A geometric inequality on the positive cone and an application

Osamu Hatori*
* Supported by JSPS KAKENHI Grant Numbers JP16K05172, JP15K04921, JP15K04897

Niigata University

Positivity IX
17th July, 2017
University of Alberta

An inequality on the positive cone of $B(H)$

Theorem 1

Let ||| • || be a complete uniform norm on $B(H)$. Then for every $t>0$

$$
\| \left\lvert\, \log \left(a^{\frac{t}{2}} b^{t} a^{\frac{t}{2}}\right)^{\frac{1}{t}\||\leq|||\log a\|| || | \log b\|||}\right.
$$

for every $a, b \in B(H)_{+}^{-1}$.
When $||\cdot|| \mid$ is the operator norm $\|\cdot\|$, then the inequality is proved in an elementary way.

Theorem 1

Let ||| • || be a complete uniform norm on $B(H)$. Then for every $t>0$

$$
\left\|\| \log \left(a^{\frac{t}{2}} b^{t} a^{\frac{t}{2}}\right)^{\frac{1}{t}\||\leq\|||\log a\|| |\| \log b\| \|}\right.
$$

for every $a, b \in B(H)_{+}^{-1}$.
When ||| $\cdot \| \mid$ is the operator norm $\|\cdot\|$, then the inequality is proved in an elementary way.

A norm $|||\cdot|||$ on $B(H)$ is

- uniform (or symmetric) if $\||a b\|\|\leq\|||a\||\cdot\|b\|,\|a\| \cdot\|| | b\||$ for the operator norm $\|\cdot\|$ for every $a, b \in B(H)$

It is straight forward that a uniform norm is a unitarily invariant norm.

- untarily invariant if $\||u a v\|\|=\||a \||$ for any unitaries u and v and $a \in B(H)$

It is straight forward that a uniform norm is a unitarily invariant norm.

- untarily invariant if $\||u a v\|\|=\||a \||$ for any unitaries u and v and $a \in B(H)$
(c, p) norm, Ky-Fan norm, the operator norm are all uniform norms. On the matrix algebra a norm is uniform if and only if it is unitarily invariant.
Furthermore A complete uniform norm is equivalent to the
operator norm and also satisfies the equalities

It is straight forward that a uniform norm is a unitarily invariant norm.

- untarily invariant if $\||u a v\|\|=\||a \||$ for any unitaries u and v and $a \in B(H)$
(c, p) norm, Ky-Fan norm, the operator norm are all uniform norms. On the matrix algebra a norm is uniform if and only if it is unitarily invariant.
Furthermore A complete uniform norm is equivalent to the operator norm and also satisfies the equalities

$$
\left\|\left|a \left\|\| = \| \left|a^{*}\||=\|||a| \||\right.\right.\right.\right.
$$

for every $a \in B(H)$.

It is straight forward that a uniform norm is a unitarily invariant norm.

- untarily invariant if $\||u a v\|\|=\||a \||$ for any unitaries u and v and $a \in B(H)$
(c, p) norm, Ky-Fan norm, the operator norm are all uniform norms. On the matrix algebra a norm is uniform if and only if it is unitarily invariant.
Furthermore A complete uniform norm is equivalent to the operator norm and also satisfies the equalities

$$
\left\|\left|a \left\|\| = \| \left|a^{*}\||=\|||a| \||\right.\right.\right.\right.
$$

for every $a \in B(H)$.
A differential geometric proof applying the inequality of Hiai and Kosaki : $\left\|\left|H^{\frac{1}{2}} X K^{\frac{1}{2}}\left\|\left|\leq\left\|\left|\int_{0}^{1} H^{s} X K^{1-s} d s \|| |^{1}\right.\right.\right.\right.\right.\right.$ gives the inequality described in Theorem 1.

[^0]
Isometries on positive cones

Problem

Suppose that $U: G_{1} \rightarrow G_{2}$ is a surjection between positive cones $\left(G_{j} \subset B\left(H_{j}\right)_{+}^{-1}\right)$ which preserve a certain distance mesures.

