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An inequality on the
positive cone of B(H)
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Theorem 1

Let ∥| · ∥| be a complete uniform norm on B(H).
Then for every t > 0

∥| log(a
t
2 bta

t
2 )

1
t ∥| ≤ ∥| log a∥|+ ∥| log b∥|

for every a,b ∈ B(H)−1
+ .

When ∥| · ∥| is the operator norm ∥ · ∥, then the inequality is
proved in an elementary way.

A norm ∥| · ∥| on B(H) is
▶ uniform (or symmetric) if ∥|ab∥| ≤ ∥|a∥| · ∥b∥, ∥a∥ · ∥|b∥| for

the operator norm ∥ · ∥ for every a,b ∈ B(H)
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It is straight forward that a uniform norm is a unitarily invariant
norm.

▶ untarily invariant if ∥|uav∥| = ∥|a∥| for any unitaries u and v
and a ∈ B(H)

(c,p) norm, Ky-Fan norm, the operator norm are all uniform
norms. On the matrix algebra a norm is uniform if and only if it
is unitarily invariant.
Furthermore A complete uniform norm is equivalent to the
operator norm and also satisfies the equalities

∥|a∥| = ∥|a∗∥| = ∥| |a| ∥|

for every a ∈ B(H).

A differential geometric proof applying the inequality of Hiai and
Kosaki : ∥|H

1
2 XK

1
2 ∥| ≤ ∥|

∫ 1
0 HsXK 1−sds∥| 1 gives the inequality

described in Theorem 1.

1Comparison of various means for operators, JFA (1999)
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Isometries on positive
cones
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Problem

Suppose that U : G1 → G2 is a surjection between positive
cones (Gj ⊂ B(Hj)

−1
+ ) which preserve a certain distance

mesures.

▶ the form of U?
▶ the propety of U?
▶ the group of all of U?

▶ ∥ log a− 1
2 ba− 1

2 ∥ : Molnár (2009, PAMS), Molnár and Nagy
(2010 EJLA), H. and Molnár (2014, JMAA)

▶ ∥| log M− 1
2 NM− 1

2 ∥| : Molnár (for Mn(C)−1
+ 2015, LMA)

▶ ∥|f (a− 1
2 ba− 1

2 )∥| : Molnár and Szokol (for Mn(C)−1
+ 2015,

LAA) and Molnár (2015, Oper. Th. Adv. Appl. 250)
▶ Bregman and Jensen divergences : Molnár, Pitrik and

Virosztek (2016, LAA)
▶ quasi-entropies : Molnár (2017, JMAA)
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Theorem 2

Gj = exp Ej for Ej , a real linear subspace of B(Hj)S such that
aba ∈ Gj for every pair a,b ∈ Gj .
Suppose : U : G1 → G2 is a surjection such that

∥| log(a− t
2 bta− t

2 )
1
t ∥|1 = ∥ log(U(a)−

t
2 U(b)tU(a)−

t
2 )

1
t ∥|2, a,b ∈ G1.

=⇒
∃f : E1 → E2 (bijection, commutativity preserving linear map in
both directions, isometry ) with such that

U0(a) = exp(f (log a)), a ∈ G1,

U(a) = U(e)⊕t U0(a), a ∈ G1,

U0(aba) = U0(a)U0(b)U0(a), a,b ∈ G1.

Note that U0 is a continuous Jordan isomorphism.
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Examples of E ⊂ A such that aba ∈ exp E for any a,b ∈ exp E

Example

E = Hn(C) ⊂ Mn(C)
Then expHn(C) = Pn : the set of all positive definite complex
matrices

Example

E = B(H)S : the space of self-adjoint elements in B(H)
Then exp B(H)S = B(H)−1

+ : the set of all positive invertible
elements in B(H)
Then B(H)−1

+ =

Example

E = AS for a unital C∗-algebra A
Then exp AS = A−1

+ : the set of all positive invertible elemets in
A.
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We prove Theorem 2 by applying a Mazur-Ulam theorem for a
generalized gyrovector space = GGV.

The celebrated Mazur-Ulam theorem is

The Mazur-Ulam theorem

A surjective isometry between normed linear spaces is
affine=linear + constant.

Our Mazur-Ulam therem is for GGV. Applying the inequality in
Theorem 1 we prove that certain positive cones are GGV. Then
we can prove Theorem 2.
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A gyrogroup and a GGV
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Definition 1 ((Gyrocommutative) Gyrogroup)

A groupoid (G,⊕) is a gyrogroup if there exists a point e ∈ G
such that the following hold.

