infty} I_m(\varphi_n), & \text{if } f \in \beta_0(X)_+, \\ +\infty, & \text{if } f \in \beta(X)_+ \setminus \beta_0(X)_+, \end{cases}$$
(1)

< 日 > < 同 > < 回 > < 回 > < 回 > <

э

 $S(X)_+ \dashrightarrow \beta(X)_+$

For $f \in \beta(X)_+$, $\exists \{\varphi_n\}_{n=1}^{\infty} \subseteq \mathcal{S}(X)_+$ such that $\varphi_n \uparrow f$; if $f \in \beta_0(X)_+$, the sequence can be choose from $\mathcal{S}_0(X)_+$. We define,

$$I_m(f) = \begin{cases} \bigvee_{n=1}^{\infty} I_m(\varphi_n), & \text{if } f \in \beta_0(X)_+, \\ +\infty, & \text{if } f \in \beta(X)_+ \setminus \beta_0(X)_+, \end{cases}$$
(1)

A B M A B M
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

3 🕨 3

• The supremum might be $+\infty$.

 $S(X)_+ \dashrightarrow \beta(X)_+ \dashrightarrow \beta(X).$

For
$$f \in \beta(X)$$
, $f = f_+ - f_-$.
If at least one of $I_m(f_+)$, $I_m(f_-)$ is in E , then we define:

$$I_m(f) := I_m(f_+) - I_m(f_-).$$

イロト イヨト イヨト イヨト

Borel measures

Let X be a locally compact Hausdorff space, \mathcal{B} the Borel σ -algebra of X, E a monotone complete partially ordered vector space, and $m: \mathcal{B} \to E \cup \{+\infty\}$ a positive E-valued measure. Then m is called

- a Borel measure if $m(K) \in E$ for all compact subset K;
- inner regular at \triangle if $m(\triangle) = \bigvee \{ m(K) \colon K \text{ is compact and } K \subseteq \triangle \};$
- \blacksquare outer regular at \triangle if

 $m(\triangle) = \bigwedge \{m(V) \colon V \text{ is open and } \triangle \subseteq V \};$

m is called a regular Borel measure if it is a Borel measure, inner regular at all open sets and outer regular at \mathcal{B} .

イロト イポト イヨト イヨト

Definition: Normal

Let *E* be a partially ordered vector space, and E_n^{\sim} is the order continuous dual of *E*, *E* is called normal if $(x, x') \ge 0$ for all $x' \in (E_n^{\sim})_+$ implies $x \in E_+$.

< A >

Definition: Normal

Let *E* be a partially ordered vector space, and E_n^{\sim} is the order continuous dual of *E*, *E* is called **normal** if $(x, x') \ge 0$ for all $x' \in (E_n^{\sim})_+$ implies $x \in E_+$.

Definition: Monotone order continuous norm

Let $(E, \|.\|)$ be a normed partially ordered vector space, the norm is called:

- monotone σ -order continuous if for any monotone increasing sequence $\{x_n\}_{n=1}^{\infty}$ in E_+ with $x = \sup_n x_n \in E$, we have $||x - x_n|| \to 0$.
- monotone order continuous if for any monotone increasing net $\{x_{\lambda}\}_{\lambda \in \Lambda}$ in E_+ with $x = \sup_{\alpha} x_{\alpha} \in E$, we have $||x - x_{\alpha}|| \to 0.$

ヘロト 人間ト ヘヨト ヘヨト

Riesz representation theorem

Let X be a locally compact Hausdorff space, E a monotone complete partially ordered vector space and $\pi: C_c(X) \to E$ is a positive linear map.

Riesz representation theorem

Theorem 1

Let X be a locally compact Hausdorff space, E a monotone complete partially ordered vector space and $\pi: \mathbf{C}_{\mathbf{c}}(X) \to E$ is a positive linear map. If E is a normal directed ordered Banach space with a monotone order continuous norm, then there exists unique positive Borel regular E-valued measure m such that $\pi(f) = I_m(f)$ for all $f \in \mathbf{C}_{\mathbf{c}}(X)$.

Riesz representation theorem

Theorem 1

Let X be a locally compact Hausdorff space, E a monotone complete partially ordered vector space and $\pi: C_c(X) \to E$ is a positive linear map. If E is a normal directed ordered Banach space with a monotone order continuous norm, then there exists unique positive Borel regular E-valued measure m such that $\pi(f) = I_m(f)$ for all $f \in C_c(X)$. Moreover, if

 $\{\pi(f): 0 \le f \le 1, f \in C_c(X)\}\$ is bounded from above in E,

then m is finite.

