New Examples of Non-reflexive Grothendieck Spaces

Qingying Bu

Department of Mathematics University of Mississippi Oxford, MS 38677, USA

This is a joint work with Yongjin Li

Positivity IX-University of Alberta, July 17-22, 2017

Qingying Bu

Department of Mathematics University of Mississippi Oxford, MS 38677, USA

(日) (同) (三) (

1. Definition and Examples

Qingying Bu

Department of Mathematics University of Mississippi Oxford, MS 38677, USA

Definition:

A Banach space X is called a Grothendieck space (G-space) if

$$x_n^* \in X^*, \quad x_n^* \xrightarrow{w^*} 0 \Leftrightarrow x_n^* \xrightarrow{w} 0.$$

Qingying Bu

Department of Mathematics University of Mississippi Oxford, MS 38677, USA

< ロ > < 同 > < 回 > < 回 > < 回

Definition:

A Banach space X is called a Grothendieck space (G-space) if

$$x_n^* \in X^*, \quad x_n^* \stackrel{w^*}{\longrightarrow} 0 \Leftrightarrow x_n^* \stackrel{w}{\longrightarrow} 0.$$

Examples:

• All reflexive Banach spaces are G-spaces.

Qingying Bu

Department of Mathematics University of Mississippi Oxford, MS 38677, USA

< ロ > < 同 > < 回 > < 回 > < 回

Definition:

A Banach space X is called a Grothendieck space (G-space) if

$$x_n^* \in X^*, \quad x_n^* \stackrel{w^*}{\longrightarrow} 0 \Leftrightarrow x_n^* \stackrel{w}{\longrightarrow} 0.$$

Examples:

- All reflexive Banach spaces are G-spaces.
- ℓ_{∞} is a G-space.

Qingying Bu

Department of Mathematics University of Mississippi Oxford, MS 38677, USA

(日) (同) (三) (三)

Examples of Non-reflexive G-spaces:

• C(K), K is a compact stonean space (Grothendieck, 1953).

Qingying Bu

Department of Mathematics University of Mississippi Oxford, MS 38677, USA

(日) (同) (三) (

Examples of Non-reflexive G-spaces:

- C(K), K is a compact stonean space (Grothendieck, 1953).
- C(K), K is a compact σ -stonean space (Ando, 1961).

Qingying Bu

Department of Mathematics University of Mississippi Oxford, MS 38677, USA

(日) (同) (三) (

Examples of Non-reflexive G-spaces:

- C(K), K is a compact stonean space (Grothendieck, 1953).
- C(K), K is a compact σ -stonean space (Ando, 1961).
- C(K), K is a F-space (Seever, 1968).

Qingying Bu

Department of Mathematics University of Mississippi Oxford, MS 38677, USA

(日) (同) (三) (

Examples of Non-reflexive G-spaces:

- C(K), K is a compact stonean space (Grothendieck, 1953).
- C(K), K is a compact σ -stonean space (Ando, 1961).
- *C*(*K*), *K* is a *F*-space (Seever, 1968).
- $(\sum \oplus L^p)_{\ell_{\infty}(\Gamma)}$, $2 \leqslant p \leqslant \infty$, Γ is countable (Räbiger, 1985).

Qingying Bu

Department of Mathematics University of Mississippi Oxford, MS 38677, USA

(日) (同) (日) (日)

Examples of Non-reflexive G-spaces:

- C(K), K is a compact stonean space (Grothendieck, 1953).
- C(K), K is a compact σ -stonean space (Ando, 1961).
- *C*(*K*), *K* is a *F*-space (Seever, 1968).
- $(\sum \oplus L^p)_{\ell_{\infty}(\Gamma)}$, $2 \leqslant p \leqslant \infty$, Γ is countable (Räbiger, 1985).
- $(\sum \oplus L^{\varphi})_{\ell_{\infty}(\Gamma)}$, L^{φ} is an Orlicz function space with the weakly sequentially complete dual (Leung, 1988).

Department of Mathematics University of Mississippi Oxford, MS 38677, USA

イロト イヨト イヨト イヨト

Examples of Non-reflexive G-spaces:

- C(K), K is a compact stonean space (Grothendieck, 1953).
- C(K), K is a compact σ -stonean space (Ando, 1961).
- *C*(*K*), *K* is a *F*-space (Seever, 1968).
- $(\sum \oplus L^p)_{\ell_{\infty}(\Gamma)}$, $2 \leqslant p \leqslant \infty$, Γ is countable (Räbiger, 1985).
- $(\sum \oplus L^{\varphi})_{\ell_{\infty}(\Gamma)}$, L^{φ} is an Orlicz function space with the weakly sequentially complete dual (Leung, 1988).
- $\ell_{\infty} \hat{\otimes}_{\pi} \ell_p$, $2 and <math>\ell_{\infty} \hat{\otimes}_{\pi} T^*$, T^* is the original Tsirelson space (González and Gutiérrez, 1995).

