Triangularizability of trace-class operators with increasing spectrum

Roman Drnovšek

University of Ljubljana, Slovenia

Positivity IX, Edmonton, July 2017

1/14

For each $\phi \in L^{\infty}(X,\mu)$, we define the multiplication operator M_{ϕ} on $L^{2}(X,\mu)$ by $M_{\phi}(f) = \phi f$.

An operator *P* on $L^2(X, \mu)$ is called a *standard projection corresponding to a measurable set* $E \subseteq X$ if it is the multiplication operator by the characteristic function χ_E of *E*. In this case its range ran *P* can be identified with the Hilbert space $L^2(E, \mu|_E)$, and it is said to be a *standard subspace* or a *closed ideal* of $L^2(X, \mu)$.

If such a subspace is non-trivial and invariant under an operator T on $L^2(X,\mu)$, we say that T is *decomposable* or *ideal-reducible*.

 <

For each $\phi \in L^{\infty}(X,\mu)$, we define the multiplication operator M_{ϕ} on $L^{2}(X,\mu)$ by $M_{\phi}(f) = \phi f$.

An operator *P* on $L^2(X, \mu)$ is called a *standard projection corresponding to a measurable set* $E \subseteq X$ if it is the multiplication operator by the characteristic function χ_E of *E*. In this case its range ran *P* can be identified with the Hilbert space $L^2(E, \mu|_E)$, and it is said to be a *standard subspace* or a *closed ideal* of $L^2(X, \mu)$.

If such a subspace is non-trivial and invariant under an operator T on $L^2(X,\mu)$, we say that T is *decomposable* or *ideal-reducible*.

For each $\phi \in L^{\infty}(X,\mu)$, we define the multiplication operator M_{ϕ} on $L^{2}(X,\mu)$ by $M_{\phi}(f) = \phi f$.

An operator *P* on $L^2(X,\mu)$ is called a *standard projection corresponding to a measurable set* $E \subseteq X$ if it is the multiplication operator by the characteristic function χ_E of *E*. In this case its range ran *P* can be identified with the Hilbert space $L^2(E,\mu|_E)$, and it is said to be a *standard subspace* or a *closed ideal* of $L^2(X,\mu)$.

If such a subspace is non-trivial and invariant under an operator T on $L^2(X,\mu)$, we say that T is *decomposable* or *ideal-reducible*.

・ 目・ ・ 目・ ・ 目・ ・ 目・ ・ 日・ ・ 日・ ・ 日・ ・ 日・ ・ 日・ ・ 1・

For each $\phi \in L^{\infty}(X,\mu)$, we define the multiplication operator M_{ϕ} on $L^{2}(X,\mu)$ by $M_{\phi}(f) = \phi f$.

An operator *P* on $L^2(X, \mu)$ is called a *standard projection corresponding to a measurable set* $E \subseteq X$ if it is the multiplication operator by the characteristic function χ_E of *E*. In this case its range ran *P* can be identified with the Hilbert space $L^2(E, \mu|_E)$, and it is said to be a *standard subspace* or a *closed ideal* of $L^2(X, \mu)$.

If such a subspace is non-trivial and invariant under an operator T on $L^2(X,\mu)$, we say that T is *decomposable* or *ideal-reducible*.

・ 目・ ・ 目・ ・ 目・ 目・ のへで 2/14

For each $\phi \in L^{\infty}(X,\mu)$, we define the multiplication operator M_{ϕ} on $L^{2}(X,\mu)$ by $M_{\phi}(f) = \phi f$.

An operator *P* on $L^2(X, \mu)$ is called a *standard projection corresponding to a measurable set* $E \subseteq X$ if it is the multiplication operator by the characteristic function χ_E of *E*. In this case its range ran *P* can be identified with the Hilbert space $L^2(E, \mu|_E)$, and it is said to be a *standard subspace* or a *closed ideal* of $L^2(X, \mu)$.

If such a subspace is non-trivial and invariant under an operator T on $L^2(X,\mu)$, we say that T is *decomposable* or *ideal-reducible*.