Riesz representation theorem

Theorem 1

Let X be a locally compact Hausdorff space, E a monotone complete partially ordered vector space and $\pi: C_c(X) \to E$ is a positive linear map. If E is a normal directed ordered Banach space with a monotone order continuous norm, then there exists unique positive Borel regular E-valued measure m such that $\pi(f) = I_m(f)$ for all $f \in C_c(X)$. Moreover, if

 $\{\pi(f): 0 \le f \le 1, f \in C_c(X)\}\$ is bounded from above in E,

then m is finite.

Taking $E = \mathbb{R}$, this is original Riesz representation theorem.

< ロ > < 同 > < 回 > < 回 > < 回 > <

Where is the measure from?

イロン イロン イヨン イヨン

Ξ.

Where is the measure from? The basic idea is just as for $E = \mathbb{R}$: For an open subset V, define

$$m(V) := \bigvee \{ \pi(f) \colon f \prec V, f \in \mathcal{C}_{c}(X) \},\$$

where $f \prec V$ means $0 \leq f \leq 1$ and f = 0 on V^c .

< A >

$\{\pi(f)\colon 0\leq f\leq 1,\ f\in \mathcal{C}_{\rm c}(X)\} \text{ is bounded from above in }E,$

Xingni Jiang

3 🕨 3

Let X be a locally compact Hausdorff space, and let E be a monotone complete normal partially ordered space. Suppose $\pi: C_c(X) \to E$ is a positive linear map such that

 $\{\pi(f): 0 \le f \le 1, f \in C_c(X)\}$ is bounded from above in E,

Then there exists a unique finite positive regular Borel *E*-valued measure *m* such that $\pi(f) = I_m(f)$ for all $f \in C_c(X)$.

Image: A image: A

Let X be a locally compact Hausdorff space, and let E be a monotone complete normal partially ordered space. Suppose $\pi: C_c(X) \to E$ is a positive linear map such that

 $\{\pi(f): 0 \le f \le 1, f \in C_c(X)\}$ is bounded from above in E,

Then there exists a unique finite positive regular Borel *E*-valued measure *m* such that $\pi(f) = I_m(f)$ for all $f \in C_c(X)$.

The proof is given by applying Theorem 1 to each $\pi_{x'}$, which is defined by $\pi'_x(f) = (\pi(f), x'), x' \in (E_n^{\sim})_+$.

< 日 > < 同 > < 三 > < 三 > < 三 > < 三 > < 二 > < 二 > < 二 > < 二 > > < 二 > > < 二 > > < 二 > > < 二 > > < 二 > > < 二 > > < 二 > > < 二 > > < 二 > > < 二 > > < 二 > > < 二 > > < 二 > > < 二 > > < 二 > > < 二 > > < 二 > > < 二 > > < 二 > > < 二 > > < 二 > > < 二 > > < 二 > > < 二 > > < 二 > > < 二 > > < 二 > > < 二 > > < 二 > > < 二 > > < 二 > > < 二 > > < 二 > > < 二 > > < 二 > > < 二 > > < 二 > > < □ > > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Let X be a locally compact Hausdorff space, and let E be a monotone complete normal partially ordered space. Suppose $\pi: C_0(X) \to E$ is a positive linear map such that

 $\{\pi(f): 0 \le f \le 1, f \in C_c(X)\}$ is bounded from above in E,

Then there exists a unique finite positive regular Borel *E*-valued measure *m* such that $\pi(f) = I_m(f)$ for all $f \in C_0(X)$.

Image: A image: A

Let X be a locally compact Hausdorff space, and let E be a monotone complete normal partially ordered space. Suppose $\pi: C_0(X) \to E$ is a positive linear map such that

 $\{\pi(f): 0 \le f \le 1, \ f \in \mathcal{C}_{c}(X)\}$ is bounded from above in E,

Then there exists a unique finite positive regular Borel E-valued measure m such that $\pi(f) = I_m(f)$ for all $f \in C_0(X)$.

Since *m* is finite, $C_0(X)$ is Banach lattice and $C_c(X)$ is norm dense in $C_0(X)$.

