The Bishop-Phelps-Bollobás property on closed bounded convex sets

Yum Sung Choi
(Joint Work with Dong Mon Chon) Postech, Korea

POSITIVITY IX 2017 University of Alberta July 17, 2017

Bishop-Phelps Theorem

Theorem (E. Bishop and R.R. Phelps (1961))

Let C be a closed bounded convex set in a real Banach space X. Then the set of linear functionals that attain their maximum on C is dense in X^{*}.

In particular, the set of all norm-attaining linear functionals on a Banach space X is dense in the dual space X^{*}.

Bishop-Phelps Theorem

Theorem (E. Bishop and R.R. Phelps (1961))

Let C be a closed bounded convex set in a real Banach space X. Then the set of linear functionals that attain their maximum on C is dense in X^{*}.

In particular, the set of all norm-attaining linear functionals on a Banach space X is dense in the dual space X^{*}.

V. Lomonosov (2000)

The Bishop-Phelps theorem cannot be extended to general complex Banach spaces by constructing a closed bounded convex set with no support points.

Norm Attaining Mappings

$X, Y=$ Real or Complex Banach Space
Let S_{X} and B_{X} be the unit sphere and closed unit ball of X, respectively.
$T \in L(X, Y)$ attains its norm if there is $x_{0} \in S_{X}$ such that
$\left\|T\left(x_{0}\right)\right\|=\|T\|$.
$N A(L(X, Y))=$ Set of all norm-attaining linear mappings from X into Y.

Norm Attaining Mappings

$X, Y=$ Real or Complex Banach Space
Let S_{X} and B_{X} be the unit sphere and closed unit ball of X, respectively.
$T \in L(X, Y)$ attains its norm if there is $x_{0} \in S_{X}$ such that
$\left\|T\left(x_{0}\right)\right\|=\|T\|$.
$N A(L(X, Y))=$ Set of all norm-attaining linear mappings from X into Y.

Question.

Is the set $N A(L(X, Y))$ dense in $L(X, Y)$?

Norm Attaining Mappings

(Lindenstrauss, 1963)
Counterexamlpe: $X=c_{0}, Y=$ Equivalently Renormed Space c_{0} to be Strictly Convex.

The Question is too general to have a reasonably complete solution.

Norm Attaining Mappings

(Lindenstrauss, 1963)
Counterexamlpe: $X=c_{0}, Y=$ Equivalently Renormed Space c_{0} to be Strictly Convex.

The Question is too general to have a reasonably complete solution.
A Banach space X has property (A) if $N A(L(X, Y))$ is dense in $L(X, Y)$ for every Banach space Y.

A Banach space Y has property (B) if $N A(L(X, Y))$ is dense in $L(X, Y)$ for every Banach space X.

Norm Attaining Mappings

(Lindenstrauss, 1963)
Counterexamlpe: $X=c_{0}, Y=$ Equivalently Renormed Space c_{0} to be Strictly Convex.

The Question is too general to have a reasonably complete solution.
A Banach space X has property (A) if $N A(L(X, Y))$ is dense in $L(X, Y)$ for every Banach space Y.

A Banach space Y has property (B) if $N A(L(X, Y))$ is dense in $L(X, Y)$ for every Banach space X.

Question. (The Most Irritating Open Problem)

Does the 2-dimensional Euclidean space \mathbb{R}^{2} have property (B) ?

Norm Attaining Mappings

Theorem (J. Bourgain (1977))

A Banach space X has the Radon-Nikodym Property if and only if every Banach space isomorphic to X has property (A).

Examples with RNP : (1) Reflexive spaces (2) Separable Duals (3) WCG Duals (4) Locally Uniformly Convex Space (5) $I_{1}(I)$, I, any set

Nonlinear Version of Bourgain's Result

Theorem (C. Stegall (1978))

Let X be a Banach space with RNP, D be a bounded closed convex subset of X and $f: D \rightarrow \mathbb{R}$ be an upper semicontinuous bounded above function. Then for $\epsilon>0$, there exists $x^{*} \in X^{*}$ such that $\left\|x^{*}\right\|<\epsilon$ and $f+x^{*}$, $f+\left|x^{*}\right|$ strongly expose D.

