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In 1967 Katµetov proved a "purely combinatorial" and "possibly
well-known" result.

(Kat¼etov in 1967) "However, not having found an explicit reference,
the present author preferred publishing a well-known result to
undertaking a long search".

(Krawczyk, Steprāns): "...., which has been variously attributed to
Banach, Erdös and de Bruijn, and Katµetov ......" (Continuous
colorings of closed graphs, Topology and its Applications 51
(1993),13-26).

Hell, Ne�etµril, Raspaud, and Sopena (2000): "due to Erdös, de
Bruijn, Katµetov, and Kasteleijn...".
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Theorem
(Kat¼etov) Let X be a set and let T : X ! X be a map such that
T (x) = x for no x 2 X. Then there exist pairwise disjoint sets A1, A2, A3
such that A1 [ A2 [ A3 = X and, for all i 2 f1, 2, 3g, T (Ai ) \ Ai = ?.
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In 1968, Frolµik, a student of Katµetov, provided a model for a similar
result under the presence of more structure.

Theorem
If X is a Hausdor¤ space that is compact, extremally disconnected, and
regular and if T : X ! X is a homeomorphism, then there exist pairwise
disjoint clopen subsets A0, A1, A2, A3 such that (a)
A0 [ A1 [ A2 [ A3 = X, (b) for all i 2 f1, 2, 3g, T (Ai ) \ Ai = ?, and (c)
A0 equals the set of �xed points of T .

In 1968 as well, Katµetov added a footnote to his Theorem in another
paper: "As I have learned, it was found earlier by H. Kenyon and
published as research problem (American Mathematical Monthly 70
(1963), p. 216); the solution appeared in Vol 71 (1964), p.219)".
(with the names of 15 other solvers including Kenyon; the published
solution was by I.N. Baker).
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By using Stone�s Theorem one can translate Frolµik�s result into a
result for vector lattices as follows.

Theorem

For a topological space X to which Frolµik�s Theorem applies and for a
vector lattice isomorphism T : C (X )! C (X ) there exist pairwise disjoint
projection bands B0, B1, B2, B3 such that (a) B0 _ B1 _ B2 _ B3 = C (X )
in the Boolean algebra of disjoint complements in C (X ), (b) T (Bi ) � B?i
for all i 2 f1, 2, 3g, and (c) T (P) � P for each disjoint complement P in
B0.

T in the above Theorem composes continuous functions with the
homeomorphism of Frolik�s Theorem.

As such, T has a host of properties: it is order continuous, bijective,
bi-disjointness-preserving, order bounded, and it has the Maharam
property as well.

In addition, C (X ) is Dedekind complete.
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As a consequence, the result below of de Pagter and Schep (2000)
extends the result.

Theorem
If E is a Dedekind complete vector lattice and T : E ! E is a linear
transformation that is order-bounded, disjointness preserving, Maharam,
and perpendicular to the identity transformation, then there exist pairwise
disjoint polars B1, B2, B3 such that (a) B1 _ B2 _ B3 = E in the Boolean
algebra of polars of E , and (b) T (Bi ) � B?i for all i 2 f1, 2, 3g.

QUESTION: Are there similar decompositions for more general vector
lattices E and linear maps T : E ! E .?
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De�nition
Let E be a partially ordered set as well as a group. We call E a partially
ordered group if whenever g1 � g2 and x , y 2 E then xg1y � xg2y . A
partially ordered group E is called a lattice ordered group if E is a lattice
under the given ordering.

From here on E will be a lattice ordered group and we will use
additive notation for the group operation. For the identity element of
G we will use 0.
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De�nition

For A � E we say that A? := fg 2 G : jg j ^ jaj = 0 for all a 2 Ag is the
polar of A.

The set of polars form a Boolean algebra.

Theorem
The polars of E form a complete Boolean algebra. The in�mum and
supremum of a collection of polars are given by the familiar formulas:V

Aλ =
T
Aλ,

W
Aλ = (

S
Aλ)

?? , and Ac = A?.