- the form of U?
- the propety of U ?
- the group of all of U ?
- || $\log a^{-\frac{1}{2}} b a^{-\frac{1}{2}} \|$: Molnár (2009, PAMS), Molnár and Nagy (2010 EJLA), H. and Molnár (2014, JMAA)
- ||l|log M ${ }^{-1} \mathrm{NM}^{-\frac{1}{2}}| |$: Molnár (for Min(C) ${ }^{-1}$ 2015, LMA)
- \||f($\left.a^{-\frac{1}{2}} b a^{-\frac{1}{2}}\right) \| \mid:$ Molnár and Szokol (for $\mathbb{M}_{n}(\mathbb{C})_{+}^{-1} 2015$, LAA) and Molnár (2015, Oper. Th. Adv. Appl. 250)
- Bregman and Jensen divergences : Molnár, Pitrik and Virosztek (2016, LAA)
- quasi-entropies : Molnár (2017, JMAA)

Problem

Suppose that $U: G_{1} \rightarrow G_{2}$ is a surjection between positive cones $\left(G_{j} \subset B\left(H_{j}\right)_{+}^{-1}\right)$ which preserve a certain distance mesures.

- the form of U ?
- the propety of U ?
- the group of all of U ?

Problem

Suppose that $U: G_{1} \rightarrow G_{2}$ is a surjection between positive cones $\left(G_{j} \subset B\left(H_{j}\right)_{+}^{-1}\right)$ which preserve a certain distance mesures.

- the form of U ?
- the propety of U ?
- the group of all of U ?
- \| $\log a^{-\frac{1}{2}} b a^{-\frac{1}{2}} \|$: Molnár (2009, PAMS), Molnár and Nagy (2010 EJLA), H. and Molnár (2014, JMAA)
- $\left\|\left|\log M^{-\frac{1}{2}} N M^{-\frac{1}{2}} \|\right|\right.$: Molnár (for $\left.\mathbb{M}_{n}(\mathbb{C})_{+}^{-1} 2015, ~ L M A\right)$
- $\left\|\left|f\left(a^{-\frac{1}{2}} b a^{-\frac{1}{2}}\right) \|\right|\right.$: Molnár and Szokol (for $\mathbb{M}_{n}(\mathbb{C})_{+}^{-1} 2015$, LAA) and Molnár (2015, Oper. Th. Adv. Appl. 250)
- Bregman and Jensen divergences : Molnár, Pitrik and Virosztek (2016, LAA)
- quasi-entropies : Molnár (2017, JMAA)

Theorem 2

$G_{j}=\exp E_{j}$ for E_{j}, a real linear subspace of $B\left(H_{j}\right)_{s}$ such that $a b a \in G_{j}$ for every pair $a, b \in G_{j}$.
Suppose : $U: G_{1} \rightarrow G_{2}$ is a surjection such that
$\left\|\left|\left\lvert\, \log \left(a^{-\frac{t}{2}} b^{t} a^{-\frac{t}{2}}\right)^{\frac{1}{t}}\| \|_{1}=\left\|\log \left(U(a)^{-\frac{t}{2}} U(b)^{t} U(a)^{-\frac{t}{2}}\right)^{\frac{1}{t}}\right\|\right. \|_{2}, \quad a, b \in G_{1}\right.\right.$.
$\exists f: E_{1} \rightarrow E_{2}$ (bijection, commutativity preserving linear map in both directions, isometry) with such that

$$
\begin{gathered}
U_{0}(a)=\exp (f(\log a)), \quad a \in G_{1}, \\
U(a)=U(e) \oplus_{t} U_{0}(a), \quad a \in G_{1}, \\
U_{0}(a b a)=U_{0}(a) U_{0}(b) U_{0}(a), \quad a, b \in G_{1} .
\end{gathered}
$$

Note that U_{0} is a continuous Jordan isomorphism.

Examples of $E \subset A$ such that $a b a \in \exp E$ for any $a, b \in \exp E$

Example

$E=\mathbb{H}_{n}(\mathbb{C}) \subset \mathbb{M}_{n}(\mathbb{C})$
Then $\exp \mathbb{H}_{n}(\mathbb{C})=\mathbb{P}_{n}$: the set of all positive definite complex matrices

Example

$E=B(H)_{s}$: the space of self-adjoint elements in $B(H)$ Then $\exp B(H)_{S}=B(H)_{+}^{-1}$: the set of all positive invertible elements in $B(H)$
Then $B(H)_{+}^{-1}=$

Example

$E=A_{S}$ for a unital C^{*}-algebra A
Then $\exp A_{S}=A_{+}^{-1}$: the set of all positive invertible elemets in A.

We prove Theorem 2 by applying a Mazur-Ulam theorem for a generalized gyrovector space = GGV .