Qingying Bu

Department of Mathematics University of Mississippi Oxford, MS 38677, USA

Examples of Non-reflexive G-spaces:

- C(K), K is a compact stonean space (Grothendieck, 1953).
- C(K), K is a compact σ -stonean space (Ando, 1961).
- *C*(*K*), *K* is a *F*-space (Seever, 1968).
- $(\sum \oplus L^p)_{\ell_{\infty}(\Gamma)}$, $2 \leqslant p \leqslant \infty$, Γ is countable (Räbiger, 1985).
- $(\sum \oplus L^{\varphi})_{\ell_{\infty}(\Gamma)}$, L^{φ} is an Orlicz function space with the weakly sequentially complete dual (Leung, 1988).
- $\ell_{\infty} \hat{\otimes}_{\pi} \ell_p$, $2 and <math>\ell_{\infty} \hat{\otimes}_{\pi} T^*$, T^* is the original Tsirelson space (González and Gutiérrez, 1995).
- the weak L^p -space $L^{p,\infty}$, 1 (Lotz, 2010).

Qingying Bu

Department of Mathematics University of Mississippi Oxford, MS 38677, USA

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

2. Two Projective Tensor Products

2. Grothendieck and Fremlin Projective Tensor Products

Qingying Bu

Department of Mathematics University of Mississippi Oxford, MS 38677, USA

(日) (同) (三) (

2. Grothendieck Tensor Product

Definition:

Let *E* and *F* be Banach spaces. The projective tensor norm on $E \otimes F$ is defined by

$$||u||_{\pi} = \inf \Big\{ \sum_{k=1}^{n} ||x_k|| \cdot ||y_k|| : x_k \in E, y_k \in F, u = \sum_{k=1}^{n} x_k \otimes y_k \Big\}.$$

Let $E \hat{\otimes}_{\pi} F$ denote the completion of $E \otimes F$ with respect to $\|\cdot\|_{\pi}$, called the Grothendieck projective tensor product.

Qingying Bu

Department of Mathematics University of Mississippi Oxford, MS 38677, USA

イロト 不得 トイヨト イヨト

2. Grothendieck Tensor Product

Definition:

Let *E* and *F* be Banach spaces. The projective tensor norm on $E \otimes F$ is defined by

$$||u||_{\pi} = \inf \Big\{ \sum_{k=1}^{n} ||x_k|| \cdot ||y_k|| : x_k \in E, y_k \in F, u = \sum_{k=1}^{n} x_k \otimes y_k \Big\}.$$

Let $E \hat{\otimes}_{\pi} F$ denote the completion of $E \otimes F$ with respect to $\|\cdot\|_{\pi}$, called the Grothendieck projective tensor product.

• E, F are Banach lattices $\Rightarrow E \hat{\otimes}_{\pi} F$ is a Banach lattice.

Qingying Bu

Department of Mathematics University of Mississippi Oxford, MS 38677, USA

2. Grothendieck Tensor Product

Definition:

Let *E* and *F* be Banach spaces. The projective tensor norm on $E \otimes F$ is defined by

$$||u||_{\pi} = \inf \Big\{ \sum_{k=1}^{n} ||x_k|| \cdot ||y_k|| : x_k \in E, y_k \in F, u = \sum_{k=1}^{n} x_k \otimes y_k \Big\}.$$

Let $E \hat{\otimes}_{\pi} F$ denote the completion of $E \otimes F$ with respect to $\|\cdot\|_{\pi}$, called the Grothendieck projective tensor product.

E, F are Banach lattices ⇒ E ⊗_πF is a Banach lattice.
ℓ₂ ⊗_πℓ₂ is not a Banach lattice.