In spite of trying to be careful, we also dictate that the word "band"
is an equivalent for the word "polar". A is a polar if and only if
A = A??. Polars are, in particular, convex subgroups.
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We will often use the following formula:

x = y + z and jy j ^ jz j = 0 then jx j = jy j+ jz j .
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De�nition
A convex l-subgroup A of an l-group E is called a cardinal summand of
E if there exists a convex l-subgroup P of E such that E = A+ P and
A\ P = f0g. In that case P is the polar of A.

Gerard Buskes and Robert Red�eld (University of Mississippi and Hamilton College)Frolik Decompositions for Lattice-ordered Groups Positivity IX, July 2017 10 / 46



Surprisingly, we found that Frolµik decompositions occur in the setting
of quite general lattice ordered groups.

Theorem
If E is a lattice ordered group and T : E ! E is a group
homomorphism such that

(1) T (E )?? is a cardinal summand of E ,
(2) T (E ) is a polar-dense l-subgroup of E ,
(3) jT (x)j ^ jT (y)j = 0 if and only if jx j ^ jy j = 0 [i.e. T is

bi-disjointness-preserving], and
(4) if B is a polar and x /2 B?, then x = y + z for 0 6= y 2 B

and jy j ^ jz j = 0 [E has CFC],
then there exist pairwise disjoint polars P0, P1, P2, P3 such
that (a) P0 _ P1 _ P2 _ P3 = E in the Boolean algebra of
disjoint complements in E , (b) T (Pi ) � P?i for all
i 2 f1, 2, 3g, and T (L) � L for each polar L of P0.
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.

The lattice-ordered groups E do not need to be Archimedean (nor
commutative).

The map T does not need to be order bounded.

T is bi-disjointness-preserving, not merely disjointness preserving.

Gerard Buskes and Robert Red�eld (University of Mississippi and Hamilton College)Frolik Decompositions for Lattice-ordered Groups Positivity IX, July 2017 12 / 46



.

The lattice-ordered groups E do not need to be Archimedean (nor
commutative).

The map T does not need to be order bounded.

T is bi-disjointness-preserving, not merely disjointness preserving.

Gerard Buskes and Robert Red�eld (University of Mississippi and Hamilton College)Frolik Decompositions for Lattice-ordered Groups Positivity IX, July 2017 12 / 46



.

The lattice-ordered groups E do not need to be Archimedean (nor
commutative).

The map T does not need to be order bounded.

T is bi-disjointness-preserving, not merely disjointness preserving.

Gerard Buskes and Robert Red�eld (University of Mississippi and Hamilton College)Frolik Decompositions for Lattice-ordered Groups Positivity IX, July 2017 12 / 46



Organization of the talk:

(I) De�nitions and their context needed for The Theorem.

(II) Proof of The Theorem.

(III) Application of The Theorem to a Frolµik result for all
Archimedean vector lattices.

(iV) Extensions of The Theorem to situations in which it does not
apply.

(V) Examples as illustration.

Gerard Buskes and Robert Red�eld (University of Mississippi and Hamilton College)Frolik Decompositions for Lattice-ordered Groups Positivity IX, July 2017 13 / 46



Organization of the talk:

(I) De�nitions and their context needed for The Theorem.

(II) Proof of The Theorem.

(III) Application of The Theorem to a Frolµik result for all
Archimedean vector lattices.

(iV) Extensions of The Theorem to situations in which it does not
apply.

(V) Examples as illustration.

Gerard Buskes and Robert Red�eld (University of Mississippi and Hamilton College)Frolik Decompositions for Lattice-ordered Groups Positivity IX, July 2017 13 / 46



Organization of the talk:

(I) De�nitions and their context needed for The Theorem.

(II) Proof of The Theorem.

(III) Application of The Theorem to a Frolµik result for all
Archimedean vector lattices.

(iV) Extensions of The Theorem to situations in which it does not
apply.

(V) Examples as illustration.

Gerard Buskes and Robert Red�eld (University of Mississippi and Hamilton College)Frolik Decompositions for Lattice-ordered Groups Positivity IX, July 2017 13 / 46



Organization of the talk:

(I) De�nitions and their context needed for The Theorem.

(II) Proof of The Theorem.

(III) Application of The Theorem to a Frolµik result for all
Archimedean vector lattices.