・ 一部・ ・ 注意・ ・ 注意・ ・ 注意・ ・ 注意・ ・ 2 / 14 An operator *T* on $L^2(X, \mu)$ admits a standard triangularization or *T* is completely decomposable or ideal-triangularizable if we can find a totally ordered set Λ and an increasing family $\{P_{\lambda}\}_{\lambda \in \Lambda}$ of standard projections such that $\{\operatorname{ran} P_{\lambda}\}_{\lambda \in \Lambda}$ is a maximal increasing family of standard subspaces that are all invariant under *T*.

An operator T on $L^2(X,\mu)$ has increasing spectrum relative to standard compressions if

 $\sigma(PT|_{\operatorname{ran} P}) \subseteq \sigma(QT|_{\operatorname{ran} Q})$

whenever *P* and *Q* are standard projections with $\operatorname{ran} P \subseteq \operatorname{ran} Q$. When this condition is required only for finite-dimensional standard projections *P* and *Q*, the operator *T* is said to have increasing spectrum relative to finite-dimensional standard compressions.

● □ →
◆ 三 →
● 三 →
三 ○ ○ ○
3 / 14

An operator *T* on $L^2(X, \mu)$ admits a standard triangularization or *T* is completely decomposable or ideal-triangularizable if we can find a totally ordered set Λ and an increasing family $\{P_{\lambda}\}_{\lambda \in \Lambda}$ of standard projections such that $\{\operatorname{ran} P_{\lambda}\}_{\lambda \in \Lambda}$ is a maximal increasing family of standard subspaces that are all invariant under *T*.

An operator T on $L^2(X,\mu)$ has increasing spectrum relative to standard compressions if

$$\sigma(PT|_{\operatorname{ran} P}) \subseteq \sigma(QT|_{\operatorname{ran} Q})$$

whenever *P* and *Q* are standard projections with $\operatorname{ran} P \subseteq \operatorname{ran} Q$. When this condition is required only for finite-dimensional standard projections *P* and *Q*, the operator *T* is said to have increasing spectrum relative to finite-dimensional standard compressions.

3/14

An operator *T* on $L^2(X, \mu)$ admits a standard triangularization or *T* is completely decomposable or ideal-triangularizable if we can find a totally ordered set Λ and an increasing family $\{P_{\lambda}\}_{\lambda \in \Lambda}$ of standard projections such that $\{\operatorname{ran} P_{\lambda}\}_{\lambda \in \Lambda}$ is a maximal increasing family of standard subspaces that are all invariant under *T*.

An operator T on $L^2(X,\mu)$ has increasing spectrum relative to standard compressions if

$$\sigma(PT|_{\operatorname{ran} P}) \subseteq \sigma(QT|_{\operatorname{ran} Q})$$

whenever *P* and *Q* are standard projections with $\operatorname{ran} P \subseteq \operatorname{ran} Q$. When this condition is required only for finite-dimensional standard projections *P* and *Q*, the operator *T* is said to *have increasing spectrum relative to finite-dimensional standard compressions*.

3/14

Let μ be the counting measure on a set X. If an operator T on $L^2(X,\mu)$ has increasing spectrum relative to finite-dimensional standard compressions, then it is ideal-triangularizable.

Theorem (Marcoux, Mastnak, Radjavi, J. Funct. Anal. 2009)

Let T be an operator on $L^2(X,\mu)$ of rank $n \in \mathbb{N}$. If T has increasing spectrum relative to standard compressions, then it admits a standard triangularization. Furthermore, there is a chain of projections

$$0 = P_0 < P_1 < \dots < P_{3n-1} < P_{3n} = I,$$

whose ranges are all invariant under T, such that

$$(P_j - P_{j-1})T(P_j - P_{j-1}) = 0$$

whenever $P_j - P_{j-1}$ has rank more than one.

Let μ be the counting measure on a set X. If an operator T on $L^2(X,\mu)$ has increasing spectrum relative to finite-dimensional standard compressions, then it is ideal-triangularizable.