Qingying Bu

Department of Mathematics University of Mississippi Oxford, MS 38677, USA

Definition (Fremlin, 1974):

Let *E* and *F* be Banach lattices, $E \overline{\otimes} F$ be the Risez space tensor product of *E* and *F* with the positive cone

$$C_p = \Big\{ \sum_{k=1}^n x_k \otimes y_k : n \in \mathbb{N}, x_k \in E^+, y_k \in F^+ \Big\}.$$

The positive projective tensor norm on $E \overline{\otimes} F$ is defined by

$$||u||_{|\pi|} = \inf \Big\{ \sum_{k=1}^n ||x_k|| \cdot ||y_k|| : x_k \in E^+, y_k \in F^+, |u| \leq \sum_{k=1}^n x_k \otimes y_k \Big\}.$$

Let $E \hat{\otimes}_{|\pi|} F$ denote the completion of $E \bar{\otimes} F$ with respect to $\|\cdot\|_{|\pi|}$, called the Fremlin projective tensor product.

Qingying Bu

Department of Mathematics University of Mississippi Oxford, MS 38677, USA

•
$$E, F$$
 are Banach lattices $\Rightarrow E \hat{\otimes}_{\pi} F = E \hat{\otimes}_{|\pi|} F$.

Qingying Bu

Department of Mathematics University of Mississippi Oxford, MS 38677, USA

(日)

- E, F are Banach lattices $\Rightarrow E \hat{\otimes}_{\pi} F = E \hat{\otimes}_{|\pi|} F$.
- $\ell_2 \hat{\otimes}_{\pi} \ell_2 \neq \ell_2 \hat{\otimes}_{|\pi|} \ell_2.$

Qingying Bu

Department of Mathematics University of Mississippi Oxford, MS 38677, USA

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

• E, F are Banach lattices $\Rightarrow E \hat{\otimes}_{\pi} F = E \hat{\otimes}_{|\pi|} F$.

•
$$\ell_2 \hat{\otimes}_{\pi} \ell_2 \neq \ell_2 \hat{\otimes}_{|\pi|} \ell_2.$$

Theorem (Cartwright and Lotz, 1975):

Let *E* and *F* be Banach lattices. If $\mathcal{L}(E, F)$ and $\mathcal{L}^{r}(E, F)$ are isometrically isomorphic, then either *E* is an AL-space or *F* is an AM-space.

Qingying Bu

Department of Mathematics University of Mississippi Oxford, MS 38677, USA

A B A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

• E, F are Banach lattices $\Rightarrow E \hat{\otimes}_{\pi} F = E \hat{\otimes}_{|\pi|} F$.

•
$$\ell_2 \hat{\otimes}_{\pi} \ell_2 \neq \ell_2 \hat{\otimes}_{|\pi|} \ell_2.$$

Theorem (Cartwright and Lotz, 1975):

Let *E* and *F* be Banach lattices. If $\mathcal{L}(E, F)$ and $\mathcal{L}^{r}(E, F)$ are isometrically isomorphic, then either *E* is an AL-space or *F* is an AM-space.

•
$$(E\hat{\otimes}_{\pi}F)^* = \mathcal{L}(E, F^*), \quad (E\hat{\otimes}_{|\pi|}F)^* = \mathcal{L}^r(E, F^*).$$

Qingying Bu

Department of Mathematics University of Mississippi Oxford, MS 38677, USA

• E, F are Banach lattices $\Rightarrow E \hat{\otimes}_{\pi} F = E \hat{\otimes}_{|\pi|} F$.

•
$$\ell_2 \hat{\otimes}_{\pi} \ell_2 \neq \ell_2 \hat{\otimes}_{|\pi|} \ell_2.$$

Theorem (Cartwright and Lotz, 1975):

Let *E* and *F* be Banach lattices. If $\mathcal{L}(E, F)$ and $\mathcal{L}^{r}(E, F)$ are isometrically isomorphic, then either *E* is an AL-space or *F* is an AM-space.

• $(E\hat{\otimes}_{\pi}F)^* = \mathcal{L}(E,F^*), \quad (E\hat{\otimes}_{|\pi|}F)^* = \mathcal{L}^r(E,F^*).$

If E and F are Banach lattices, then E^ˆ_∞_πF is isometrically isomorphic to E^ˆ_{∞|π|}F if and only if either E or F is isometrically isomorphic to an AL-space.

3. Grothendieck Projective Tensor Product being a Grothendieck space

Qingying Bu

Department of Mathematics University of Mississippi Oxford, MS 38677, USA

Theorem (González and Gutiérrez, 1995):

 Let E and F be Banach spaces. If E is a G-space, F is reflexive, and L(E, F^{*}) = K(E, F^{*}), then E^ˆ⊗_πF is a G-space.