(iV) Extensions of The Theorem to situations in which it does not
apply.

(V) Examples as illustration.

Gerard Buskes and Robert Red�eld (University of Mississippi and Hamilton College)Frolik Decompositions for Lattice-ordered Groups Positivity IX, July 2017 13 / 46



Organization of the talk:

(I) De�nitions and their context needed for The Theorem.

(II) Proof of The Theorem.

(III) Application of The Theorem to a Frolµik result for all
Archimedean vector lattices.

(iV) Extensions of The Theorem to situations in which it does not
apply.

(V) Examples as illustration.

Gerard Buskes and Robert Red�eld (University of Mississippi and Hamilton College)Frolik Decompositions for Lattice-ordered Groups Positivity IX, July 2017 13 / 46



De�nitions of cardinal summand and bi-disjointness-preserving have
already been given.

A is called a convex l-subgroup of E when x � y � z and x , z 2 A
imply that y 2 A.
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CONDITION (2): T (E ) is a polar dense l-subgroup of E .

De�nition
Let E be an l-group and let A be an l-subgroup of E . We say that A is
polar-dense in E if for all 0 < g 2 A?? there exists 0 < a 2 A such that
a?? � g??.

Note that:

Polars are polar dense.

A convex l-subgroup is order dense if and only if A? = f0g.
Every order dense l-subgroup is polar dense; the converse of the last
statement does not hold:

Z is a polar dense l-subgroup of R, but it is not order dense in R.
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CONDITION (4) We say that E has CFC (acronym for Co�nal
Family of Components) when the following holds. If B is a polar of E
and x /2 B?, then x = y + z for 0 6= y 2 B and jy j ^ jz j = 0.

To illustrate the relative strength of Condition (4), consider the
following implications for vector lattices:

DC =) PP =) PPP =) SMP =) WFP =) CFC ; Archimedean

DC : Dedekind complete; every subset of E that is bounded above
has a least upper bound in E .

PP: Projection Property ; every polar in E is a cardinal summand in
E .
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PPP: Principal Projection Property ; every principal polar is a cardinal
summand.

SMP: Su¢ ciently many projections; Every nonzero band in E
contains a nonzero projection band.

WFP: Weak Freudenthal Property ; For every e 2 E , every x in the
principal ideal generated by e can be e-uniformly approximated by
components of e.

CFC : Co�nal Family of Components; appears for the �rst time in an
analysis of disjointness preserving operators by Abramovich and
Kitover (2005).

DC =) PP =) PPP =) SMP is ancient history ([L,Z] and [Z]).

SMP =) WFP (Wojtowicz [1992]).

WFP =) CFC (Abramovich, Kitover [2005]).
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Example of a space that has CFC .

Example

Let E be the set of all functions f : [0, 1)! R for which there exists a
partition [0, 1) =

S
α[pα, qα) with the property: for each α there exist

aα,bα 2 R such that f (x) = aαx + bα for all x 2 [pα, qα): the piecewise
linear functions. This E has CFC but does not have the Projection
Property.
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The decomposition that we will create is relative to a convex
l-subgroup that is maximal with respect to the following property.

De�nition
Suppose that E is an l-group and that T : E ! E is a group
homomorphism. We say that a convex subgroup I of E is T -polarizing if
T (I ) � I?.

De�nition
If A is an l-subgroup of an l-group E then we write for a subset X of E .

X?A = X? \ A.
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Lemma

A?? is T -polarizing if A is T -polarizing and T is bi-disjointness preserving.

Proof.
First we show that for any subset U of E we have that
T (U?) = T (U)?T (E ) . Suppose that x 2 T (U)? \ T (E ).

Then x = T (h) for some h 2 E and for all u 2 U we have that
jT (u)j ^ jT (h)j = jT (u)j ^ jT (x)j = 0. Then juj ^ jhj = 0 and
hence h 2 U?.
So x 2 T (U?).
Conversely, suppose that h 2 U?. Then juj ^ jhj = 0 for all u 2 U.
Then jT (u)j ^ jT (h)j = 0 since T is disjointness preserving. Then
T (h) 2 T (E ) \ T (U)?.
Now we use the latter observation to prove the Lemma. By applying
it twice we get that

T (A??) = T (A)?T (E )?T (E ) .