Nonlinear Version of Bourgain's Result

Theorem (C. Stegall (1978))

Let X be a Banach space with RNP, D be a bounded closed convex subset of X and $f: D \rightarrow \mathbb{R}$ be an upper semicontinuous bounded above function. Then for $\epsilon>0$, there exists $x^{*} \in X^{*}$ such that $\left\|x^{*}\right\|<\epsilon$ and $f+x^{*}$, $f+\left|x^{*}\right|$ strongly expose D.

Applying this result to a vector-valued case, he showed the following.

Theorem (C. Stegall (1978))

Let X be a Banach space with RNP, D be a bounded closed convex subset of X, and Y be a Banach space. Suppose that $\varphi: D \rightarrow Y$ is a uniformly bounded function such that the function $x \rightarrow\|\varphi(x)\|$ is upper semicontinuous. Then, for $\delta>0$, there exist $T: X \rightarrow Y$ a bounded linear operator of rank one, $\|T\|<\delta$ such that $\varphi+T$ attains its supremum in norm on D and does so at most two points

Bishop-Phelps-Bollobás Property

The Bishop-Phelps theorem (Bishop and Phelps, 1961)

Theorem

The set of norm-attaining functionals on a Banach space X is dense in its dual space X^{*}.

Bishop-Phelps-Bollobás Property

The Bishop-Phelps theorem (Bishop and Phelps, 1961)

Theorem

The set of norm-attaining functionals on a Banach space X is dense in its dual space X^{*}.

Bollobás (1970) sharpened the Bishop-Phelps theorem, which is concerned with the study of simultaneously approximating both functionals and points at which they almost attain their norms by norm-attaining functionals and points at which they attain their norms.

Bishop-Phelps-Bollobás Property

The Bishop-Phelps theorem (Bishop and Phelps, 1961)

Theorem

The set of norm-attaining functionals on a Banach space X is dense in its dual space X^{*}.

Bollobás (1970) sharpened the Bishop-Phelps theorem, which is concerned with the study of simultaneously approximating both functionals and points at which they almost attain their norms by norm-attaining functionals and points at which they attain their norms.

Theorem (Bollobás, 1970)

For $\epsilon>0$, if $x \in B_{X}$ and $x^{*} \in S_{X^{*}}$ satisfy $\left|1-x^{*}(x)\right|<\frac{\epsilon^{2}}{4}$, then there are $y \in S_{X}$ and $y^{*} \in S_{X *}$ such that $y^{*}(y)=1,\|y-x\|<\epsilon$ and $\left\|y^{*}-x^{*}\right\|<\epsilon$.

Bronsted-Rockafellar Theorem

Theorem (Bronstead-Rockafellar Theorem, Pams, 1965)

Suppose that f is a convex proper lower semicontinuous function on the Banach space X. The given any point $x_{0} \in \operatorname{dom}(f), \epsilon>0, \lambda>0$ and any $x_{0}^{*} \in \partial_{\epsilon} f\left(x_{0}\right)$, there exist $x \in \operatorname{dom}(f)$ and $x^{*} \in X^{*}$ such that

$$
x^{*} \in \partial(f),\left\|x-x_{0}\right\| \leq \frac{\epsilon}{\lambda}, \quad \text { and } \quad\left\|x^{*}-x_{0}^{*}\right\| \leq \lambda
$$

In particular, the domain of ∂f is dense in dom (f).