Qingying Bu

Department of Mathematics University of Mississippi Oxford, MS 38677, USA

Image: A match a ma

Theorem (González and Gutiérrez, 1995):

 Let E and F be Banach spaces. If E is a G-space, F is reflexive, and L(E, F*) = K(E, F*), then E^ô_πF is a G-space.

•
$$\ell_{\infty} \hat{\otimes}_{\pi} \ell_p$$
 is a G-space for $2 .$

Qingying Bu

Department of Mathematics University of Mississippi Oxford, MS 38677, USA

(D) < **(P)** < **(P**

Theorem (González and Gutiérrez, 1995):

 Let E and F be Banach spaces. If E is a G-space, F is reflexive, and L(E, F^{*}) = K(E, F^{*}), then E^ô_πF is a G-space.

•
$$\ell_{\infty} \hat{\otimes}_{\pi} \ell_p$$
 is a G-space for $2 .$

•
$$\ell_p^* = \ell_q, 1 < q < 2.$$

Qingying Bu

Department of Mathematics University of Mississippi Oxford, MS 38677, USA

(D) < **(P)** < **(P**

Theorem (González and Gutiérrez, 1995):

 Let E and F be Banach spaces. If E is a G-space, F is reflexive, and L(E, F*) = K(E, F*), then E^ô_πF is a G-space.

•
$$\ell_{\infty} \hat{\otimes}_{\pi} \ell_p$$
 is a G-space for $2 .$

•
$$\ell_p^* = \ell_q, 1 < q < 2$$
. $\mathcal{L}(\ell_\infty, \ell_q) = \mathcal{K}(\ell_\infty, \ell_q)$.

Qingying Bu

Department of Mathematics University of Mississippi Oxford, MS 38677, USA

Image: A match a ma

Theorem (González and Gutiérrez, 1995):

• Let *E* and *F* be Banach spaces. If *E* is a G-space, *F* is reflexive, and $\mathcal{L}(E, F^*) = \mathcal{K}(E, F^*)$, then $E \hat{\otimes}_{\pi} F$ is a G-space.

•
$$\ell_{\infty} \hat{\otimes}_{\pi} \ell_p$$
 is a G-space for $2 .$

Qingying Bu

Department of Mathematics University of Mississippi Oxford, MS 38677, USA

Theorem (González and Gutiérrez, 1995):

- Let *E* and *F* be Banach spaces. If *E* is a G-space, *F* is reflexive, and $\mathcal{L}(E, F^*) = \mathcal{K}(E, F^*)$, then $E \hat{\otimes}_{\pi} F$ is a G-space.
- $\ell_{\infty} \hat{\otimes}_{\pi} \ell_p$ is a G-space for 2 .
- $\ell_{\infty} \hat{\otimes}_{\pi} T^*$ is a G-space, T^* is the original Tsirelson space.

Qingying Bu

Department of Mathematics University of Mississippi Oxford, MS 38677, USA

(日) (同) (三) (

Theorem (González and Gutiérrez, 1995):

- Let E and F be Banach spaces. If E is a G-space, F is reflexive, and L(E, F*) = K(E, F*), then E^ô_πF is a G-space.
- $\ell_{\infty} \hat{\otimes}_{\pi} \ell_p$ is a G-space for 2 .
- $\ell_{\infty} \hat{\otimes}_{\pi} T^*$ is a G-space, T^* is the original Tsirelson space.
- Let T be the dual of T^* . Then $\mathcal{L}(\ell_{\infty}, T) = \mathcal{K}(\ell_{\infty}, T)$.

Qingying Bu

Department of Mathematics University of Mississippi Oxford, MS 38677, USA

(日) (同) (三) (三)

Theorem (González and Gutiérrez, 1995):

- Let *E* and *F* be Banach spaces. If *E* is a G-space, *F* is reflexive, and $\mathcal{L}(E, F^*) = \mathcal{K}(E, F^*)$, then $E \hat{\otimes}_{\pi} F$ is a G-space.
- $\ell_{\infty} \hat{\otimes}_{\pi} \ell_p$ is a G-space for 2 .
- $\ell_{\infty} \hat{\otimes}_{\pi} T^*$ is a G-space, T^* is the original Tsirelson space.

Qingying Bu

Department of Mathematics University of Mississippi Oxford, MS 38677, USA

・ロン ・四 ・ ・ ヨン

Theorem (González and Gutiérrez, 1995):

• Let *E* and *F* be Banach spaces. If *E* is a G-space, *F* is reflexive, and $\mathcal{L}(E, F^*) = \mathcal{K}(E, F^*)$, then $E \hat{\otimes}_{\pi} F$ is a G-space.

