Automatic regularity of algebra homomorphisms

Ariel Blanco
Queen's University Belfast

July 21, 2017

The problem

Given Banach lattice algebras $\mathcal{A} \& \mathcal{B}$ and a continuous algebra homomorphism $\Theta: \mathcal{A} \rightarrow \mathcal{B}$, find conditions on \mathcal{A} and \mathcal{B} that imply regularity of Θ.

There are a few results in the case where $\mathcal{A} \& \mathcal{B}$ are semisimple f-algebras.

We shall be interested in the case in which $\mathcal{A} \& \mathcal{B}$ are Riesz subalgebras of $\mathcal{L}^{r}(X) \& \mathcal{L}^{r}(Y)$, respectively, with $X \& Y$ Banach lattices.

A simple case:

Let $\mathcal{A}^{r}\left(\ell_{2}\right)$ be the closure of the finite rank operators in $\mathcal{L}^{r}\left(\ell_{2}\right)$ and let $\Theta: \mathcal{A}^{r}\left(\ell_{2}\right) \rightarrow \mathcal{A}^{r}\left(\ell_{2}\right)$ be an algebra automorphism. Then Θ is regular. Pf:

A simple case:

Let $\mathcal{A}^{r}\left(\ell_{2}\right)$ be the closure of the finite rank operators in $\mathcal{L}^{r}\left(\ell_{2}\right)$ and let $\Theta: \mathcal{A}^{r}\left(\ell_{2}\right) \rightarrow \mathcal{A}^{r}\left(\ell_{2}\right)$ be an algebra automorphism. Then Θ is regular. Pf:

- There is $U: \ell_{2} \rightarrow \ell_{2}$ invertible such that $\Theta(T)=U T U^{-1}$ $\left(T \in \mathcal{A}^{r}\left(\ell_{2}\right)\right)$.

A simple case:

Let $\mathcal{A}^{r}\left(\ell_{2}\right)$ be the closure of the finite rank operators in $\mathcal{L}^{r}\left(\ell_{2}\right)$ and let $\Theta: \mathcal{A}^{r}\left(\ell_{2}\right) \rightarrow \mathcal{A}^{r}\left(\ell_{2}\right)$ be an algebra automorphism. Then Θ is regular. Pf:

- There is $U: \ell_{2} \rightarrow \ell_{2}$ invertible such that $\Theta(T)=U T U^{-1}$ $\left(T \in \mathcal{A}^{r}\left(\ell_{2}\right)\right)$.
- There is $\left(n_{i}\right) \subset \mathbb{N}$ strictly increasing such that if P_{1} is the natural projection onto $\left[e_{n_{i}}\right]$ then $U P_{1}$ is regular.

A simple case:

Let $\mathcal{A}^{r}\left(\ell_{2}\right)$ be the closure of the finite rank operators in $\mathcal{L}^{r}\left(\ell_{2}\right)$ and let $\Theta: \mathcal{A}^{r}\left(\ell_{2}\right) \rightarrow \mathcal{A}^{r}\left(\ell_{2}\right)$ be an algebra automorphism. Then Θ is regular. Pf:

- There is $U: \ell_{2} \rightarrow \ell_{2}$ invertible such that $\Theta(T)=U T U^{-1}$ $\left(T \in \mathcal{A}^{r}\left(\ell_{2}\right)\right)$.
- There is $\left(n_{i}\right) \subset \mathbb{N}$ strictly increasing such that if P_{1} is the natural projection onto $\left[e_{n_{i}}\right]$ then $U P_{1}$ is regular.
- Similarly, there is an infinite natural projection $P_{2}: \ell_{2} \rightarrow \ell_{2}$ such that $P_{2} U^{-1}$ is regular.