Bishop-Phelps-Bollobás Property

Definition (Acoasta, Aron, García and Maestre, JFA 2008)

We say that the couple (X, Y) satisfies the Bishop-Phelps-Bollobás property for operators (BPBp for short), if given $\epsilon>0$ there exists $\eta(\epsilon)>0$ such that for $T \in S_{\mathcal{L}(X, Y)}$, if $x_{0} \in S_{X}$ is such that $\left\|T x_{0}\right\|>1-\eta(\epsilon)$, then there exist a point $u_{0} \in S_{X}$ and an operator $S \in S_{\mathcal{L}(X, Y)}$ that satisfy the following conditions :

$$
\left\|S u_{0}\right\|=1,\left\|x_{0}-u_{0}\right\|<\epsilon \text { and }\|T-S\|<\epsilon .
$$

Bishop-Phelps-Bollobás Property

Definition (Acoasta, Aron, García and Maestre, JFA 2008)

We say that the couple (X, Y) satisfies the Bishop-Phelps-Bollobás property for operators (BPBp for short), if given $\epsilon>0$ there exists $\eta(\epsilon)>0$ such that for $T \in S_{\mathcal{L}(X, Y)}$, if $x_{0} \in S_{X}$ is such that $\left\|T x_{0}\right\|>1-\eta(\epsilon)$, then there exist a point $u_{0} \in S_{X}$ and an operator $S \in S_{\mathcal{L}(X, Y)}$ that satisfy the following conditions :

$$
\left\|S u_{0}\right\|=1,\left\|x_{0}-u_{0}\right\|<\epsilon \text { and }\|T-S\|<\epsilon
$$

They showed that if a Banach space Y has property (β), then the couple (X, Y) has the $B P B p$ for every Banach space X.

The Bishop-Phelps-Bollobás version of (Lindenstrauss) properties A and B

Recall that J. Lindenstrauss introduced the following two properties.
A Banach space X is said to have Lindenstrauss property A if $\overline{N A(X, Z)}=L(X, Z)$ for every Banach space Z.

A Banach space Y is said to have Lindenstrauss property B if $\overline{N A(Z, Y)}=L(Z, Y)$ for every Banach space Z.

The Bishop-Phelps-Bollobás version of (Lindenstrauss) properties A and B

Recall that J. Lindenstrauss introduced the following two properties.
A Banach space X is said to have Lindenstrauss property A if $N A(X, Z)=L(X, Z)$ for every Banach space Z.

A Banach space Y is said to have Lindenstrauss property B if $N A(Z, Y)=L(Z, Y)$ for every Banach space Z.

DEFINITION

Let X and Y be Banach spaces.
We say that X is a universal BPB domain space
if for every Banach space Z, the pair (X, Z) has the BPBp.
We say that Y is a universal $B P B$ range space if for every Banach space Z, the pair (Z, Y) has the BPBp.

The Bishop-Phelps-Bollobás version of (Lindenstrauss) properties A and B

Recall the result of Bourgain:
Theorem (J. Bourgain (1977))
A Banach space X has the Radon-Nikodym Property if and only if every Banach space isomorphic to X has property (A).

The Bishop-Phelps-Bollobás version of (Lindenstrauss) properties A and B

Recall the result of Bourgain:
Theorem (J. Bourgain (1977))
A Banach space X has the Radon-Nikodym Property if and only if every Banach space isomorphic to X has property (A).

Theorem (R. Aron, C, S.K. Kim, H.J. Lee and M. Martin, Transactions AMS 2015)

Every Banach space isomorphic to X is a universal $B P B$ domain space if and only if X is the basic field $\mathbb{K}=\mathbb{R}$ or \mathbb{C}

Operators From $\ell_{p}\left(c_{0}\right) \rightarrow Y$

Theorem (Acoasta, Aron, García and Maestre, JFA 2008)

The couple $\left(\ell_{1}, Y\right)$ satisfies the Bishoo-Phelps-Bollobás property for operators if and only if Y has the AHSP.