The celebrated Mazur-Ulam theorem is

The Mazur-Ulam theorem

A surjective isometry between normed linear spaces is
affine=linear + constant.

Our Mazur-Ulam therem is for GGV. Applying the inequality in Theorem 1 we prove that certain positive cones are GGV. Then we can prove Theorem 2.

A gyrogroup and a GGV

Definition 1 ((Gyrocommutative) Gyrogroup)

A groupoid (G, \oplus) is a gyrogroup if there exists a point $\boldsymbol{e} \in G$ such that the following hold.
(G1) $\forall \boldsymbol{a} \in G$

$$
\mathbf{e} \oplus \boldsymbol{a}=\mathbf{a}
$$

(G2) $\forall \mathbf{a} \in G \exists \ominus \mathbf{a}$ s.t.

$$
\ominus \boldsymbol{a} \oplus \mathbf{a}=\boldsymbol{e}
$$

(G3) $\forall \boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c} \in G \exists \operatorname{gyr}[\boldsymbol{a}, \boldsymbol{b}] \boldsymbol{c} \in G$ s.t.

$$
\boldsymbol{a} \oplus(\boldsymbol{b} \oplus \boldsymbol{c})=(\boldsymbol{a} \oplus \boldsymbol{b}) \oplus \operatorname{gyr}[\boldsymbol{a}, \boldsymbol{b}] \boldsymbol{c}
$$

(G4) $\operatorname{gyr}[\boldsymbol{a}, \boldsymbol{b}]$ is an gyroautomorphism for $\forall \mathbf{a}, \boldsymbol{b} \in G$
(G5) $\forall \boldsymbol{a}, \boldsymbol{b} \in G$

$$
\operatorname{gyr}[\boldsymbol{a} \oplus \boldsymbol{b}, \boldsymbol{b}]=\operatorname{gyr}[\boldsymbol{a}, \boldsymbol{b}] .
$$

Gyrocommutative if the following (G6) is also satisfied.
(G6) $\forall \boldsymbol{a}, \boldsymbol{b} \in G$

$$
\boldsymbol{a} \oplus \boldsymbol{b}=\operatorname{gyr}[\boldsymbol{a}, \boldsymbol{b}](\boldsymbol{b} \oplus \boldsymbol{a})
$$

$\operatorname{gyr}[\mathbf{a}, \boldsymbol{b}]=\mathrm{Id} \quad \forall a, b \Rightarrow(G, \oplus)$ is a (commutative) group.

A (gyrocommutative) gyrogroup is a generalization of an (Abelian) group.

Definition 1 ((Gyrocommutative) Gyrogroup)

A groupoid (G, \oplus) is a gyrogroup if there exists a point $\mathbf{e} \in G$ such that the following hold.
(G1) Existing of unit
(G2) Existing of the inverse element for each element.
(G3) Not necessarily associative, but "weakly associative".
(G4)
(G5)
Gyrocommutative if the following (G6) is also satisfied.
(G6) Not necessarily commutative, but "weakly commutative".
$\mathbb{R}_{c}^{3}=\left\{\boldsymbol{u} \in \mathbb{R}^{3}:\|\boldsymbol{u}\|<c\right\}$: the set of all admissible velocities in Einstein's theory of special relativity, where c is the speed of light in vacuum.
The Einstein velocity addition \oplus_{E} in \mathbb{R}_{C}^{3} is given by

$$
\boldsymbol{u} \oplus_{E} \boldsymbol{v}=\frac{1}{1+\langle\boldsymbol{u}, \boldsymbol{v}\rangle / c}\left\{\boldsymbol{u}+\frac{1}{\gamma_{u}} \boldsymbol{v}+\frac{1}{c^{2}} \frac{\gamma_{u}}{1+\gamma_{u}}\langle\boldsymbol{u}, \boldsymbol{v}\rangle \boldsymbol{u}\right\}
$$

for $\boldsymbol{u}, \boldsymbol{v} \in \mathbb{R}_{c}^{3}$, where $\langle\cdot, \cdot\rangle$ is the Euclidean inner product and ${ }_{\gamma u}$ is the Lorentz factor given by

$$
\gamma_{u}=\left(1-\|\boldsymbol{u}\|^{2} / c^{2}\right)^{-\frac{1}{2}}
$$

Then $\left(\mathbb{R}_{c}^{3}, \oplus_{E}\right)$ is not a group but a gyrocommutative gyrogroup.