Then by applying X?A = X? \ A twice we get that
T (A??) = T (A)?? \ T (E ). Since T is A-polarizing it follows that

T (A??) � T (A)?? �
�
A?
�??

=
�
A??

�?
. Then A?? is

T -polarizing.
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The formal de�nition of an n-decomposition.

De�nition
Let E be an l-group; let T : E ! E be a group homomorphism; let n be a
positive integer; then E is n-decomposable with respect to T if there exist
pairwise disjoint polars P0, ...,Pn of E such that

(1) E = P0 _ ..._ Pn in the Boolean algebra of polars of E ,
(2) for all i = 1, ..., n, T (Pi ) � Pdi ,
(3) T is polar preserving on P0.
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(1) E = P0 _ ..._ Pn in the Boolean algebra of polars of E ,
(2) for all i = 1, ..., n, T (Pi ) � Pdi ,
(3) T is polar preserving on P0.
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The polars in the previous de�nition are called an n-decomposition of
E with respect to T .

Alternatively to (1) in that de�nition one can also, equivalently, use:

E = (P0 + ...+ Pn)
?? .

Here is a list of easy properties that n-decompositions have:

(1) T (P0) � P0,
(2) P0 = (P1 + ...+ Pn)

?,

(3) if jx j ^ jy j = 0 for x , y 2 P0 then jT (x)j ^ jy j = 0 as well, and
(4) if T is nonzero, then Pi 6= E for all i 2 f1, ..., ng.
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Note that (3) above does not imply that T is an orthomorphism. We
will later give an example of a non-order bounded T on an
Archimedean vector lattice E and an operator T on E such that E is
1-decomposable with respect to T but T is not order bounded.

Looking at the result by de Pagter and Schep that we mentioned, we
illustrate both, some similarity as well as some di¤erence, between
results that they obtained versus our result.

Theorem
(de Pagter, Schep; 2000) Let E be a Dedekind complete vector lattice and
let T : E ! E be an operator with the following properties: T is order
bounded, disjointness preserving, order continuous, and Maharam, and for
all 0 � z 2 E , inffT (x) + z � x : 0 � x � zg = 0. Then there exist
mutually disjoint bands B1,B2, and B3 such that B1 _ B2 _ B3 = E and
T (Bi ) � B?i for 1 � i � 3.
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CONDITION 2. We now continue to illustrate the conditions of our
main result before we start the proof.

De�nition
Let E be an l-group and let A be an l-subgroup of E . We say that A is
polar-dense in E if for all 0 < g 2 A?? there exists 0 < a 2 A such that
a?? � g??.

Of course polars are polar dense, a convex l-subgroup is order dense if
and only if A? = f0g, and every order dense l-subgroup is polar
dense; the converse of the last statement does not hold: Z is a polar
dense l-subgroup of R, but it is not order dense in R.
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SET-UP for the PROOF: Easy facts and a de�nition.
Let E be an l-group and let T : E ! E be a bi-disjointness-preserving
group homomorphism. The following facts are easy.

If A is a T -polarizing convex l-subgroup of E then A?? also is
T -polarizing.

The convex l-subgroup


K(T [T (E )?])

�
generated by T [T (E )?] is a

T -polarizing convex l-subgroup of T (E )??.

De�nition: Since f0g clearly is a T -polarizing subgroup, we can use the
Axiom of Choice to pick a maximal chain C of T -polarizing convex
subgroups of T (E )??. We de�ne I0 =

SC.

If T (E )?? is a cardinal summand of E and


K(T [T (E )?]

�
2 C then

C is a maximal chain of T -polarizing convex l-subgroups of E .
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Assuming E is an l-group and T is a bi-disjointness-preserving group
homomorphism.

(Fact 1) I0 is a T -polarizing convex l-subgroup.