Operators From $\ell_{p}\left(c_{0}\right) \rightarrow Y$

Theorem (Acoasta, Aron, García and Maestre, JFA 2008)

The couple $\left(\ell_{1}, Y\right)$ satisfies the Bishop-Phelps-Bollobás property for operators if and only if Y has the AHSP.

The following Banach spaces have the $A H S P$:
(a) a finite dimensional space, (b)a real or complex space $L_{1}(\mu)$ for a σ-finite measure μ,
(c)a real or complex space $C(K)$ for a compact Hausdorff space K, and (d) a uniformly convex space.

Operators From $\ell_{p}\left(c_{0}\right) \rightarrow Y$

Theorem (Acoasta, Aron, García and Maestre, JFA 2008)

The couple $\left(\ell_{1}, Y\right)$ satisfies the Bishop-Phelps-Bollobás property for operators if and only if Y has the AHSP.

Operators From $\ell_{p}\left(c_{0}\right) \rightarrow Y$

Theorem (Acoasta, Aron, García and Maestre, JFA 2008)

The couple (ℓ_{1}, Y) satisfies the Bishop-Phelps-Bollobás property for operators if and only if Y has the AHSP.

Theorem (AGGM (TAMS, 2012), H.J Lee and S. K. Kim (Canadian J. Math. 2013))

Let X be a uniformly convex Banach space. Then the couple (X, Y) has the BPBp for every Banach space Y.
More precisely, given $0<\epsilon<1$, let $0<\eta<\frac{\epsilon}{8+2 \epsilon} \delta(\epsilon)$. If $T \in S_{\mathcal{L}(X, Y)}$ and $x \in S_{X}$ satisfy

$$
\left\|T x_{0}\right\|>1-\eta
$$

then there exist $S \in S_{\mathcal{L}(X, Y)}$ and $u_{0} \in S_{X}$ such that $\left\|S u_{0}\right\|=1$, $\|S-T\|<\epsilon$ and $\left\|x_{0}-u_{0}\right\|<\epsilon$.

Operators From $\ell_{p}\left(c_{0}\right) \rightarrow Y$

For $1<p<\infty$, the couple $\left(\ell_{p}, Y\right)\left(\left(L_{p}(\mu), Y\right)\right)$ has the BPBp for every Banach space Y.

Operators From $\ell_{p}\left(c_{0}\right) \rightarrow Y$

For $1<p<\infty$, the couple $\left(\ell_{p}, Y\right)\left(\left(L_{p}(\mu), Y\right)\right)$ has the BPBp for every Banach space Y.

How about $\left(\ell_{\infty}, Y\right)$ or $\left(c_{0}, Y\right)$?
[AAGM] For a uniformly convex space Y the couple $\left(\ell_{\infty}^{n}, Y\right)$ has the $B P B p$ for every $n \in \mathbb{N}$, but they raised a question

Operators From $\ell_{p}\left(c_{0}\right) \rightarrow Y$

For $1<p<\infty$, the couple $\left(\ell_{p}, Y\right)\left(\left(L_{p}(\mu), Y\right)\right)$ has the BPBp for every Banach space Y.

How about $\left(\ell_{\infty}, Y\right)$ or $\left(c_{0}, Y\right)$?
[AAGM] For a uniformly convex space Y the couple $\left(\ell_{\infty}^{n}, Y\right)$ has the $B P B p$ for every $n \in \mathbb{N}$, but they raised a question

Question.

Does the couple $\left(c_{0}, Y\right)$ have the BPBp for a uniformly convex space Y ?

Operators From $\ell_{p}\left(c_{0}\right) \rightarrow Y$

For $1<p<\infty$, the couple $\left(\ell_{p}, Y\right)\left(\left(L_{p}(\mu), Y\right)\right)$ has the BPBp for every Banach space Y.

How about $\left(\ell_{\infty}, Y\right)$ or $\left(c_{0}, Y\right)$?
[AAGM] For a uniformly convex space Y the couple $\left(\ell_{\infty}^{n}, Y\right)$ has the $B P B p$ for every $n \in \mathbb{N}$, but they raised a question

Question.