(G1) ∀a ∈ G
e ⊕ a = a, .

(G2) ∀a ∈ G ∃ ⊖ a s.t.
⊖a ⊕ a = e.

(G3) ∀a,b , c ∈ G ∃gyr[a,b ]c ∈ G s.t.
a ⊕ (b ⊕ c) = (a ⊕ b)⊕ gyr[a,b ]c .

(G4) gyr[a,b ] is an gyroautomorphism for ∀a,b ∈ G

(G5) ∀a,b ∈ G
gyr[a ⊕ b ,b ] = gyr[a,b ].

Gyrocommutative if the following (G6) is also satisfied.

(G6) ∀a,b ∈ G
a ⊕ b = gyr[a,b ](b ⊕ a).

gyr[a,b ] = Id ∀a,b ⇒ (G,⊕) is a (commutative) group.
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A (gyrocommutative) gyrogroup is a generalization of an
(Abelian) group.

Definition 1 ((Gyrocommutative) Gyrogroup)

A groupoid (G,⊕) is a gyrogroup if there exists a point e ∈ G
such that the following hold.

(G1) Existing of unit

(G2) Existing of the inverse element for each element.

(G3) Not necessarily associative, but "weakly associative".

(G4)

(G5)

Gyrocommutative if the following (G6) is also satisfied.

(G6) Not necessarily commutative, but "weakly commutative".
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R3
c = {u ∈ R3 : ∥u∥ < c} : the set of all admissible velocities in

Einstein’s theory of special relativity, where c is the speed of
light in vacuum.
The Einstein velocity addition ⊕E in R3

c is given by

u ⊕E v =
1

1 + ⟨u , v ⟩/c

{
u +

1
γu

v +
1
c2

γu

1 + γu

⟨u , v ⟩u
}

for u , v ∈ R3
c , where ⟨·, ·⟩ is the Euclidean inner product and γu

is the Lorentz factor given by

γu = (1 − ∥u∥2/c2)−
1
2 .

Then (R3
c ,⊕E) is not a group but a gyrocommutative gyrogroup.
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Lemma

E ⊂ B(H) : real linear subspace s.t.
aba ∈ exp E for any a,b ∈ exp E : exp E is closed under the
formation of the Jordan product

=⇒

exp E is a gyrocommutative gyrogroup with
a ⊕t b = (a

t
2 bta

t
2 )

1
t , a,b ∈ G for t > 0.

The gyrogroup identity = the identity element e = exp 0 .
The inverse element ⊖a is a−1

For a,b ∈ A−1
+ put

X = (a
t
2 bta

t
2 )−

1
2 a

t
2 b

t
2 .

Then X is a unitary and

gyr[a,b]c = XcX ∗, a,b, c ∈ exp E .
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Definition 3 (generalized gyrovector space; GGV )

A gyrocommutative gyrogroup (G,⊕) is a GGV if
⊗ : R× G → G, and an injection ϕ : G → (V, ∥ · ∥) are defined,
where (V, ∥ · ∥) is a real normed space.

(GGV0) ∥ϕ(gyr[u , v ]a)∥ = ∥ϕ(a)∥ ∀u , v ,a ∈ G;
(GGV1) 1 ⊗ a = a ∀a ∈ G;
(GGV2) (r1 + r2)⊗ a = (r1 ⊗ a)⊕ (r2 ⊗ a) ∀a ∈ G, r1, r2 ∈ R;
(GGV3) (r1r2)⊗ a = r1 ⊗ (r2 ⊗ a) ∀a ∈ G, r1, r2 ∈ R;
(GGV4) (ϕ(|r | ⊗ a))/∥ϕ(r ⊗ a)∥ = ϕ(a)/∥ϕ(a)∥

∀a ∈ G \ {e}, r ∈ R \ {0};
(GGV5) gyr[u , v ](r ⊗ a) = r ⊗ gyr[u , v ]a ∀u , v ,a ∈ G, r ∈ R;
(GGV6) gyr[r1 ⊗ v , r2 ⊗ v ] = idG ∀v ∈ G, r1, r2 ∈ R;
(GGVV) {±∥ϕ(a)∥ ∈ R : a ∈ G} is a real one-dimensional vector

space with vector addition ⊕′ and scalar multiplication ⊗′;
(GGV7) ∥ϕ(r ⊗ a)∥ = |r | ⊗′ ∥ϕ(a)∥ ∀a ∈ G, r ∈ R;
(GGV8) ∥ϕ(a ⊕ b)∥ ≤ ∥ϕ(a)∥ ⊕′ ∥ϕ(b)∥ ∀a,b ∈ G.
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Definition 3 ( gyrovector space defined by Ungar)

