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1. Definition and Examples

Definition:

A Banach space X is called a Grothendieck space (G-space) if

x∗n ∈ X ∗, x∗n
w∗−→ 0⇔ x∗n

w−→ 0.

Examples:

All reflexive Banach spaces are G-spaces.

`∞ is a G-space.
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1. Definition and Examples

Examples of Non-reflexive G-spaces:

C (K ), K is a compact stonean space (Grothendieck, 1953).

C (K ), K is a compact σ-stonean space (Ando, 1961).

C (K ), K is a F -space (Seever, 1968).

(
∑
⊕Lp)`∞(Γ), 2 6 p 6∞, Γ is countable (Räbiger, 1985).

(
∑
⊕Lϕ)`∞(Γ), Lϕ is an Orlicz function space with the weakly

sequentially complete dual (Leung, 1988).

`∞⊗̂π`p, 2 < p <∞ and `∞⊗̂πT ∗, T ∗ is the original
Tsirelson space (González and Gutiérrez, 1995).

the weak Lp-space Lp,∞, 1 < p <∞ (Lotz, 2010).
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2. Two Projective Tensor Products

2. Grothendieck and Fremlin

Projective Tensor Products
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2. Grothendieck Tensor Product

Definition:

Let E and F be Banach spaces. The projective tensor norm on
E⊗F is defined by

‖u‖π = inf
{ n∑

k=1

‖xk‖ · ‖yk‖ : xk ∈ E , yk ∈ F , u =
n∑

k=1

xk ⊗ yk

}
.

Let E ⊗̂πF denote the completion of E⊗F with respect to ‖ · ‖π,
called the Grothendieck projective tensor product.

E ,F are Banach lattices ; E ⊗̂πF is a Banach lattice.

`2⊗̂π`2 is not a Banach lattice.
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2. Fremlin Tensor Product

Definition (Fremlin, 1974):

Let E and F be Banach lattices, E ⊗̄F be the Risez space tensor
product of E and F with the positive cone

Cp =
{ n∑

k=1

xk ⊗ yk : n ∈ N, xk ∈ E+, yk ∈ F+
}
.

The positive projective tensor norm on E ⊗̄F is defined by

‖u‖|π| = inf
{ n∑

k=1

‖xk‖·‖yk‖ : xk ∈ E+, yk ∈ F+, |u| 6
n∑

k=1

xk⊗yk
}
.

Let E ⊗̂|π|F denote the completion of E ⊗̄F with respect to ‖ · ‖|π|,
called the Fremlin projective tensor product.
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2. Fremlin Tensor Product

E ,F are Banach lattices ; E ⊗̂πF = E ⊗̂|π|F .

`2⊗̂π`2 6= `2⊗̂|π|`2.

Theorem (Cartwright and Lotz, 1975):

Let E and F be Banach lattices. If L(E ,F ) and Lr (E ,F ) are
isometrically isomorphic, then either E is an AL-space or F is an
AM-space.

(E ⊗̂πF )∗ = L(E ,F ∗), (E ⊗̂|π|F )∗ = Lr (E ,F ∗).

If E and F are Banach lattices, then E ⊗̂πF is isometrically
isomorphic to E ⊗̂|π|F if and only if either E or F is
isometrically isomorphic to an AL-space.
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3. Grothendieck Tensor Product being a G-space

3. Grothendieck Projective Tensor Product

being a Grothendieck space
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3. Grothendieck Tensor Product being a G-space

Theorem (González and Gutiérrez, 1995):

Let E and F be Banach spaces. If E is a G-space, F is
reflexive, and L(E ,F ∗) = K(E ,F ∗), then E ⊗̂πF is a G-space.

`∞⊗̂π`p is a G-space for 2 < p <∞.

`∗p = `q, 1 < q < 2. L(`∞, `q) = K(`∞, `q).
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Theorem (González and Gutiérrez, 1995):

Let E and F be Banach spaces. If E is a G-space, F is
reflexive, and L(E ,F ∗) = K(E ,F ∗), then E ⊗̂πF is a G-space.

`∞⊗̂π`p is a G-space for 2 < p <∞.

`∞⊗̂πT ∗ is a G-space, T ∗ is the original Tsirelson space.

Let T be the dual of T ∗. Then L(`∞,T ) = K(`∞,T ).

Qingying Bu Department of Mathematics University of Mississippi Oxford, MS 38677, USA

New Examples of Non-reflexive Grothendieck Spaces



3. Grothendieck Tensor Product being a G-space
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4. Fremlin Tensor Product being a G-space

4. Fremlin Projective Tensor Product

being a Grothendieck Space
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4. Fremlin Tensor Product being a G-space

Let λ be a Banach sequence lattice, X be a Banach lattice. Define

λε(X ) =
{
x̄ = (xi )i ∈ XN :

(
x∗(|xi |)

)
i
∈ λ, ∀ x∗ ∈ X ∗+

}
and ∥∥x̄∥∥

λε(X )
= sup

{∥∥(x∗(|xi |))i∥∥λ : x∗ ∈ BX∗+

}
.

Then λε(X ) is a Banach lattice. Let

λε,0(X ) =
{
x̄ ∈ λε(X ) : lim

n

∥∥(0, . . . , 0, xn, xn+1, . . . )
∥∥
λε(X )

= 0
}
.