•
$$\ell_{\infty} \hat{\otimes}_{\pi} \ell_p$$
 is a G-space for $2 .$

• $\ell_{\infty} \hat{\otimes}_{\pi} T^*$ is a G-space, T^* is the original Tsirelson space.

Question:

For what Banach lattices *E* and *F*, the Fremlin projective tensor product $E\hat{\otimes}_{|\pi|}F$ can be a G-space?

Qingying Bu

Department of Mathematics University of Mississippi Oxford, MS 38677, USA

ヘロト 人間 ト 人 ヨト 人 ヨトー

4. Fremlin Projective Tensor Product being a Grothendieck Space

Qingying Bu

Department of Mathematics University of Mississippi Oxford, MS 38677, USA

(日) (同) (三) (

Let λ be a Banach sequence lattice, X be a Banach lattice. Define

$$\lambda_{\varepsilon}(X) = \left\{ \bar{x} = (x_i)_i \in X^{\mathbb{N}} : \left(x^*(|x_i|) \right)_i \in \lambda, \ \forall \ x^* \in X^{*+} \right\}$$

and

$$\left\|\bar{x}\right\|_{\lambda_{\varepsilon}(X)} = \sup\left\{\left\|\left(x^*(|x_i|)\right)_i\right\|_{\lambda}: x^* \in B_{X^{*+}}\right\}\right\}$$

Then $\lambda_{\varepsilon}(X)$ is a Banach lattice. Let

$$\lambda_{\varepsilon,0}(X) = \Big\{ \bar{x} \in \lambda_{\varepsilon}(X) : \lim_{n} \big\| (0, \dots, 0, x_n, x_{n+1}, \dots) \big\|_{\lambda_{\varepsilon}(X)} = 0 \Big\}.$$

Then $\lambda_{\varepsilon,0}(X)$ is an ideal of $\lambda_{\varepsilon}(X)$.

Qingying Bu

Department of Mathematics University of Mississippi Oxford, MS 38677, USA

イロト イポト イヨト イヨト

Let λ' be the Köthe dual of λ . Define

$$\lambda_\pi(X) = \left\{ar{x} = (x_i)_i \in X^\mathbb{N}: \sum_{i=1}^\infty x_i^*(|x_i|) < +\infty, \; orall(x_i^*)_i \in \lambda_arepsilon'(X^*)^+
ight\}$$

and

$$\|\bar{x}\|_{\lambda_{\pi}(X)} = \sup\left\{\sum_{i=1}^{\infty} x_i^*(|x_i|): (x_i^*)_i \in B_{\lambda_{\varepsilon}'(X^*)^+}\right\}.$$

Then $\lambda_{\pi}(X)$ is a Banach lattice. Let

$$\lambda_{\pi,0}(X) = \left\{ \bar{x} \in \lambda_{\pi}(X) : \lim_{n} \left\| (0,\ldots,0,x_n,x_{n+1},\ldots) \right\|_{\lambda_{\pi}(X)} = 0 \right\}.$$

Then $\lambda_{\pi,0}(X)$ is an ideal of $\lambda_{\pi}(X)$.

Qingying Bu

Department of Mathematics University of Mississippi Oxford, MS 38677, USA

・ロト ・日 ・ ・ ヨ ・ ・

Theorem (Bu and Wong, 2012):

$$\lambda_{arepsilon,0}(X)^* = \lambda'_{\pi}(X^*) ext{ and } \lambda_{\pi,0}(X)^* = \lambda'_{arepsilon}(X^*).$$

Qingying Bu

Department of Mathematics University of Mississippi Oxford, MS 38677, USA

・ロト ・ 理 ト ・ 国 ト ・ 国 ト

Theorem (Bu and Wong, 2012):

$$\lambda_{arepsilon,0}(X)^* = \lambda_\pi'(X^*) ext{ and } \lambda_{\pi,0}(X)^* = \lambda_arepsilon'(X^*).$$

Lemma 1:

Let λ' be σ -order continuous and let $\bar{x}^{(n)}, \bar{x}^{(0)} \in \lambda_{\varepsilon,0}(X)$. Then $\lim_{n} \bar{x}^{(n)} = \bar{x}^{(0)}$ weakly in $\lambda_{\varepsilon,0}(X)$ if and only if $\lim_{n} x_{i}^{(n)} = x_{i}^{(0)}$ weakly in X and $\sup_{n} \|\bar{x}^{(n)}\|_{\lambda_{\varepsilon}(X)} < \infty$.