Does the couple $\left(c_{0}, Y\right)$ have the $B P B p$ for a uniformly convex space Y ?

Answer: Yes [Sun Kwang Kim, Israel J. Math. 2013].

Operators From $\ell_{p}\left(c_{0}\right) \rightarrow Y$

Question.

Characterize a Banach space Y such that $\left(c_{0}, Y\right)$ has the $B P B p$.

Operators From $\ell_{p}\left(c_{0}\right) \rightarrow Y$

Question.

Characterize a Banach space Y such that $\left(c_{0}, Y\right)$ has the BPBp.

Theorem (Aron, Cascales, Kozhushkina, PAMS 2011) Let L be a locally compact space. Then $\left(X, C_{0}(L)\right)$ has the BPBp if X is Asplund. In particular, $\left(c_{0}, C_{0}(L)\right)$ has the $B P B p$.

Operators From $\ell_{p}\left(c_{0}\right) \rightarrow Y$

Question.

Characterize a Banach space Y such that $\left(c_{0}, Y\right)$ has the $B P B p$.

Theorem (Aron, Cascales, Kozhushkina, PAMS 2011) Let L be a locally compact space. Then $\left(X, C_{0}(L)\right)$ has the BPBp if X is Asplund. In particular, $\left(c_{0}, C_{0}(L)\right)$ has the $B P B p$.

Theorem (Cascales, Guirao, and Kadets, Advances in Math. 2012)
Let A be a uniform algebra. Then (X, A) has the BPBp if X is Asplund. In particular, $\left(c_{0}, A\right)$ has the $B P B p$.

Definition Let X and Y be Banach spaces. Let D be a bounded convex sulust of X. We say that (X, Y) has the BPBp on D is, for every $\varepsilon>0$, there is $\eta_{D}(\varepsilon)>0$ such that for every $T \in L(X, Y),\|T\|_{D}=1$ and so r every $x \in D$ satisfying

$$
\|T x\|>1-n_{d}(\varepsilon)
$$

there exist $S \in L(X, Y)$ and $Z \in D$ such that $\|S z\|=1=\|s\|_{D},\|x-z\|<\varepsilon$ and $\|T-S\|<\varepsilon$.

$$
\|T\|_{D}=\sup \{\|T x\|: x \in D\}
$$

We can see that BPBp holds for bounded linear functionals on arbitrary bounded convex sets of a real Banach space X.
In sat, it follows from Ekeland's variational principle (Ekeland, JMAA 1974)

We can see that BPBp holds for bounded linear sunctionals on arbitrary bounded convex sets of a real Banach space X.
In sat, it follows from Ekeland's variational principle (Ebeland, JMAA 1974)

Let $f: X \rightarrow \mathbb{R} \cup\{\infty\}$ be proper lower semiciontinuous and bounded below function on a real Banach space X. Then, given $\varepsilon>0$ and $\delta>0$. there exists $x_{1} \in X$ such that $f\left(x_{1}\right)<f(x)+\varepsilon\left\|x-x_{1}\right\|$ for every $x \in X$ with $x \neq x_{1}$. Moreover, is, $f\left(x_{0}\right)<b+\delta / 2$, where $b=$ in $\left\{\left\{s(x): x \in X^{1}\right\}\right.$, then x_{1} can be chosen so that $\left\|x_{0}-x_{1}\right\|<\delta / \varepsilon$.

Theorem (Cho/C, JLMS 2016)
Let D be a bounded convex closed subset of a real Banach space X. Given $\varepsilon>0$ and $\delta>0$, if $\delta \in X^{*}$ and $x_{0} \in D$ such that

$$
f\left(x_{0}\right)>\sup \{f(x) ; x \in D\}-\frac{\delta}{2},
$$

then there exist $g \in X^{*}$ and $x_{1} \in D$ sati sying $\left.g\left(x_{1}\right)=\operatorname{suph} g(x): x \in D\right\}$, $\|s-g\| \leqslant \varepsilon$ and $\left\|x_{1}-x_{0}\right\| \leqslant \delta / \varepsilon$.