A gyrocommutative gyrogroup (G,⊕) is a gyrovector space if
⊗ : R× G → G is defined, where (V, ∥ · ∥) is a real inner
product space and G ⊂ V．

(GGV0) gyr[u , v ]a · gyr[u , v ]b = a · b ∀u , v ,a,b ∈ G;

(GGV1) 1 ⊗ a = a ∀a ∈ G;

(GGV2) (r1 + r2)⊗ a = (r1 ⊗ a)⊕ (r2 ⊗ a) ∀a ∈ G, r1, r2 ∈ R;

(GGV3) (r1r2)⊗ a = r1 ⊗ (r2 ⊗ a) ∀a ∈ G, r1, r2 ∈ R;

(GGV4) (|r | ⊗ a)/∥r ⊗ a∥ = a/∥a∥ ∀a ∈ G \ {e}, r ∈ R \ {0};

(GGV5) gyr[u , v ](r ⊗ a) = r ⊗ gyr[u , v ]a ∀u , v ,a ∈ G, r ∈ R;

(GGV6) gyr[r1 ⊗ v , r2 ⊗ v ] = idG ∀v ∈ G, r1, r2 ∈ R;

(GGVV) {±∥ϕ(a)∥ ∈ R : a ∈ G} is a real one-dimensional vector
space with vector addition ⊕′ and scalar multiplication ⊗′;

(GGV7) ∥r ⊗ a∥ = |r | ⊗′ ∥a∥ ∀a ∈ G, r ∈ R;

(GGV8) ∥a ⊕ b∥ ≤ ∥a∥ ⊕′ ∥b∥ ∀a,b ∈ G.
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A brief look at GGV

GGV is an exotic normed space
defined on a gyrocommutative gyrogroup.

normed space GGV

commutative group gyrocommutative gyrogroup
scalar multiplication scalar multiplication’

norm norm’

A Normed space is a GGV, but a GGV is sometimes far from
beeing a linear space in general.

The positive cone of a unital C∗-algebra is GGV
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Example

E ⊂ B(H)S such that aba ∈ exp E for ∀a,b ∈ exp E
exp E : the gyrocommutative gyrogroup with

a ⊕t b = (a
t
2 bta

t
2 )

1
t , a,b ∈ A−1

+ .

Let ∥| · ∥| be a complete uniform norm on B(H). Put

r ⊗ a = ar , ϕ(a) = log a, a ∈ exp E , r ∈ R,

(±∥| log(exp E)∥|,⊕′,⊗′) = (R,+,×).

=⇒

(exp E ,⊕t ,⊗, log) is a GGV with ∥| · ∥|
In particular, (A−1

+ ,⊕t ,⊗, log) is a GGV with ∥| · ∥|.
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Theorem (A Mazur-Ulam theorem for GGV (Abe and H.))

Suppose that U : (G1,⊕1,⊗1, φ1) → (G2,⊕2,⊗2, φ2) is a
surjection. Then

∥φ2(⊖2U(a)⊕2 U(b))∥2 = ∥φ1(⊖1a ⊕1 b)∥1, ∀a,b ∈ G

⇐⇒

U(a) = U(e)⊕2 U0(a), ∀a ∈ G,

where U0 is an isometrical isomorphism :
U0 : G1 → G2 is a bijection s.t. ∀a,b ∈ G1, ∀α ∈ R

U0(a ⊕1 b) = U0(a)⊕2 U0(b);(1)

U0(α⊗1 a) = α⊗2 U0(a);(2)

ϱ2(U0a,U0b) = ϱ1(a,b).(3)

In the case where (Gj ,⊕j ,⊗j , φj) is a usual normed space, then
the above theorem is just the celebrated Mazur-Ulam theorem.
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Let Gj = exp Ej for Ej , a real linear subspace of B(Hj)S such
that aba ∈ Gj for every pair a,b ∈ Gj .

Theorem 2

Suppose that U : G1 → G2 is a surjection such that

∥| log(a− t
2 bta− t

2 )
1
t ∥|1 = ∥ log(U(a)−

t
2 U(b)tU(a)−

t
2 )

1
t ∥|2, a,b ∈ G1.

=⇒
∃f : E1 → E2 (bijection, commutativity preserving linear map in
both directions, isometry ) such that

U0(a) = exp(f (log a)), a ∈ G1,
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Thank you for your time!