Qingying Bu

Department of Mathematics University of Mississippi Oxford, MS 38677, USA

▲ロト ▲圖 ▶ ▲ 画 ▶ ▲ 画 ▶ ● のへで

Theorem (Bu and Wong, 2012):

$$\lambda_{arepsilon,0}(X)^*=\lambda_\pi'(X^*) ext{ and } \lambda_{\pi,0}(X)^*=\lambda_arepsilon'(X^*).$$

Lemma 1:

Let λ' be σ -order continuous and let $\bar{x}^{(n)}, \bar{x}^{(0)} \in \lambda_{\varepsilon,0}(X)$. Then $\lim_{n} \bar{x}^{(n)} = \bar{x}^{(0)}$ weakly in $\lambda_{\varepsilon,0}(X)$ if and only if $\lim_{n} x_{i}^{(n)} = x_{i}^{(0)}$ weakly in X and $\sup_{n} \|\bar{x}^{(n)}\|_{\lambda_{\varepsilon}(X)} < \infty$.

Lemma 2:

Let λ be σ -order continuous and let $\bar{x}^{*(n)}, \bar{x}^{*(0)} \in \lambda_{\pi,0}(X)^*$. Then $\lim_n \bar{x}^{*(n)} = \bar{x}^{*(0)}$ weak* in $\lambda_{\pi,0}(X)^*$ if and only if $\lim_n x_i^{*(n)} = x_i^{*(0)}$ weak* in X^* and $\sup_n \|\bar{x}^{*(n)}\|_{\lambda_{\varepsilon}'(X^*)} < \infty$.

Qingying Bu

Lemma 3:

Let λ be a reflexive Banach sequence lattice. Then $\lambda_{\pi,0}(X)$ is a G-space if and only if X is a G-space and $\lambda'_{\varepsilon}(X^*) = \lambda'_{\varepsilon,0}(X^*)$.

Qingying Bu

Department of Mathematics University of Mississippi Oxford, MS 38677, USA

イロト イポト イヨト イヨト

Lemma 3:

Let λ be a reflexive Banach sequence lattice. Then $\lambda_{\pi,0}(X)$ is a G-space if and only if X is a G-space and $\lambda'_{\varepsilon}(X^*) = \lambda'_{\varepsilon,0}(X^*)$.

Theorem (Bu and Wong, 2012):

• If λ is σ -order continuous then $\lambda_{\pi}(X) = \lambda_{\pi,0}(X)$.

Qingying Bu

Department of Mathematics University of Mississippi Oxford, MS 38677, USA

イロト イポト イヨト イヨト

Lemma 3:

Let λ be a reflexive Banach sequence lattice. Then $\lambda_{\pi,0}(X)$ is a G-space if and only if X is a G-space and $\lambda'_{\varepsilon}(X^*) = \lambda'_{\varepsilon,0}(X^*)$.

Theorem (Bu and Wong, 2012):

• If λ is σ -order continuous then $\lambda_{\pi}(X) = \lambda_{\pi,0}(X)$.

• If λ' is σ -order continuous then $\lambda'_{\varepsilon}(X^*) = \lambda'_{\varepsilon,0}(X^*)$ if and only if every positive linear operator from λ_0 to X^* is compact.

Qingying Bu

Department of Mathematics University of Mississippi Oxford, MS 38677, USA

(日) (同) (三) (三)

Lemma 3:

Let λ be a reflexive Banach sequence lattice. Then $\lambda_{\pi,0}(X)$ is a G-space if and only if X is a G-space and $\lambda'_{\varepsilon}(X^*) = \lambda'_{\varepsilon,0}(X^*)$.

Theorem (Bu and Wong, 2012):

- If λ is σ -order continuous then $\lambda_{\pi}(X) = \lambda_{\pi,0}(X)$.
- If λ' is σ -order continuous then $\lambda'_{\varepsilon}(X^*) = \lambda'_{\varepsilon,0}(X^*)$ if and only if every positive linear operator from λ_0 to X^* is compact.

Lemma 4:

Let λ be a reflexive Banach sequence lattice. Then $\lambda_{\pi,0}(X)$ is a G-space if and only if X is a G-space and every positive linear operator from λ to X^* is compact.