Theorem (Marcoux, Mastnak, Radjavi, J. Funct. Anal. 2009)

Let T be an operator on $L^2(X,\mu)$ of rank $n \in \mathbb{N}$. If T has increasing spectrum relative to standard compressions, then it admits a standard triangularization. Furthermore, there is a chain of projections

$$0 = P_0 < P_1 < \cdots < P_{3n-1} < P_{3n} = I,$$

whose ranges are all invariant under T, such that

$$(P_j - P_{j-1})T(P_j - P_{j-1}) = 0$$

whenever $P_i - P_{i-1}$ has rank more than one.

Suppose that K is a compact operator on $L^2(X,\mu)$ that has increasing spectrum relative to standard compressions. Does K admit a standard triangularization? In particular, is K ideal-reducible?

Theorem (de Pagter, 1986)

A quasinilpotent compact positive operator K on a Banach lattice of dimension at least two has a nontrivial invariant closed ideal.

An affirmative answer to Question would extend de Pagter's theorem in the case of the Banach lattice $L^2(X,\mu)$. Namely, it is easy to see that positivity of *K* implies that the operator *PKP* is quasinilpotent for each standard projection *P*, so that *K* has increasing spectrum in this case.

। ≞ ► ≣ ⊃९. 5/14

Suppose that K is a compact operator on $L^2(X,\mu)$ that has increasing spectrum relative to standard compressions. Does K admit a standard triangularization? In particular, is K ideal-reducible?

Theorem (de Pagter, 1986)

A quasinilpotent compact positive operator K on a Banach lattice of dimension at least two has a nontrivial invariant closed ideal.

An affirmative answer to Question would extend de Pagter's theorem in the case of the Banach lattice $L^2(X,\mu)$. Namely, it is easy to see that positivity of *K* implies that the operator *PKP* is quasinilpotent for each standard projection *P*, so that *K* has increasing spectrum in this case.

≣ ⊃ ⊲ (~ 5 / 14

Suppose that K is a compact operator on $L^2(X,\mu)$ that has increasing spectrum relative to standard compressions. Does K admit a standard triangularization? In particular, is K ideal-reducible?

Theorem (de Pagter, 1986)

A quasinilpotent compact positive operator K on a Banach lattice of dimension at least two has a nontrivial invariant closed ideal.

An affirmative answer to Question would extend de Pagter's theorem in the case of the Banach lattice $L^2(X,\mu)$. Namely, it is easy to see that positivity of *K* implies that the operator *PKP* is quasinilpotent for each standard projection *P*, so that *K* has increasing spectrum in this case.

5/14

Suppose that K is a compact operator on $L^2(X,\mu)$ that has increasing spectrum relative to standard compressions. Does K admit a standard triangularization? In particular, is K ideal-reducible?

Theorem (de Pagter, 1986)

A quasinilpotent compact positive operator K on a Banach lattice of dimension at least two has a nontrivial invariant closed ideal.

An affirmative answer to Question would extend de Pagter's theorem in the case of the Banach lattice $L^2(X,\mu)$. Namely, it is easy to see that positivity of *K* implies that the operator *PKP* is quasinilpotent for each standard projection *P*, so that *K* has increasing spectrum in this case.

5/14

We consider Question for trace-class kernel operators.

An operator *K* on $L^2(X,\mu)$ is called a *kernel operator* if there exists a measurable function $k : X \times X \to \mathbb{C}$ such that, for every $f \in L^2(X,\mu)$, the equality

$$(Kf)(x) = \int_X k(x, y) f(y) d\mu(y)$$

holds for almost every $x \in X$. The function k is the kernel of the operator K.

The kernel operator K is positive if and only if its kernel k is nonnegative almost everywhere.

If the kernel operator K with kernel k has the modulus |K|, then the kernel of |K| is equal to |k| almost everywhere.

> ・ 書・ ・ 書・ ・ 書・ ・ 書・ の へ (~) 6 / 14

We consider Question for trace-class kernel operators. An operator K on $L^2(X,\mu)$ is called a *kernel operator* if there exists a measurable function $k : X \times X \to \mathbb{C}$ such that, for every $f \in L^2(X,\mu)$, the equality

$$(Kf)(x) = \int_X k(x, y) f(y) d\mu(y)$$

holds for almost every $x \in X$. The function k is the kernel of the operator K.