(日) (同) (三) (

Positive Representations

Positive representations of $C_0(X)$

Let X be a locally compact Hausdorff space, \mathcal{A} a monotone complete partially ordered algebra. A positive representation of $C_0(X)$ on \mathcal{A} is a positive algebra homomorphism

$$\pi\colon \mathrm{C}_0(X)\to\mathcal{A}.$$

Positive Representations

Positive representations of $C_0(X)$

Let X be a locally compact Hausdorff space, \mathcal{A} a monotone complete partially ordered algebra. A positive representation of $C_0(X)$ on \mathcal{A} is a positive algebra homomorphism

$$\pi\colon \mathrm{C}_0(X)\to\mathcal{A}.$$

Considering π as a positive linear map, there is a generating measure P(=m) of π in some suitable cases. Is there any speciality of P?

Image: A image: A

Positive Representations

Positive representations of $C_0(X)$

Let X be a locally compact Hausdorff space, \mathcal{A} a monotone complete partially ordered algebra. A positive representation of $C_0(X)$ on \mathcal{A} is a positive algebra homomorphism

$$\pi\colon \mathrm{C}_0(X)\to\mathcal{A}.$$

Considering π as a positive linear map, there is a generating measure P(=m) of π in some suitable cases. Is there any speciality of P?A spectral measure?

A B M A B M
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

In a partially ordered algebra \mathcal{A} , the multiplication by a fixed positive element is

- (1) monotone σ -order continuous, if for any $b \in \mathcal{A}_+$, $a \in \mathcal{A}$ and an increasing sequence $\{a_n\}_{n=1}^{\infty}$ in \mathcal{A} with $a_n \uparrow a$, we have $ba_n \uparrow ba, a_n b \uparrow ab$;
- (2) monotone order continuous, if then for any $b \in \mathcal{A}_+$, $a \in \mathcal{A}$ and an increasing net $\{a_\lambda\}_{\lambda \in \Lambda}$ in \mathcal{A} , with $a_\lambda \uparrow a$, we have $ba_\lambda \uparrow ba$, $a_\lambda b \uparrow ab$.

Positive \mathcal{A} -valued spectral measure

Let (X, Ω) be a measurable space, \mathcal{A} a monotone σ -complete partially ordered algebra. A positive \mathcal{A} -valued measure $P: \Omega \to \mathcal{A}_+$ is called a spectral measure, if

$$P(\triangle_1 \cap \triangle_2) = P(\triangle_1)P(\triangle_2),$$

for all $\triangle_1, \triangle_2 \in \Omega$. If \mathcal{A} has an positive algebra unit e, and P(X) = e, then we say P is unital.

• In P(X), the multiplication by a fixed positive element must be monotone σ -order continuous.

Positive representation of $C_0(X)$

Let X be a locally compact Hausdorff space, \mathcal{A} is a monotone complete normal partially ordered algebra, $\pi \colon C_0(X) \to \mathcal{A}$ is a positive representation.If

• { $\pi(f): 0 \le f \le 1, f \in C_c(X)$ } is bounded from above in \mathcal{A} ,

Positive representation of $C_0(X)$

Let X be a locally compact Hausdorff space, \mathcal{A} is a monotone complete normal partially ordered algebra, $\pi \colon C_0(X) \to \mathcal{A}$ is a positive representation.If

- { $\pi(f): 0 \le f \le 1, f \in C_c(X)$ } is bounded from above in \mathcal{A} ,
- \blacksquare and the multiplication by a fixed positive element on $\mathcal A$ is order continuous,

Positive representation of $C_0(X)$

Let X be a locally compact Hausdorff space, \mathcal{A} is a monotone complete normal partially ordered algebra, $\pi \colon C_0(X) \to \mathcal{A}$ is a positive representation.If

- $\{\pi(f): 0 \le f \le 1, f \in C_c(X)\}$ is bounded from above in \mathcal{A} ,
- **and the multiplication by a fixed positive element on** \mathcal{A} is order continuous,

then there exists a unique positive finite Borel regular spectral measure P generating π .

•Theorem 3 (The Riesz representation theorem of $C_0(X)$) provides a finite measure $P: \mathcal{B} \to \mathcal{A}_+$ such that

$$\pi(f) = I_P(f), \ \forall f \in \mathcal{C}_0(X).$$

Image: Image:

- ∢ ⊒ →

•Theorem 3 (The Riesz representation theorem of $C_0(X)$) provides a finite measure $P: \mathcal{B} \to \mathcal{A}_+$ such that

$$\pi(f) = I_P(f), \ \forall f \in \mathcal{C}_0(X).$$

• Using π is multiplicative and the uniqueness of the generating measure in riesz representation theorem to show that