Qingying Bu

Department of Mathematics University of Mississippi Oxford, MS 38677, USA

Lemma 4:

Let λ be a reflexive Banach sequence lattice. Then $\lambda_{\pi,0}(X)$ is a G-space if and only if X is a G-space and every positive linear operator from λ to X^* is compact.

Qingying Bu

Department of Mathematics University of Mississippi Oxford, MS 38677, USA

(日) (同) (三) (

Lemma 4:

Let λ be a reflexive Banach sequence lattice. Then $\lambda_{\pi,0}(X)$ is a G-space if and only if X is a G-space and every positive linear operator from λ to X^* is compact.

Theorem (Bu and Buskes, 2009):

If λ is σ -order continuous then $\lambda \hat{\otimes}_{|\pi|} X$ is lattice isometric to $\lambda_{\pi,0}(X)$.

Qingying Bu

Department of Mathematics University of Mississippi Oxford, MS 38677, USA

イロト イポト イヨト イヨト

Lemma 4:

Let λ be a reflexive Banach sequence lattice. Then $\lambda_{\pi,0}(X)$ is a G-space if and only if X is a G-space and every positive linear operator from λ to X^* is compact.

Theorem (Bu and Buskes, 2009):

If λ is σ -order continuous then $\lambda \hat{\otimes}_{|\pi|} X$ is lattice isometric to $\lambda_{\pi,0}(X)$.

Theorem 1:

Let λ be a reflexive Banach sequence lattice and X be a Banach lattice. Then $\lambda \hat{\otimes}_{|\pi|} X$ is a G-space if and only if X is a G-space and every positive linear operator from λ to X^* is compact.

Department of Mathematics University of Mississippi Oxford, MS 38677, USA

5. New Examples of Non-reflexive Grothendieck Spaces

Qingying Bu

Department of Mathematics University of Mississippi Oxford, MS 38677, USA

Theorem 1:

Let λ be a reflexive Banach sequence lattice and X be a Banach lattice. Then $\lambda \hat{\otimes}_{|\pi|} X$ is a G-space if and only if X is a G-space and every positive linear operator from λ to X^* is compact.

Qingying Bu

Department of Mathematics University of Mississippi Oxford, MS 38677, USA

Theorem 1:

Let λ be a reflexive Banach sequence lattice and X be a Banach lattice. Then $\lambda \hat{\otimes}_{|\pi|} X$ is a G-space if and only if X is a G-space and every positive linear operator from λ to X^* is compact.

Theorem (González and Gutiérrez, 1995):

Let T^* be the original Tsirelson space and T be the dual of T^* . Then $\mathcal{L}(\ell_{\infty}, T) = \mathcal{K}(\ell_{\infty}, T)$.

Qingying Bu

Department of Mathematics University of Mississippi Oxford, MS 38677, USA

< ロト < 同ト < 国ト < 国

Theorem 1:

Let λ be a reflexive Banach sequence lattice and X be a Banach lattice. Then $\lambda \hat{\otimes}_{|\pi|} X$ is a G-space if and only if X is a G-space and every positive linear operator from λ to X^* is compact.

Theorem (González and Gutiérrez, 1995):

Let T^* be the original Tsirelson space and T be the dual of T^* . Then $\mathcal{L}(\ell_{\infty}, T) = \mathcal{K}(\ell_{\infty}, T)$. Thus $\mathcal{L}(T^*, \ell_{\infty}^*) = \mathcal{K}(T^*, \ell_{\infty}^*)$.

Qingying Bu

Department of Mathematics University of Mississippi Oxford, MS 38677, USA

Theorem 1:

Let λ be a reflexive Banach sequence lattice and X be a Banach lattice. Then $\lambda \hat{\otimes}_{|\pi|} X$ is a G-space if and only if X is a G-space and every positive linear operator from λ to X^* is compact.

Theorem (González and Gutiérrez, 1995):

Let T^* be the original Tsirelson space and T be the dual of T^* . Then $\mathcal{L}(\ell_{\infty}, T) = \mathcal{K}(\ell_{\infty}, T)$. Thus $\mathcal{L}(T^*, \ell_{\infty}^*) = \mathcal{K}(T^*, \ell_{\infty}^*)$.

New Example 1:

The Fremlin projective tensor product $\ell_{\infty} \hat{\otimes}_{|\pi|} T^*$ is a G-space.

Qingying Bu

Department of Mathematics University of Mississippi Oxford, MS 38677, USA

イロト イポト イヨト イヨト

Theorem 1:

Let λ be a reflexive Banach sequence lattice and X be a Banach lattice. Then $\lambda \hat{\otimes}_{|\pi|} X$ is a G-space if and only if X is a G-space and every positive linear operator from λ to X^* is compact.