The kernel operator K is positive if and only if its kernel k is nonnegative almost everywhere.

If the kernel operator K with kernel k has the modulus |K|, then the kernel of |K| is equal to |k| almost everywhere.

> ・ 一部・ ・ 三・ ・ 一三・ ・ 三・ ・ 三・ ・ 三・ ・ 14

We consider Question for trace-class kernel operators. An operator K on $L^2(X,\mu)$ is called a *kernel operator* if there exists a measurable function $k : X \times X \to \mathbb{C}$ such that, for every $f \in L^2(X,\mu)$, the equality

$$(Kf)(x) = \int_X k(x, y) f(y) d\mu(y)$$

holds for almost every $x \in X$. The function k is the kernel of the operator K.

The kernel operator K is positive if and only if its kernel k is nonnegative almost everywhere.

If the kernel operator K with kernel k has the modulus |K|, then the kernel of |K| is equal to |k| almost everywhere.

■
 ■
 ■
 ○
 0
 6 / 14

We consider Question for trace-class kernel operators. An operator K on $L^2(X,\mu)$ is called a *kernel operator* if there exists a measurable function $k : X \times X \to \mathbb{C}$ such that, for every $f \in L^2(X,\mu)$, the equality

$$(Kf)(x) = \int_X k(x, y) f(y) d\mu(y)$$

holds for almost every $x \in X$. The function k is the kernel of the operator K.

The kernel operator K is positive if and only if its kernel k is nonnegative almost everywhere.

If the kernel operator *K* with kernel *k* has the modulus |K|, then the kernel of |K| is equal to |k| almost everywhere.

●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●</t

Given a compact operator T on $L^2(X,\mu)$, let $\{s_j(T)\}_j$ be a decreasing sequence of singular values of T, i.e., the square roots of the eigenvalues of the self-adjoint operator T^*T , where where T^* denotes the adjoint of T.

If $\sum_j s_j(T) < \infty$, the operator *T* is said to be a *trace-class* operator. In this case, the *trace of T* is defined by

$$\operatorname{tr}(T) = \sum_{n=1}^{\infty} \langle Tf_n, f_n \rangle,$$

where $\{f_n\}_{n=1}^{\infty}$ is any orthonormal basis of $L^2(X,\mu)$. By Lidskii's Theorem, the trace of a trace-class operator *T* is equal to the sum of all eigenvalues of *T* counting algebraic multiplicity.

Given a compact operator T on $L^2(X, \mu)$, let $\{s_j(T)\}_j$ be a decreasing sequence of singular values of T, i.e., the square roots of the eigenvalues of the self-adjoint operator T^*T , where where T^* denotes the adjoint of T. If $\sum_i s_i(T) < \infty$, the operator T is said to be a *trace-class*

operator. In this case, the *trace of T* is defined by

$$\operatorname{tr}(T) = \sum_{n=1}^{\infty} \langle Tf_n, f_n \rangle,$$

where $\{f_n\}_{n=1}^{\infty}$ is any orthonormal basis of $L^2(X,\mu)$. By Lidskii's Theorem, the trace of a trace-class operator T is equal to the sum of all eigenvalues of T counting algebraic multiplicity.

> ◆□ ◆ 三 ◆ 三 ◆ 三 ◆ 三 ◆ 三 ◆ 〇 へ 〇 7/14

Given a compact operator T on $L^2(X, \mu)$, let $\{s_j(T)\}_j$ be a decreasing sequence of singular values of T, i.e., the square roots of the eigenvalues of the self-adjoint operator T^*T , where where T^* denotes the adjoint of T. If $\sum_i s_i(T) < \infty$, the operator T is said to be a *trace-class*

operator. In this case, the *trace of T* is defined by

$$\operatorname{tr}(T) = \sum_{n=1}^{\infty} \langle Tf_n, f_n \rangle,$$

where $\{f_n\}_{n=1}^{\infty}$ is any orthonormal basis of $L^2(X,\mu)$. By Lidskii's Theorem, the trace of a trace-class operator *T* is equal to the sum of all eigenvalues of *T* counting algebraic multiplicity.