Theorem (Cho/C, JLMS 2016)
Let D be a bounded convex closed subset os a real Banach space X. Given $\varepsilon>0$ and $\delta>0$, if $\delta \in X^{*}$ and $x_{0} \in D$ such that

$$
f\left(x_{0}\right)>\sup \{f(x): x \in D\}-\frac{\delta}{2},
$$

then there exist $g \in X^{*}$ and $x_{1} \in D$
satisfying $\left.g\left(x_{1}\right)=\operatorname{suph} g(x): x \in D\right\}$, $\|\xi-g\| \leqslant \varepsilon$ and $\left\|x_{1}-x_{0}\right\| \leqslant \delta / \varepsilon$.

We can also obtain the following theorem for a bounded linear functional, which is analogous to stegall's nonlinear form.

Theorem let D be a bounded convex set in a real Banach space X. Given $0<\varepsilon<1 / 4$ and $\& \in X^{*}$, there exist $x^{*} \in X^{*}$ and $x_{0} \in D$ such that both $f+x^{*}$ and $f+\left|x^{*}\right|$ attain their supreme simultaneously at x_{0} and $\left\|x^{*}\right\|<\varepsilon$. Moreover, $\left(f+x^{*}\right)\left(x_{0}\right)=\left(f+\left|x^{*}\right|\right)\left(x_{0}\right)$.

Theorem let D be a bounded convex set in a real Banach space X. Given $0<\varepsilon<1 / 4$ and $\& \in X^{*}$, there exist $x^{*} \in X^{*}$ and $x_{0} \in D$ such that both $f+x^{*}$ and $f+\left|x^{*}\right|$ attain their supreme simultaneously at x_{0} and $\left\|x^{*}\right\|<\varepsilon$. Moreover, $\left(f+x^{*}\right)\left(x_{0}\right)=\left(f+\left|x^{*}\right|\right)\left(x_{0}\right)$.

Sketch of proof
Assume $D \subseteq B_{X}$ and $\|S\|_{D}=1$.
$B-P$ theorem $\Longrightarrow \exists x_{0}^{*} \in X^{*}$ sot. $\left\|\chi^{*}\right\|<\frac{\varepsilon}{2}$ and $f+x^{*}$ attains its supremum at $x_{0} \in D$.
If $f\left(x_{0}\right)+x^{*}\left(x_{0}\right) \geqslant f(x)+\left|x^{*}(x)\right|, \forall x \in D$, we are done.

Otherwise, $\exists y \in D$ sit. $\delta(y)+\left|x^{*}(y)\right|>f\left(x_{0}\right)+x^{*}\left(x_{0}\right)$. Clearly, $x^{*}(y)<0$, and

$$
f(y)-x^{*}(y)>f\left(x_{0}\right)+x^{*}\left(x_{0}\right) .
$$

Otherwise, $\exists y \in D$ sit. $\delta(y)+\left|x^{*}(y)\right|>f\left(x_{0}\right)+x^{*}\left(x_{0}\right)$.
Clearly, $x^{*}(y)<0$, and

$$
f(y)-x^{*}(y)>f\left(x_{0}\right)+x^{*}\left(x_{0}\right) .
$$

Let $S=\sup _{x \in D}\left(f(x)-x^{*}(x)\right)$ and

$$
\alpha=S-\left(f\left(x_{0}\right)+x^{*}\left(x_{0}\right)\right)<\left(1+\frac{\varepsilon}{2}\right)-\left(1-\frac{\varepsilon}{2}\right)=\varepsilon .
$$