Lemma

$E \subset B(H)$: real linear subspace s.t. $a b a \in \exp E$ for any $a, b \in \exp E: \exp E$ is closed under the formation of the Jordan product
$\exp E$ is a gyrocommutative gyrogroup with $a \oplus_{t} b=\left(a^{\frac{t}{2}} b^{t} a^{\frac{t}{2}}\right)^{\frac{1}{t}}, \quad a, b \in G$ for $t>0$.

The gyrogroup identity $=$ the identity element $e=\exp 0$.
The inverse element $\ominus a$ is a^{-1}
For $a, b \in A_{+}^{-1}$ put

$$
X=\left(a^{\frac{t}{2}} b^{t} a^{\frac{t}{2}}\right)^{-\frac{1}{2}} a^{\frac{t}{2}} b^{\frac{t}{2}}
$$

Then X is a unitary and

$$
\operatorname{gyr}[a, b] c=X c X^{*}, \quad a, b, c \in \exp E
$$

Definition 3 (generalized gyrovector space; GGV)

A gyrocommutative gyrogroup (G, \oplus) is a GGV if
$\otimes: \mathbb{R} \times G \rightarrow G$, and an injection $\phi: G \rightarrow(\mathbb{V},\|\cdot\|)$ are defined, where $(\mathbb{V},\|\cdot\|)$ is a real normed space.
(GGV0) $\|\phi(\mathrm{gyr}[\boldsymbol{u}, \boldsymbol{v}] \mathbf{a})\|=\|\phi(\boldsymbol{a})\| \quad \forall \boldsymbol{u}, \boldsymbol{v}, \boldsymbol{a} \in \mathcal{G}$;
(GGV1) $1 \otimes \boldsymbol{a}=\boldsymbol{a} \quad \forall \mathbf{a} \in G ;$
(GGV2) $\left(r_{1}+r_{2}\right) \otimes \boldsymbol{a}=\left(r_{1} \otimes \boldsymbol{a}\right) \oplus\left(r_{2} \otimes \mathbf{a}\right) \quad \forall \mathbf{a} \in G, r_{1}, r_{2} \in \mathbb{R}$;
(GGV3) $\left(r_{1} r_{2}\right) \otimes \boldsymbol{a}=r_{1} \otimes\left(r_{2} \otimes \boldsymbol{a}\right) \quad \forall \mathbf{a} \in G, r_{1}, r_{2} \in \mathbb{R} ;$
(GGV4) $(\phi(|r| \otimes \boldsymbol{a})) /\|\phi(r \otimes \boldsymbol{a})\|=\phi(\boldsymbol{a}) /\|\phi(\boldsymbol{a})\|$
$\forall \boldsymbol{a} \in G \backslash\{\boldsymbol{e}\}, r \in \mathbb{R} \backslash\{0\} ;$
(GGV5) $\operatorname{gyr}[\boldsymbol{u}, \boldsymbol{v}](r \otimes \boldsymbol{a})=r \otimes \operatorname{gyr}[\boldsymbol{u}, \boldsymbol{v}] \boldsymbol{a} \quad \forall \boldsymbol{u}, \boldsymbol{v}, \boldsymbol{a} \in G, r \in \mathbb{R}$;
(GGV6) $\operatorname{gyr}\left[r_{1} \otimes \boldsymbol{v}, r_{2} \otimes \boldsymbol{v}\right]=i d_{G} \quad \forall \boldsymbol{v} \in G, r_{1}, r_{2} \in \mathbb{R}$;
(GGVV) $\{ \pm\|\phi(\boldsymbol{a})\| \in \mathbb{R}: \boldsymbol{a} \in G\}$ is a real one-dimensional vector space with vector addition \oplus^{\prime} and scalar multiplication \otimes^{\prime};
(GGV7) $\|\phi(r \otimes \boldsymbol{a})\|=|r| \otimes^{\prime}\|\phi(\boldsymbol{a})\| \quad \forall \mathbf{a} \in G, r \in R$;
(GGV8) $\|\phi(\boldsymbol{a} \oplus \boldsymbol{b})\| \leq\|\phi(\boldsymbol{a})\| \oplus^{\prime}\|\phi(\boldsymbol{b})\| \quad \forall \mathbf{a}, \boldsymbol{b} \in \boldsymbol{G}$.