Let *K* be a trace-class kernel operator on $L^2[0,1]$ with a continuous kernel $k : [0,1] \times [0,1] \rightarrow \mathbb{C}$. Then the trace of *K* is equal to the integral of its kernel along the diagonal:

$$\operatorname{tr}(K)=\int_0^1 k(x,x)dx.$$

Theorem (Drnovšek, 2017

Let K be a trace-class kernel operator on $L^2[0,1]$ with a continuous kernel k. Suppose that K has increasing spectrum relative to standard compressions and that the modulus |K| is also a trace-class operator. Then K and |K| are quasinilpotent operators admitting a (common) standard triangularization.

Let *K* be a trace-class kernel operator on $L^2[0,1]$ with a continuous kernel $k : [0,1] \times [0,1] \rightarrow \mathbb{C}$. Then the trace of *K* is equal to the integral of its kernel along the diagonal:

$$\operatorname{tr}(K)=\int_0^1 k(x,x)dx.$$

Theorem (Drnovšek, 2017)

Let *K* be a trace-class kernel operator on $L^2[0,1]$ with a continuous kernel *k*. Suppose that *K* has increasing spectrum relative to standard compressions and that the modulus |K| is also a trace-class operator. Then *K* and |K| are quasinilpotent operators admitting a (common) standard triangularization.

= ○ < (~ 8 / 14 Using the continuity of the spectrum for compact operators, one can show that K is quasinilpotent.

For any standard projection *P* and any *n*, we have

 $\mathrm{tr}\left((PKP)^n\right)=0.$

Then we show that, for any x_1, x_2, \ldots, x_n in [0, 1], it holds that

 $k(x_1, x_2)k(x_2, x_3)k(x_3, x_4)\cdots k(x_{n-1}, x_n)k(x_n, x_1) = 0.$

It follows that $tr(|K|^n) = 0$ for all $n \in \mathbb{N}$, and so |K| is quasinilpotent.

Therefore, |K| admits a standard triangularization, by (a corollary to) de Pagter's theorem.

日本の ・ 目本の ・ 目本の ・ 目本の ・ 日本の ・ 日本のの ・ 日本の ・ 日本

 $\mathrm{tr}\left((PKP)^n\right)=0.$

Then we show that, for any x_1, x_2, \ldots, x_n in [0, 1], it holds that

 $k(x_1, x_2)k(x_2, x_3)k(x_3, x_4)\cdots k(x_{n-1}, x_n)k(x_n, x_1) = 0.$

It follows that $tr(|K|^n) = 0$ for all $n \in \mathbb{N}$, and so |K| is quasinilpotent.

Therefore, |K| admits a standard triangularization, by (a corollary to) de Pagter's theorem.

●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●
 ●

 $\mathrm{tr}\left((PKP)^n\right)=0.$

Then we show that, for any $x_1, x_2, ..., x_n$ in [0, 1], it holds that

 $k(x_1, x_2)k(x_2, x_3)k(x_3, x_4)\cdots k(x_{n-1}, x_n)k(x_n, x_1) = 0.$

It follows that $tr(|K|^n) = 0$ for all $n \in \mathbb{N}$, and so |K| is quasinilpotent.

Therefore, |K| admits a standard triangularization, by (a corollary to) de Pagter's theorem.

 $\mathrm{tr}\left((PKP)^n\right)=0.$

Then we show that, for any $x_1, x_2, ..., x_n$ in [0, 1], it holds that

$$k(x_1, x_2)k(x_2, x_3)k(x_3, x_4)\cdots k(x_{n-1}, x_n)k(x_n, x_1) = 0.$$

It follows that $tr(|K|^n) = 0$ for all $n \in \mathbb{N}$, and so |K| is quasinilpotent.

Therefore, |K| admits a standard triangularization, by (a corollary to) de Pagter's theorem.

 $\mathrm{tr}\left((PKP)^n\right)=0.$

Then we show that, for any $x_1, x_2, ..., x_n$ in [0, 1], it holds that

$$k(x_1, x_2)k(x_2, x_3)k(x_3, x_4)\cdots k(x_{n-1}, x_n)k(x_n, x_1) = 0.$$

It follows that $tr(|K|^n) = 0$ for all $n \in \mathbb{N}$, and so |K| is quasinilpotent.