(Fact 2) I0 is a polar in E .
(Fact 3) I0 \ T (I0) = f0g = I0 \ T�1(I0).
(Fact 4) (Assuming that T (E ) is a polar-dense l-subgroup.) T (I0) is
a polar in T (E ).
(Fact 5) (Assuming that T (E ) is polar-dense l-subgroup.) T�1(I0) is
a polar in E and for every polar B in T (E )??it follows that
T�1(B?) = T�1(B)?.
(Fact 6) T is one-to-one.
(Fact 7) (If T (E ) is a polar dense l-subgroup and E has CFC .) T (E )
has CFC .
(Fact 8)



K(T [T (E )?])

�
is a T -polarizing convex l-subgroup of

T (E )??.
(Fact 9) If T (E )?? is a cardinal summand of E and

K(T [T (E )?]

�
2 C then C is a maximal chain of T -polarizing

convex l-subgroups of E .
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Beginning of the Proof of the main result.

Proof.

K(T [T (E )?])

�
is a T -polarizing convex l-subgroup of T (E )?? by

Fact 8. Then choose a maximal chain C of T -polarizing convex
l-subgroups of T (E )?? that contains



K(T [T (E )?])

�
. By fact 9, C

is a maximal chain of T -polarizing convex l-subgroups of E . We let
now I0 be the union of this chain.

We will base our 3-decomposition of E on the following subsets.

M = I0 + T (I0)?? + (T�1(I0) \ T (I0)?) and
F (T ) = ff 2 E : T (g) 2 g?? for all g 2 f ??g.
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Theorem

Under the conditions of our main Theorem we have that M? = F (T ).
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Proof in 3 steps:

STEP 1: For all f 2 F (T ), T (f )?? = f ??.

STEP 2: M? � F (T ).
STEP 3: M? � F (T ).
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PROOF OF STEP 1: We show T (f )?? = f ?? for all f 2 F (T ). Let
f 2 F (T ).

Since T (f ) 2 f ?? by de�nition of F (T ), it follows that
T (f )?? � f ??. Thus if f 2 T (f )?? then T (f )?? = f ??. Thus
assume, reasoning by contradiction, that f /2 T (f )??.

Then since E has CFC , there exits g1 and g2 where 0 6= g1 2 T (f )?,
f = g1 + g2, and jg1j ^ jg2j = 0.
Since T is disjointness preserving, T (f ) = T (g1) + T (g2) and
jT (g1)j ^ jT (g2)j = 0. Then jT (f )j = jT (g1)j+ jT (g2)j � jT (g1)j
by simple-lattice-arithmetic. But then T (g1) 2 T (f )??.
Similarly, jf j = jg1j+ jg2j � jg1j, and since f 2 F (T ) and
g1 2 T (f )?we have T (g1) 2 g??1 � T (f )?.So
T (g1) 2 T (f )? \ T (f )?? and then T (g1) = 0. Then, since T is
one-to-one by FACT 6, we have that g1 = 0, which is a contradiction.
Thus T (f )?? = f ??.
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STEP 2: M? � F (T ). Let f 2 F (T ). We will prove that

f 2 I?0 \ T (I0)? \ (T�1(I0) \ T (I0)?)?.
We �rst show that f 2 I?0 .
Suppose that g 2 I0. Then jf j ^ jg j 2 I0 since I0 is convex (Fact 1),
and since I0 is T -polarizing (also Fact 1), it follows that
T (jf j ^ jg j) 2 I?0 .
But also jf j ^ jg j 2 f ?? and thus as well (because f 2 F (T )),
T (jf j ^ jg j) 2 (jf j ^ jg j)?? � I??0 . Then T (jf j ^ jg j) = 0 and by
the injectivity of T (Fact 6), jf j ^ jg j = 0.So f 2 I?0 .
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We next show that f 2 T (I0)?.
Suppose that f /2 T (I0)?. Then jf j ^ jT (g)j > 0 for some g 2 I0.
Since T (f )?? = f ??(by Step 1), it then follows that
jT (f )j ^ jT (g)j > 0. Since T is bi-disjointness-preserving we have

that jf j ^ jg j > 0. Then g /2 f ? =
�
f ??

�?
by

simple-polar-reasoning.