Qingying Bu

Department of Mathematics University of Mississippi Oxford, MS 38677, USA

Theorem 1:

Let λ be a reflexive Banach sequence lattice and X be a Banach lattice. Then $\lambda \hat{\otimes}_{|\pi|} X$ is a G-space if and only if X is a G-space and every positive linear operator from λ to X^* is compact.

Fact:

Let $1 < q < \infty$ and X be an AM-space with an order unit. Then every positive linear operator from X to ℓ_q is compact.

Qingying Bu

Department of Mathematics University of Mississippi Oxford, MS 38677, USA

▲ @ ▶ ▲ ≥ ▶ ▲

Theorem 1:

Let λ be a reflexive Banach sequence lattice and X be a Banach lattice. Then $\lambda \hat{\otimes}_{|\pi|} X$ is a G-space if and only if X is a G-space and every positive linear operator from λ to X^* is compact.

Fact:

Let $1 < q < \infty$ and X be an AM-space with an order unit. Then every positive linear operator from X to ℓ_q is compact.

Theorem 2:

Let 1 and X be both an AM-space with an order unit $and a G-space. Then <math>\ell_p \hat{\otimes}_{|\pi|} X$ is a G-space.

Qingying Bu

Department of Mathematics University of Mississippi Oxford, MS 38677, USA

イロト イポト イヨト イヨト

Theorem 2:

Let 1 and X be both an AM-space with an order unit $and a G-space. Then <math>\ell_p \hat{\otimes}_{|\pi|} X$ is a G-space.

Qingying Bu

Department of Mathematics University of Mississippi Oxford, MS 38677, USA

(日) (同) (日) (日)

Theorem 2:

Let 1 and X be both an AM-space with an order unit $and a G-space. Then <math>\ell_p \hat{\otimes}_{|\pi|} X$ is a G-space.

Fact:

If K is a compact stonean space, a compact σ -stonean space, or a F-space, then C(K) is a G-space.

Qingying Bu

Department of Mathematics University of Mississippi Oxford, MS 38677, USA

(日) (同) (日) (日)

Theorem 2:

Let 1 and X be both an AM-space with an order unit $and a G-space. Then <math>\ell_p \hat{\otimes}_{|\pi|} X$ is a G-space.

Fact:

If K is a compact stonean space, a compact σ -stonean space, or a F-space, then C(K) is a G-space.

New Example 2:

Let 1 and <math>K be a compact stonean space, a compact σ -stonean space, or a F-space. Then the Fremlin projective tensor product $\ell_p \hat{\otimes}_{|\pi|} C(K)$ is a G-space.

Department of Mathematics University of Mississippi Oxford, MS 38677, USA

イロト イヨト イヨト イ

Theorem 2:

Let 1 and X be both an AM-space with an order unit $and a G-space. Then <math>\ell_p \hat{\otimes}_{|\pi|} X$ is a G-space.

Qingying Bu

Department of Mathematics University of Mississippi Oxford, MS 38677, USA

< □ > < 同 > < 回 > < Ξ > < Ξ

Theorem 2:

Let $1 and X be both an AM-space with an order unit and a G-space. Then <math>\ell_p \hat{\otimes}_{|\pi|} X$ is a G-space.

New Example 3:

The Fremlin projective tensor product $\ell_p \hat{\otimes}_{|\pi|} \ell_{\infty}$ is a G-space for 1 .

Qingying Bu

Department of Mathematics University of Mississippi Oxford, MS 38677, USA

< ロ > < 同 > < 回 > < 回 > < 回

Theorem 2:

Let $1 and X be both an AM-space with an order unit and a G-space. Then <math>\ell_p \hat{\otimes}_{|\pi|} X$ is a G-space.

New Example 3:

The Fremlin projective tensor product $\ell_p \hat{\otimes}_{|\pi|} \ell_{\infty}$ is a G-space for 1 .

Ole Example (González and Gutiérrez, 1995):

The Grothendieck projective tensor product $\ell_p \hat{\otimes}_{\pi} \ell_{\infty}$ is a G-space if and only if 2 .

Qingying Bu

Department of Mathematics University of Mississippi Oxford, MS 38677, USA

(日)

Thank you for your attention!!

Qingying Bu

Department of Mathematics University of Mississippi Oxford, MS 38677, USA

・ロト ・聞 ト ・ ヨト ・ ヨト