Therefore, |K| admits a standard triangularization, by (a corollary to) de Pagter's theorem.

◆ 三 ト ◆ 三 ト 三 つへ○ 9 / 14

This theorem can be extended to more general measures.

Let $A = \{2, 3, 4, ..., N+1\}$ if $N \in \mathbb{N}$, and $A = \mathbb{N} \setminus \{1\}$ if $N = \infty$. We assume that μ is a Borel measure on $[0, \infty)$ with the support $X = [0, 1] \cup A$, the restriction of μ to [0, 1] is the Lebesgue measure, and $\{j\}$ is an atom of measure 1 for each $j \in A$. Clearly, the Hilbert space $L^2(X, \mu)$ is the direct sum of $L^2[0, 1]$ and $l^2(A)$.

Let P_C denote the standard projection corresponding to the interval [0,1], and let P_A denote the standard projection corresponding to the set A.

This theorem can be extended to more general measures. Let $A = \{2, 3, 4, \dots, N+1\}$ if $N \in \mathbb{N}$, and $A = \mathbb{N} \setminus \{1\}$ if $N = \infty$.

We assume that μ is a Borel measure on $[0,\infty)$ with the support $X = [0,1] \cup A$, the restriction of μ to [0,1] is the Lebesgue measure, and $\{j\}$ is an atom of measure 1 for each $j \in A$. Clearly, the Hilbert space $L^2(X,\mu)$ is the direct sum of $L^2[0,1]$ and $l^2(A)$.

Let P_C denote the standard projection corresponding to the interval [0,1], and let P_A denote the standard projection corresponding to the set A.

This theorem can be extended to more general measures. Let $A = \{2, 3, 4, ..., N+1\}$ if $N \in \mathbb{N}$, and $A = \mathbb{N} \setminus \{1\}$ if $N = \infty$. We assume that μ is a Borel measure on $[0, \infty)$ with the support $X = [0, 1] \cup A$, the restriction of μ to [0, 1] is the Lebesgue measure, and $\{j\}$ is an atom of measure 1 for each $j \in A$. Clearly, the Hilbert space $L^2(X, \mu)$ is the direct sum of $L^2[0, 1]$ and $I^2(A)$.

Let P_C denote the standard projection corresponding to the interval [0, 1], and let P_A denote the standard projection corresponding to the set A.

This theorem can be extended to more general measures. Let $A = \{2, 3, 4, ..., N+1\}$ if $N \in \mathbb{N}$, and $A = \mathbb{N} \setminus \{1\}$ if $N = \infty$. We assume that μ is a Borel measure on $[0, \infty)$ with the support $X = [0, 1] \cup A$, the restriction of μ to [0, 1] is the Lebesgue measure, and $\{j\}$ is an atom of measure 1 for each $j \in A$. Clearly, the Hilbert space $L^2(X, \mu)$ is the direct sum of $L^2[0, 1]$ and $l^2(A)$.

Let P_C denote the standard projection corresponding to the interval [0,1], and let P_A denote the standard projection corresponding to the set A.

This theorem can be extended to more general measures. Let $A = \{2,3,4,\ldots,N+1\}$ if $N \in \mathbb{N}$, and $A = \mathbb{N} \setminus \{1\}$ if $N = \infty$. We assume that μ is a Borel measure on $[0,\infty)$ with the support $X = [0,1] \cup A$, the restriction of μ to [0,1] is the Lebesgue measure, and $\{j\}$ is an atom of measure 1 for each $j \in A$. Clearly, the Hilbert space $L^2(X,\mu)$ is the direct sum of $L^2[0,1]$ and $l^2(A)$.

Let P_C denote the standard projection corresponding to the interval [0, 1], and let P_A denote the standard projection corresponding to the set A.