Definition 3 (gyrovector space defined by Ungar)

A gyrocommutative gyrogroup (G, \oplus) is a gyrovector space if $\otimes: \mathbb{R} \times G \rightarrow G$ is defined, where $(\mathbb{V},\|\cdot\|)$ is a real inner product space and $G \subset \mathbb{V}$.
(GGV0) $\operatorname{gyr}[\boldsymbol{u}, \boldsymbol{v}] \mathbf{a} \cdot \operatorname{gyr}[\boldsymbol{u}, \boldsymbol{v}] \boldsymbol{b}=\boldsymbol{a} \cdot \boldsymbol{b} \quad \forall \boldsymbol{u}, \boldsymbol{v}, \boldsymbol{a}, \boldsymbol{b} \in \boldsymbol{G}$;
(GGV1) $1 \otimes \boldsymbol{a}=\boldsymbol{a} \quad \forall \boldsymbol{a} \in G ;$
(GGV2) $\left(r_{1}+r_{2}\right) \otimes \boldsymbol{a}=\left(r_{1} \otimes \boldsymbol{a}\right) \oplus\left(r_{2} \otimes \boldsymbol{a}\right) \quad \forall \boldsymbol{a} \in G, r_{1}, r_{2} \in \mathbb{R}$;
(GGV3) $\left(r_{1} r_{2}\right) \otimes \boldsymbol{a}=r_{1} \otimes\left(r_{2} \otimes \boldsymbol{a}\right) \quad \forall \boldsymbol{a} \in G, r_{1}, r_{2} \in \mathbb{R} ;$
(GGV4) $(|r| \otimes \boldsymbol{a}) /\|r \otimes \boldsymbol{a}\|=\mathbf{a} /\|\mathbf{a}\| \quad \forall \boldsymbol{a} \in G \backslash\{\boldsymbol{e}\}, r \in \mathbb{R} \backslash\{0\} ;$
(GGV5) $\operatorname{gyr}[\boldsymbol{u}, \boldsymbol{v}](r \otimes \boldsymbol{a})=r \otimes \operatorname{gyr}[\boldsymbol{u}, \boldsymbol{v}] \boldsymbol{a} \quad \forall \boldsymbol{u}, \boldsymbol{v}, \boldsymbol{a} \in G, r \in \mathbb{R}$;
(GGV6) $\operatorname{gyr}\left[r_{1} \otimes \boldsymbol{v}, r_{2} \otimes \boldsymbol{v}\right]=i d_{G} \quad \forall \boldsymbol{v} \in G, r_{1}, r_{2} \in \mathbb{R}$;
(GGVV) $\{ \pm\|\phi(\boldsymbol{a})\| \in \mathbb{R}: \boldsymbol{a} \in G\}$ is a real one-dimensional vector space with vector addition \oplus^{\prime} and scalar multiplication \otimes^{\prime};
(GGV7) $\|r \otimes \boldsymbol{a}\|=|r| \otimes^{\prime}\|\boldsymbol{a}\| \quad \forall \boldsymbol{a} \in G, r \in R$;
(GGV8) $\|\boldsymbol{a} \oplus \boldsymbol{b}\| \leq\|\boldsymbol{a}\| \oplus^{\prime}\|\boldsymbol{b}\| \quad \forall \boldsymbol{a}, \boldsymbol{b} \in G$.

A brief look at GGV

GGV is an exotic normed space defined on a gyrocommutative gyrogroup.

A Normed space is a GGV, but a GGV is sometimes far from beeing a linear space in general.

A brief look at GGV

GGV is an exotic normed space defined on a gyrocommutative gyrogroup.

normed space	GGV
commutative group	gyrocommutative gyrogroup
scalar multiplication	scalar multiplication'
norm	norm'

A Normed space is a GGV, but a GGV is sometimes far from
beeing a linear space in general

A brief look at GGV

GGV is an exotic normed space defined on a gyrocommutative gyrogroup.

normed space	GGV
commutative group	gyrocommutative gyrogroup
scalar multiplication	scalar multiplication'
norm	norm'

A Normed space is a GGV, but a GGV is sometimes far from beeing a linear space in general.

A brief look at GGV

GGV is an exotic normed space defined on a gyrocommutative gyrogroup.

normed space	GGV
commutative group	gyrocommutative gyrogroup
scalar multiplication	scalar multiplication'
norm	norm' $^{\prime}$

A Normed space is a GGV, but a GGV is sometimes far from beeing a linear space in general.