Since E has CFC it follows that g = g1 + g2 for 0 6= g1 2 f ?? and
g2 2 E with jg1j ^ jg2j = 0.
Then jT (g1)j ^ jT (g2)j = 0 and T (g) = T (g1) + T (g2).
Since g1 2 f ?? and f 2 F (T ), we obtain that T (g1) 2 g??1 . By
simple lattice arithmetic, jg j = jg1j+ jg2j, and then jg j � jg1j and,
as well, since I0 is convex, g1 2 I0. By Fact 1, T (g1) 2 I?0 . But since
T (g1) 2 g??1 and I0 is a polar (Fact 2), we have that T (g1) 2 I0.
Then T (g1) 2 I0 \ I?0 . So T (g1) = 0 and (T is injective) g1 = 0;
contradiction so f 2 T (I0)?.
Finally, we show that f 2 (T�1(I0) \ T (I0)?)?.
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Suppose that f /2 (T�1(I0) \ T (I0)?)?.

By FACT 5, we know that T�1(I0) is a polar and then
T�1(I0) \ T (I0)? is a polar as well.
Since E has CFC , f = g1 + g2 where 0 6= g1 2 T�1(I0) \ T (I0)?
and jg1j ^ jg2j = 0. Then g1 2 T�1(I0) and g1 2 T (I0)?, and
jT (g1)j ^ jT (g2)j = 0 since T is disjointness preserving.
Of course T (f ) = T (g1) + T (g2) and jT (f )j = jT (g1)j+ jT (g2)j.
Thus jT (f )j � jT (g1)j .
Since f 2 F (T ) (still), we have T (f ) 2 f ?? and then by the
previous line and convexity T (g1) 2 f ??.
But from STEP 1, f 2 I?0 , so f ?? � I?0 and thus T (g1) 2 I?0 but
also T (g1) 2 I0 (since g1 2 T�1(I0) \ T (I0)?. Then T (g1) = 0 and
by injectivity g1 = 0, a contradiction.
Thus

f 2 I?0 \
h
T (I0)?

i??
\
h
T�1(I0) \ T (I0)?

i?
= ...

=
h
I0 + T (I0)?? + (T�1(I0) \ T (I0)?)

i?
,
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and
�
I0 + T (I0)?? + (T�1(I0) \ T (I0)?)

�?
= M?.

STEP 3: M? � F (T ). Suppose that there exists f 2 M? that is not
in F (T ). We will arrive at a contradiction by showing that, under this
assumption, C is not a maximal chain of T -polarizing convex
l-subgroups of E .

There exists b 2 f ?? such that T (b) /2 b??. Then
T (b) /2 b?T (E )?T (E ) = b?? \ T (E ) by an earlier observation in this
talk.

From FACT 7 we know that T (E ) has CFC . Then there exist
r , s 2 E with 0 6= T (r) 2 b?T (E ) and jT (r)j ^ jT (s)j = 0 and
T (r) + T (s) = T (b). Since T is injective, b = r + s. Since T is
bi-disjointness-preserving jr j ^ js j = 0. Then

jbj � jr j � r � � jr j � � jbj

and r 2 b?? � f ?? � M?.

Since r?? � b?? it follows that r? = r??? � b??? = b? and
T (r) 2 b?T (E ) � b? � r?.
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Now de�ne
J = (I0 [ (r??))??.

We will show that J 6= I0 and that J is T -polarizing. Indeed, since
b 2 f ?? and f 2 M? it follows that b 2 M?. As I0 � M, we conclude
that I?0 � M? and thus b 2 I?o . Since jbj � jr j, also r 2 I?o and thus
J 6= I0.

To prove that J is T -polarizing, we need to show that T (J) � J?.
Since J? = I?0 \ r?, the observations that T (r) 2 I?0 \ r? and
T (I0) � I?0 \ r? will su¢ ce. Most of that is straightforward, except
for T (r) 2 I?0 , which we will show next.
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We know that T (I0)?? is a polar and we have shown that I0 and
T�1(I0) are polars. Then

M?? � T�1(I0) \M??