Let K be a trace-class kernel operator on $L^2(X,\mu)$ with a continuous kernel k. Suppose that K has increasing spectrum relative to standard compressions and that its modulus |K| is also a trace-class operator. Then K and |K| admit a (common) standard triangularization. Furthermore, the operators K and P_AKP_A have the same non-zero eigenvalues with the same algebraic multiplicities. This holds also for the operators |K| and $P_A|K|P_A$, while the operators P_CKP_C and $P_C|K|P_C$ are both quasinilpotent.

Let *K* be a trace-class kernel operator on $L^2(X, \mu)$ with a continuous kernel *k*. Suppose that *K* has increasing spectrum relative to standard compressions and that its modulus |K| is also a trace-class operator. Then *K* and |K| admit a (common) standard triangularization. Furthermore, the operators *K* and P_AKP_A have the same non-zero eigenvalues with the same algebraic multiplicities. This holds also for the operators |K| and $P_A|K|P_A$, while the operators P_CKP_C and $P_C|K|P_C$ are both quasinilpotent.

Let K be an operator on $L^2(X,\mu)$ of rank $n \in \mathbb{N}$. If K has increasing spectrum, then it admits a standard triangularization. Furthermore, there exist a positive integer $m \le 2n+1$ and a partition $\{E_1, \ldots, E_m\}$ of X such that, relative to the decomposition $L^2(X,\mu) = \bigoplus_{j=1}^m L^2(E_j,\mu|_{E_j})$, K has the form

where each diagonal block $K_{j,j}$ can be non-zero only when $L^2(E_j, \mu|_{E_j})$ is a one-dimensional space (corresponding to an atom), and in this case $K_{j,j}$ is a non-zero eigenvalue of K.

● ■ ● ■ つへ ○ 12 / 14

Let *K* be an operator on $L^2(X,\mu)$ of rank $n \in \mathbb{N}$. If *K* has increasing spectrum, then it admits a standard triangularization. Furthermore, there exist a positive integer $m \le 2n+1$ and a partition $\{E_1, \ldots, E_m\}$ of *X* such that, relative to the decomposition $L^2(X,\mu) = \bigoplus_{i=1}^m L^2(E_j,\mu|_{E_i})$, *K* has the form

	[<i>K</i> _{1,1}	$K_{1,2}$	$K_{1,3}$	$K_{1,4}$		$K_{1,m-1}$	$K_{1,m}$	
	0	$K_{2,2}$	$K_{2,3}$	$K_{2,4}$		$K_{2,m-1}$	K _{2,m}	
	0	0	<i>K</i> _{3,3}	<i>K</i> _{3,4}		K _{3,m-1}	K _{3,m}	
K =	0	0	0	0	۰.	<i>K</i> _{4,<i>m</i>-1}	K _{4,m}	,
	:	÷	:	·	۰.	÷	:	
	0	0	0	0		$K_{m-1,m-1}$	$K_{m-1,m}$	
	0	0	0	0		0	K _{m,m}	

where each diagonal block $K_{j,j}$ can be non-zero only when $L^2(E_j, \mu|_{E_j})$ is a one-dimensional space (corresponding to an atom), and in this case $K_{j,j}$ is a non-zero eigenvalue of K.

12/14

The bound 2n+1 in the last theorem cannot be improved.

Example

Let $n \in \mathbb{N}$, and let $e_1, e_2, ..., e_{2n+1}$ be the standard basis vectors of \mathbb{C}^{2n+1} . For each j = 1, 2, ..., n, let $f_j = \sum_{i=2j}^{2n+1} e_i$. Define

$$K=\sum_{j=1}^n(\boldsymbol{e}_{2j-1}+\boldsymbol{e}_{2j})\cdot f_j^t.$$

For example, if n = 2 then

$$\mathcal{K} = \begin{bmatrix} 0 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

Then K is an upper triangular matrix of rank n, and it has increasing spectrum. Furthermore, it already has the form guaranteed by Theorem and we cannot decrease the number of diagonal blocks.

13/14

- L. W. Marcoux, M. Mastnak, H. Radjavi, *Triangularizability* of operators with increasing spectrum, J. Funct. Anal. 257 (2009), 3517–3540.
- R. Drnovšek, Triangularizability of trace-class operators with increasing spectrum, J. Math. Anal. Appl. 447 (2017), 1102–1115.