Then λε,0(X ) is an ideal of λε(X ).
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4. Fremlin Tensor Product being a G-space

Let λ′ be the Köthe dual of λ. Define

λπ(X ) =
{
x̄ = (xi )i ∈ XN :

∞∑
i=1

x∗i (|xi |) < +∞, ∀(x∗i )i ∈ λ′ε(X ∗)+
}

and ∥∥x̄∥∥
λπ(X )

= sup
{ ∞∑

i=1

x∗i (|xi |) : (x∗i )i ∈ Bλ′ε(X∗)+

}
.

Then λπ(X ) is a Banach lattice. Let

λπ,0(X ) =
{
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4. Fremlin Tensor Product being a G-space

Theorem (Bu and Wong, 2012):

λε,0(X )∗ = λ′π(X ∗) and λπ,0(X )∗ = λ′ε(X
∗).

Lemma 1:

Let λ′ be σ-order continuous and let x̄ (n), x̄ (0) ∈ λε,0(X ). Then
limn x̄

(n) = x̄ (0) weakly in λε,0(X ) if and only if

limn x
(n)
i = x

(0)
i weakly in X and supn ‖x̄ (n)‖λε(X ) <∞.

Lemma 2:

Let λ be σ-order continuous and let x̄∗(n), x̄∗(0) ∈ λπ,0(X )∗. Then
limn x̄

∗(n) = x̄∗(0) weak∗ in λπ,0(X )∗ if and only if

limn x
∗(n)
i = x

∗(0)
i weak∗ in X ∗ and supn ‖x̄∗(n)‖λ′ε(X∗) <∞.
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Theorem (Bu and Wong, 2012):
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4. Fremlin Tensor Product being a G-space

Lemma 3:

Let λ be a reflexive Banach sequence lattice. Then λπ,0(X ) is a
G-space if and only if X is a G-space and λ′ε(X

∗) = λ′ε,0(X ∗).

Theorem (Bu and Wong, 2012):

If λ is σ-order continuous then λπ(X ) = λπ,0(X ).

If λ′ is σ-order continuous then λ′ε(X
∗) = λ′ε,0(X ∗) if and only

if every positive linear operator from λ0 to X ∗ is compact.

Lemma 4:

Let λ be a reflexive Banach sequence lattice. Then λπ,0(X ) is a
G-space if and only if X is a G-space and every positive linear
operator from λ to X ∗ is compact.
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4. Fremlin Tensor Product being a G-space

Lemma 4:

Let λ be a reflexive Banach sequence lattice. Then λπ,0(X ) is a
G-space if and only if X is a G-space and every positive linear
operator from λ to X ∗ is compact.

Theorem (Bu and Buskes, 2009):

If λ is σ-order continuous then λ⊗̂|π|X is lattice isometric to
λπ,0(X ).

Theorem 1:

Let λ be a reflexive Banach sequence lattice and X be a Banach
lattice. Then λ⊗̂|π|X is a G-space if and only if X is a G-space and
every positive linear operator from λ to X ∗ is compact.
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5. New Examples of Non-reflexive G-spaces

Theorem 1:

Let λ be a reflexive Banach sequence lattice and X be a Banach
lattice. Then λ⊗̂|π|X is a G-space if and only if X is a G-space and
every positive linear operator from λ to X ∗ is compact.

Theorem (González and Gutiérrez, 1995):

Let T ∗ be the original Tsirelson space and T be the dual of T ∗.
Then L(`∞,T ) = K(`∞,T ). Thus L(T ∗, `∗∞) = K(T ∗, `∗∞).

New Example 1:

The Fremlin projective tensor product `∞⊗̂|π|T ∗ is a G-space.
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Theorem (González and Gutiérrez, 1995):

Let T ∗ be the original Tsirelson space and T be the dual of T ∗.
Then L(`∞,T ) = K(`∞,T ). Thus L(T ∗, `∗∞) = K(T ∗, `∗∞).

New Example 1:

The Fremlin projective tensor product `∞⊗̂|π|T ∗ is a G-space.

Qingying Bu Department of Mathematics University of Mississippi Oxford, MS 38677, USA

New Examples of Non-reflexive Grothendieck Spaces



5. New Examples of Non-reflexive G-spaces

Theorem 1:

Let λ be a reflexive Banach sequence lattice and X be a Banach
lattice. Then λ⊗̂|π|X is a G-space if and only if X is a G-space and
every positive linear operator from λ to X ∗ is compact.

Fact:

Let 1 < q <∞ and X be an AM-space with an order unit. Then
every positive linear operator from X to `q is compact.

Theorem 2:

Let 1 < p <∞ and X be both an AM-space with an order unit
and a G-space. Then `p⊗̂|π|X is a G-space.
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5. New Examples of Non-reflexive G-spaces

Theorem 2:

Let 1 < p <∞ and X be both an AM-space with an order unit
and a G-space. Then `p⊗̂|π|X is a G-space.

Fact:

If K is a compact stonean space, a compact σ-stonean space, or a
F -space, then C (K ) is a G-space.

New Example 2:

Let 1 < p <∞ and K be a compact stonean space, a compact
σ-stonean space, or a F -space. Then the Fremlin projective tensor
product `p⊗̂|π|C (K ) is a G-space.
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5. New Examples of Non-reflexive G-spaces

Theorem 2:

Let 1 < p <∞ and X be both an AM-space with an order unit
and a G-space. Then `p⊗̂|π|X is a G-space.

New Example 3:

The Fremlin projective tensor product `p⊗̂|π|`∞ is a G-space
for 1 < p <∞.

Ole Example (González and Gutiérrez, 1995):

The Grothendieck projective tensor product `p⊗̂π`∞ is a G-space
if and only if 2 < p <∞.
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Thank you for your attention!!
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