 $I_P(gg_0) = I_P(g)I_P(g_0) \ \forall g, g_0 \in \mathcal{B}(X).$

•Theorem 3 (The Riesz representation theorem of $C_0(X)$) provides a finite measure $P: \mathcal{B} \to \mathcal{A}_+$ such that

$$\pi(f) = I_P(f), \ \forall f \in \mathcal{C}_0(X).$$

• Using π is multiplicative and the uniqueness of the generating measure in riesz representation theorem to show that

$$I_P(gg_0) = I_P(g)I_P(g_0) \ \forall g, g_0 \in \mathcal{B}(X).$$

Then we have

$$P(A \cap B) = P(A)P(B), \ \forall A, B \in \mathcal{B}.$$

Example

If E is a normal ordered Banach space with a Levi's norm, then any positive representation $\pi: C_0(X) \to \mathcal{L}_n(E)$ is generated by a regular Borel spectral measure.

Levi's norm: every norm bounded increasing(decreasing) net has a supremum(infmum).

Example

If E is a normal ordered Banach space with a Levi's norm, then any positive representation $\pi: C_0(X) \to \mathcal{L}_n(E)$ is generated by a regular Borel spectral measure.

Levi's norm: every norm bounded increasing(decreasing) net has a supremum(infmum).

M. de Jeu, F. Ruoff [1]

If E is a KB-space, then any positive representation $\pi: C_0(X) \to \mathcal{L}_r(E)$ is generated by a regular Borel spectral measure.

Example

If E is a normal ordered Banach space with a Levi's norm, then any positive representation $\pi: C_0(X) \to \mathcal{L}_n(E)$ is generated by a regular Borel spectral measure.

Levi's norm: every norm bounded increasing(decreasing) net has a supremum(infmum).

M. de Jeu, F. Ruoff [1]

If E is a KB-space, then any positive representation $\pi: C_0(X) \to \mathcal{L}_r(E)$ is generated by a regular Borel spectral measure. $(\mathcal{L}_r(E) = \mathcal{L}_n(E))$

A B M A B M
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Example

If E is a normal ordered Banach space with a Levi's norm, then any positive representation $\pi: C_0(X) \to \mathcal{L}_n(E)$ is generated by a regular Borel spectral measure.

Levi's norm: every norm bounded increasing(decreasing) net has a supremum(infmum).

M. de Jeu, F. Ruoff [1]

If E is a KB-space, then any positive representation $\pi: C_0(X) \to \mathcal{L}_r(E)$ is generated by a regular Borel spectral measure. $(\mathcal{L}_r(E) = \mathcal{L}_n(E))$

Mehmet Orhon: Banach lattice with order continuous norm.

イロト イボト イヨト イヨト

Example

Let $S_a(\mathcal{H})$ be the self adjoint operators on a complex Hilbert space \mathcal{H} .

< 同 × < 三 ×

Example

Let $S_a(\mathcal{H})$ be the self adjoint operators on a complex Hilbert space \mathcal{H} . Any multiplicative linear map $\pi \colon C_0(X) \to S_a(\mathcal{H})$ is generated by a regular Borel spectral measure P, where P takes values in the orthogonal projections on \mathcal{H} .

Example

Let $S_a(\mathcal{H})$ be the self adjoint operators on a complex Hilbert space \mathcal{H} . Any multiplicative linear map $\pi \colon C_0(X) \to S_a(\mathcal{H})$ is generated by a regular Borel spectral measure P, where P takes values in the orthogonal projections on \mathcal{H} .

For a complex valued function f + ig, where f, g are real valued functions, we defined the integral as

$$I_P(f+ig) = I_P(f) + iI_P(g).$$

Representation of $C_0(X, \mathbb{C})$ on Hilbert space

Let X be a locally compact Hausdorff space, \mathcal{H} is a complex Hilbert space. A *-homomorphism $\pi \colon C_0(X, \mathbb{C}) \to B(\mathcal{H})$ is given by a spectral measure P:

$$\pi(f) = \int f dP, \ \forall f \in \mathcal{C}_0(X, \mathbb{C}),$$

where P takes its values in the orthogonal projections on \mathcal{H} .

Attention ! This is page 2 !

< 同 > < 三 >

Reference

- 1. M. de Jeu, F. Ruoff, Positive representations of $C_0(X)$. I, Ann. Funct. Anal. 7 (2016), 180-205.
- J.D.M. Wright. Stone-algebra-valued measures and integrals. Proc. London Math. Soc. 19 (1969), 107-122.
- 3. J.D.M. Wright. Measures with values in partially ordered vector space. Proc. London Math. Soc. 25 (1972), 675-688.

Thank you!

Ξ.