Otherwise, $\exists y \in D$ s.t. $f(y)+\left|x^{*}(y)\right|>f\left(x_{0}\right)+x^{*}\left(x_{0}\right)$.
Clearly, $x^{*}(y)<0$, and

$$
f(y)-x^{*}(y)>f\left(x_{0}\right)+x^{*}\left(x_{0}\right) .
$$

Let $S=\sup _{x \in D}\left(f(x)-x^{*}(x)\right)$ and

$$
\alpha=S-\left(f\left(x_{0}\right)+x^{*}\left(x_{0}\right)\right)<\left(1+\frac{\varepsilon}{2}\right)-\left(1-\frac{\varepsilon}{2}\right)=\varepsilon .
$$

Choose $y_{0} \in D$ so that $f\left(y_{0}\right)-x^{*}\left(y_{0}\right)>S-\frac{\alpha^{2} \varepsilon^{2}}{2}$. $\exists x_{1}^{*}$ s.t. $\left(f-x^{*}\right)+x_{1}^{*}$ attains its supremum at $z_{0} \in D,\left\|x_{1}^{*}\right\| \leqslant \alpha \varepsilon$ and $\left\|y_{0}-z_{0}\right\| \leqslant \alpha \varepsilon$.

Otherwise, $\exists y \in D$ sit. $f(y)+\left|x^{*}(y)\right|>f\left(x_{0}\right)+x^{*}\left(x_{0}\right)$.
Clearly, $x^{*}(y)<0$, and

$$
f(y)-x^{*}(y)>f\left(x_{0}\right)+x^{*}\left(x_{0}\right) .
$$

Let $S=\sup _{x \in D}\left(f(x)-x^{*}(x)\right)$ and

$$
\alpha=S-\left(f\left(x_{0}\right)+x^{*}\left(x_{0}\right)\right)<\left(1+\frac{\varepsilon}{2}\right)-\left(1-\frac{\varepsilon}{2}\right)=\varepsilon .
$$

Choose $y_{0} \in D$ so that $f\left(y_{0}\right)-x^{*}\left(y_{0}\right)>S-\frac{\alpha^{2} \varepsilon^{2}}{2}$. $\exists x_{1}^{*}$ s.t. $\left(f-x^{*}\right)+x_{1}^{*}$ attains is supremum at $z_{0} \in D,\left\|x_{1}^{*}\right\| \leqslant \alpha \varepsilon$ and $\left\|y_{0}-z_{0}\right\| \leqslant \alpha \varepsilon$. Set $x_{2}^{*}=-x^{*}+x_{1}^{*}$. we can check that $\left\|x_{2}^{*}\right\|<\varepsilon$ \& $s+\left|x_{2}^{*}\right|$ attains its supremum at z_{0} on D. $s\left(z_{0}\right)+x_{2}^{*}\left(z_{0}\right)=$

Fiurther, we can show that, sou a bounded closed convex set D, the set $\left\{S_{i}|\xi|\right.$ attains ids supremumin $\}$ is dense in X^{*}. on D

Further, we can show that, sou a bounded closed convex set D, the set $\{f:|\delta|$ attains its supremuni $\}$ is dense in X^{*}. on D

Theorem let D be a bounded closed convex set in a real Banach space X. Given $\xi \in X^{*}$ and $\varepsilon>0$, there exists $x^{*} \in X^{*}$ such that $\left|f+x^{*}\right|$ attains its supremum on D and $\left\|x^{*}\right\| \leq \varepsilon$. Moreover, is D is symmetric and $f\left(x_{0}\right)>\|\delta\|_{D}-\delta / 2$ for some $x_{0} \in D$ and $\delta>0$. then x^{*} and $x_{1} \in D$ can be chosen so that $\left\|x^{*}\right\| \leqslant \varepsilon, \quad\left\|x_{0}-x_{1}\right\| \leqslant \delta / \varepsilon$ and $\left|\delta+x^{*}\right|$ attains its supremum at x_{1} on D

Vector-valued case
$\left(l_{2}^{2}, Y\right)$ has $B P B_{p}$ on $B_{l_{2}^{2}}$ for every Banach space Y, but there is a Banach space Z such that $\left(l_{2}^{2}, Z\right)$ sails to have BPBP on $D=\{|x|+|y| \leq 1\}$.