= T�1(I0) \
h
I0 + T (I0)?? + (T�1(I0) \ T (I0)?)

i??
= T�1(I0) \

h
I0 _ T (I0)?? _ (T�1(I0) \ T (I0)?)

i
=
h
T�1(I0) \ T (I0)??

i
_
h
T�(I0) \ (T�1(I0) \ T (I0)?)

i
=
h
T�1(I0) \ T (I0)??

i
_
h
T�(I0) \ T (I0)?

i
= T�1(I0) \

h
T (I0)?? _ T (I0)?

i
= T�1(I0),

where we have used Fact 3 in going from line 3 to line 4.
and then M? � T�1(I0)?. Since r 2 M? it follows that
r 2 T�1(I0)?. From FACT 5, r 2 T�1(I?0 ) and then T (r) 2 I?0 ,
which is what we wanted to show.
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We conclude that J is a T -polarizing ideal that strictly contains
I0.Then C [ fJgis a chain of of T -polarizing convex l-subgroups of E ,
which is a contradiction. Thus M? � F (T ).
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We are now in a position to phrase the Frolµik Theorem for
bi-disjointness-preserving operators more precisely than before as
follows.

Theorem
Let E be a lattice ordered group and T : E ! E a group
homomorphism with the following conditions:

(1) T (E )?? is a cardinal summand of E ;
(2) T (E ) is a polar-dense l-subgroup of E ;
(3) jT (x)j ^ jT (y)j = 0 if and only if jx j ^ jy j = 0;[i.e. T is

bi-disjointness preserving]
(4) if B is a polar and x /2 B?, then x = y + z for 0 6= y 2 B

and jy j ^ jz j = 0.[E has CFC]
Then the subsets

P0 = F (T ), P1 = I0, P2 = T (I0)??, and P3 = T�1(I0)\T (I0)?

form a 3-decomposition of E with respect to T .
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Proof of the main Theorem.

We now know that P0 = F (T ) is a polar.

Of course P2 is a polar and

from FACT 2, I0 is a polar and from FACT 7, T�1(I0) is a polar and
then so is T�1(I0) \ T (I0)?.
We have seen that P0 is disjoint with each of the Pi with i 2 f1, 2, 3g.
One has to check that others are pairwise disjoint as well.

That P1 _ P2 _ P3 = M?? follows from the way we have de�ned M
(and polar arithmetic) and then
P0 _ P1 _ P2 _ P3 = F (T ) _M?? = E .
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(and polar arithmetic) and then
P0 _ P1 _ P2 _ P3 = F (T ) _M?? = E .
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There are some remaining details.

We know that T (I0) � I?0 . Then
T (P1) = T (I0) � T (I0)?? � I???0 = P?1 .

Similar exercises with polar arithmetic and the de�nitions lead to
T (P2) � P?2 and T (P3) � P?3 .
To show that T is polar preserving on P0, assume that B is a polar in
P0. Let g 2 P0. Then g 2 g??.
Since B is a polar in P0 and g 2 F (T ) then
T (g) 2 g?? � B?? = B. So T (B) � B and T is polar preserving
on P0.
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It is easy to derive Frolµik�s original Theorem from our result. The
following consequence might well be easier to remember.

Theorem
Let E be any Archimedean vector lattice and let T : E ! E be an order
continuous d-isomorphism. Then there exists a 3-decomposition of E with
respect to T .

Proof:
Every order continuous d-isomorphism is order bounded.

Every order continuous (hence order bounded) d-isomorphism extends
uniquely to a d-isomorphism on the Dedekind completion E δ of E
from a well-known result by Veksler.

The conditions of our Frolik l-group result are satis�ed.

The intersection of the decomposition of E δ with E provides the
decomposition for E .
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We present just one example of many opportunities to use the Theorem
where it does not immediately apply. Then we present a couple of
examples as food for thought.

Theorem
Let E be an l-group. Suppose that T : E ! E is a
bi-disjointness-preserving group homomorphism such that T (E ) is a polar
dense l-subgroup of E . If E has a polar dense l-subgroup A such that
T (A) � A, A?? = E, and A is 3-decomposable with respect to TjA then
E is 3-decomposable with respect to T .
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Example 1:

There exists a vector lattice E that is not Archimedean but it does
have CFC , together with a bi-disjointness preserving linear bijection
T : E ! E that is not order bounded and our Theorem applies:

The vector lattice we consider is the lexicographically ordered

E = ∑Q>R

and T : E ! E is de�ned by T (f )q = fq�1 .