The positive cone of a unital C^{*}-algebra is GGV

Example

$E \subset B(H)_{s}$ such that $a b a \in \exp E$ for $\forall a, b \in \exp E$ $\exp E$: the gyrocommutative gyrogroup with

$$
a \oplus_{t} b=\left(a^{\frac{t}{2}} b^{t} a^{\frac{t}{2}}\right)^{\frac{1}{t}}, \quad a, b \in A_{+}^{-1} .
$$

Let $|||\cdot|||$ be a complete uniform norm on $B(H)$. Put

$$
\begin{gathered}
r \otimes a=a^{r}, \quad \phi(a)=\log a, \quad a \in \exp E, r \in \mathbb{R}, \\
\left(\pm\|\log (\exp E)\| \|, \oplus^{\prime}, \otimes^{\prime}\right)=(\mathbb{R},+, \times) .
\end{gathered}
$$

$\left(\exp E, \oplus_{t}, \otimes, \log \right)$ is a GGV with $\||\cdot|\| \mid$ In particular, $\left(A_{+}^{-1}, \oplus_{t}, \otimes, \log \right)$ is a GGV with $\||\cdot|\| \mid$.

Theorem (A Mazur-Ulam theorem for GGV (Abe and H.))

Suppose that $U:\left(G_{1}, \oplus_{1}, \otimes_{1}, \varphi_{1}\right) \rightarrow\left(G_{2}, \oplus_{2}, \otimes_{2}, \varphi_{2}\right)$ is a surjection. Then

$$
\left\|\varphi_{2}\left(\ominus_{2} U(\boldsymbol{a}) \oplus_{2} U(\boldsymbol{b})\right)\right\|_{2}=\left\|\varphi_{1}\left(\ominus_{1} \boldsymbol{a} \oplus_{1} \boldsymbol{b}\right)\right\|_{1}, \quad \forall \boldsymbol{a}, \boldsymbol{b} \in G
$$

$$
U(\boldsymbol{a})=U(\boldsymbol{e}) \oplus_{2} U_{0}(\boldsymbol{a}), \quad \forall \boldsymbol{a} \in G
$$

where U_{0} is an isometrical isomorphism :
$U_{0}: G_{1} \rightarrow G_{2}$ is a bijection s.t. $\forall \boldsymbol{a}, \boldsymbol{b} \in G_{1}, \forall \alpha \in \mathbb{R}$

$$
\begin{align*}
& U_{0}\left(\boldsymbol{a} \oplus_{1} \boldsymbol{b}\right)=U_{0}(\boldsymbol{a}) \oplus_{2} U_{0}(\boldsymbol{b}) \tag{1}\\
& U_{0}\left(\alpha \otimes_{1} \boldsymbol{a}\right)=\alpha \otimes_{2} U_{0}(\boldsymbol{a}) \tag{2}\\
& \varrho_{2}\left(U_{0} \boldsymbol{a}, U_{0} \boldsymbol{b}\right)=\varrho_{1}(\boldsymbol{a}, \boldsymbol{b}) \tag{3}
\end{align*}
$$

In the case where $\left(G_{j}, \oplus_{j}, \otimes_{j}, \varphi_{j}\right)$ is a usual normed space, then the above theorem is just the celebrated Mazur-Ulam theorem.

Let $G_{j}=\exp E_{j}$ for E_{j}, a real linear subspace of $B\left(H_{j}\right)_{S}$ such that $a b a \in G_{j}$ for every pair $a, b \in G_{j}$.

Theorem 2

Suppose that $U: G_{1} \rightarrow G_{2}$ is a surjection such that $\left\|\left|\log \left(a^{-\frac{t}{2}} b^{t} a^{-\frac{t}{2}}\right)^{\frac{1}{t}}\left\|_{1}=\right\| \log \left(U(a)^{-\frac{t}{2}} U(b)^{t} U(a)^{-\frac{t}{2}}\right)^{\frac{1}{t}} \|\right|_{2}, \quad a, b \in G_{1}\right.$.
$\exists f: E_{1} \rightarrow E_{2}$ (bijection, commutativity preserving linear map in both directions, isometry) such that

$$
\begin{gathered}
U_{0}(a)=\exp (f(\log a)), \quad a \in G_{1}, \\
U(a)=U(e) \oplus_{t} U_{0}(a), \quad a \in G_{1}, \\
U_{0}(a b a)=U_{0}(a) U_{0}(b) U_{0}(a), \quad a, b \in G_{1} .
\end{gathered}
$$

Thank you for your time!

[^0]: ${ }^{1}$ Comparison of various means for operators, JFA (1999)