Vector-valued case
$\left(l_{2}^{2}, Y\right)$ has $B P B_{p}$ on $B_{l_{2}^{2}}$ for every Banach space Y, but there is a Banach space Z such that $\left(l_{2}^{2}, Z\right)$ sails to have BPBP on $D=\{|x|+|y| \leq \mid\}$.

$$
Z=\left[\oplus_{l_{k}=1}^{\infty} Z_{k}\right]_{l \infty}
$$

Positive Results
(1) $X, Y=$ sinite-dimensional Banach space $\forall D=$ bounded closed convex set

Positive Results
(1) $X, Y=\sin i t e-d i m e n s i o n a l$ Banach space $\forall D=$ bounded closed convex set
(2) $Y=$ Banach space with property (β)
$\forall D=$ symmetric bounded convex set

Positive Results
(1) $X, Y=$ sinite-dimensional Banach space $\forall_{D}=$ bounded closed convex set
(2) $Y=$ Banach space with property (β)
$\forall D=$ symmetric bounded convex set
Recall The modulus of convexity

$$
\delta(\varepsilon)=\operatorname{ins}\left\{1-\frac{\|x+y\|}{2}: x, y \in B_{x},\|x-y\| \geqslant \varepsilon\right\}
$$

For a bounded closed absorbing convex set D, define $\delta_{D}(\varepsilon)$ for $0<\varepsilon<1$ by

$$
\delta_{D}(\varepsilon)=\operatorname{in}\left\{\left\{\frac{P_{D}(x)}{2}+\frac{P_{D}(y)}{2}-P_{D}\left(\frac{x+y}{2}\right): x, y \in D, P_{D}(x-y) \geqslant \varepsilon\right\}\right.
$$

Theorem Let X and Y be (real or complex) Banach spaces and D be a bounded closed absorbing convex suluset of $B X$ such that $\delta_{D}(\varepsilon)>0$ for every $0<\varepsilon<\frac{1}{2}$.
If $T \in S_{L(X, Y)}$ and $x_{1} \in D$ satins y

$$
\left\|T x_{1}\right\|>\|T\|_{D}-\varepsilon^{3} \delta_{D}(\varepsilon),
$$

for susciciciently small ε relatively to $\|T\|_{D_{1}}$ then there exist $S \in L(X, Y)$ and $Z \in D$ such that $\|S z\|=\|S\|_{D},\|S-T\|<4 \varepsilon^{2} /(1-\varepsilon)$, and $\left\|x_{1}-z\right\| \leqslant \rho_{D}\left(x_{1}-z\right)<\varepsilon /(1-\varepsilon)$.

Avon, Cascales \& Kozhushkina, PAMS 2011 BPBp holds on B_{x} for an Asplund operator srom X into $C_{0}(L)$.

Avon, Cascales \& Kozhushkina, PAMS 2011 BPBp holds on B_{x} for an Asplund operator from x into $C_{0}(L)$.
Theorem Fou a symmetric bounded closed convex subset $D \subseteq B_{x}$ and locally compact Hans dorset space L, let $T: X \rightarrow C_{D}(L)$ be an Asplund operator with $\|T\|_{D}=1$ \& $\|T\|=M \geqslant 1$. Given $0<\varepsilon<M / 2$. is $x_{0} \in D$ sates sies that $\left\|T x_{0}\right\|>1-\frac{\varepsilon^{2}}{4 M}$, then there exist an Asplund operator S and $u_{0} \in D$ sit. $\|S\|_{D}=1=\left\|S u_{0}\right\|,\left\|x_{0}-u_{0}\right\|<\varepsilon$ and $\|T-S\|<4 \varepsilon$.

Thank you

Thank you for your attention !!