T is a linear bijection, so T (E ) = E and T (E )?? is a cardinal
summand.

It is easy to see that E has CFC since it is totally ordered. Our
decomposition result applies but T is easily seen not to be order
bounded.

Gerard Buskes and Robert Red�eld (University of Mississippi and Hamilton College)Frolik Decompositions for Lattice-ordered Groups Positivity IX, July 2017 43 / 46



Example 1:

There exists a vector lattice E that is not Archimedean but it does
have CFC , together with a bi-disjointness preserving linear bijection
T : E ! E that is not order bounded and our Theorem applies:

The vector lattice we consider is the lexicographically ordered

E = ∑Q>R

and T : E ! E is de�ned by T (f )q = fq�1 .

T is a linear bijection, so T (E ) = E and T (E )?? is a cardinal
summand.

It is easy to see that E has CFC since it is totally ordered. Our
decomposition result applies but T is easily seen not to be order
bounded.

Gerard Buskes and Robert Red�eld (University of Mississippi and Hamilton College)Frolik Decompositions for Lattice-ordered Groups Positivity IX, July 2017 43 / 46



Example 1:

There exists a vector lattice E that is not Archimedean but it does
have CFC , together with a bi-disjointness preserving linear bijection
T : E ! E that is not order bounded and our Theorem applies:

The vector lattice we consider is the lexicographically ordered

E = ∑Q>R

and T : E ! E is de�ned by T (f )q = fq�1 .

T is a linear bijection, so T (E ) = E and T (E )?? is a cardinal
summand.

It is easy to see that E has CFC since it is totally ordered. Our
decomposition result applies but T is easily seen not to be order
bounded.

Gerard Buskes and Robert Red�eld (University of Mississippi and Hamilton College)Frolik Decompositions for Lattice-ordered Groups Positivity IX, July 2017 43 / 46



Example 1:

There exists a vector lattice E that is not Archimedean but it does
have CFC , together with a bi-disjointness preserving linear bijection
T : E ! E that is not order bounded and our Theorem applies:

The vector lattice we consider is the lexicographically ordered

E = ∑Q>R

and T : E ! E is de�ned by T (f )q = fq�1 .

T is a linear bijection, so T (E ) = E and T (E )?? is a cardinal
summand.

It is easy to see that E has CFC since it is totally ordered. Our
decomposition result applies but T is easily seen not to be order
bounded.

Gerard Buskes and Robert Red�eld (University of Mississippi and Hamilton College)Frolik Decompositions for Lattice-ordered Groups Positivity IX, July 2017 43 / 46



Example 1:

There exists a vector lattice E that is not Archimedean but it does
have CFC , together with a bi-disjointness preserving linear bijection
T : E ! E that is not order bounded and our Theorem applies:

The vector lattice we consider is the lexicographically ordered

E = ∑Q>R

and T : E ! E is de�ned by T (f )q = fq�1 .

T is a linear bijection, so T (E ) = E and T (E )?? is a cardinal
summand.

It is easy to see that E has CFC since it is totally ordered. Our
decomposition result applies but T is easily seen not to be order
bounded.

Gerard Buskes and Robert Red�eld (University of Mississippi and Hamilton College)Frolik Decompositions for Lattice-ordered Groups Positivity IX, July 2017 43 / 46



There exists a disjointness preserving map T on the piecewise linear
functions for which there is a 1-decomposition, T is not
bi-disjointness-preserving, and T is not order bounded, though the
piecewise linear functions do have property CFC .

The map T is the familiar right-hand derivative

T (f )(x) = f
0
(x).

T is linear and disjointness preserving and T 2(E ) = 0. Then T is not
bi-disjointness preserving. F (T ) = E and P0 = E , P1 = f0g form a
1-decomposition.
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.
Example 3:

It is easy to come up with a compact regular topological space X and
a homeomorphism τ : X ! X for which there is no n-decomposition
for any n.

Take X = f 1n : 0 6= n 2 Zg [ f0g and de�ne τ : X ! X by
τ(x) = �x . Then the set of �xed points is f0g, which is closed but
not open. Frolik�s Theorem does not apply.
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Thank you!
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