A simple case:

Let $\mathcal{A}^{r}\left(\ell_{2}\right)$ be the closure of the finite rank operators in $\mathcal{L}^{r}\left(\ell_{2}\right)$ and let $\Theta: \mathcal{A}^{r}\left(\ell_{2}\right) \rightarrow \mathcal{A}^{r}\left(\ell_{2}\right)$ be an algebra automorphism. Then Θ is regular. Pf:

- There is $U: \ell_{2} \rightarrow \ell_{2}$ invertible such that $\Theta(T)=U T U^{-1}$ $\left(T \in \mathcal{A}^{r}\left(\ell_{2}\right)\right)$.
- There is $\left(n_{i}\right) \subset \mathbb{N}$ strictly increasing such that if P_{1} is the natural projection onto $\left[e_{n_{i}}\right]$ then $U P_{1}$ is regular.
- Similarly, there is an infinite natural projection $P_{2}: \ell_{2} \rightarrow \ell_{2}$ such that $P_{2} U^{-1}$ is regular.
- There are $R_{i}, S_{i} \in \mathcal{L}^{r}\left(\ell_{2}\right)$ such that $R_{i} S_{i}=\operatorname{id} \& S_{i} R_{i}=P_{i}$ ($i=1,2$).
- Let $\left(E_{n}\right)$ be the sequence of natural projections with respect to the unit vector basis. Then $\forall T \in \mathcal{A}^{r}\left(\ell_{2}\right)$,
- Let $\left(E_{n}\right)$ be the sequence of natural projections with respect to the unit vector basis. Then $\forall T \in \mathcal{A}^{r}\left(\ell_{2}\right)$,

$$
\begin{aligned}
\Theta(T) & =\Theta\left(R_{1} S_{1} T R_{2} S_{2}\right) \\
& =\lim _{m} \lim _{n} \Theta\left(R_{1} E_{m} S_{1} T R_{2} E_{n} S_{2}\right) \\
& =\lim _{m} \lim _{n} \Theta\left(R_{1} E_{m}\right) \Theta\left(S_{1} T R_{2}\right) \Theta\left(E_{n} S_{2}\right) .
\end{aligned}
$$

- Let $\left(E_{n}\right)$ be the sequence of natural projections with respect to the unit vector basis. Then $\forall T \in \mathcal{A}^{r}\left(\ell_{2}\right)$,

$$
\begin{aligned}
\Theta(T) & =\Theta\left(R_{1} S_{1} T R_{2} S_{2}\right) \\
& =\lim _{m} \lim _{n} \Theta\left(R_{1} E_{m} S_{1} T R_{2} E_{n} S_{2}\right) \\
& =\lim _{m} \lim _{n} \Theta\left(R_{1} E_{m}\right) \Theta\left(S_{1} T R_{2}\right) \Theta\left(E_{n} S_{2}\right) .
\end{aligned}
$$

- It only remains to note all the following are regular:

$$
\begin{aligned}
& T \mapsto S_{1} T R_{2} ; \\
& T \mapsto \Theta\left(P_{1} T P_{2}\right) ; \\
& T \mapsto \lim _{m} \lim _{n} \Theta\left(R_{1} E_{m}\right) T \Theta\left(E_{n} S_{2}\right) .
\end{aligned}
$$

Let \mathcal{A} be a Riesz and topological algebra. We shall say:

- $\left(a_{n}\right) \subset \mathcal{A}$ is convergence preserving if $\forall\left(b_{n}\right) \subset \mathcal{A}$ convergent, $\left(a_{n} b_{n}\right) \&\left(b_{n} a_{n}\right)$ converge.
- $\left(a_{n}\right) \subset \mathcal{A}$ factors through $\left(b_{n}\right) \subset \mathcal{A}$ if there are bounded, convergence preserving sequences $\left(u_{n}\right),\left(v_{n}\right) \subset \mathcal{A}_{+}$such that $a_{n}=u_{n} b_{k_{n}} v_{n}(n \in \mathbb{N})$, where $\left(k_{n}\right) \subset \mathbb{N}$ is increasing.
- an idempotent $p \in \mathcal{A}$ is o-minimal if it is positive and $p \mathcal{A} p=\mathbb{K} p$.

Let \mathcal{A} be a Riesz and topological algebra. We shall say:

- $\left(a_{n}\right) \subset \mathcal{A}$ is convergence preserving if $\forall\left(b_{n}\right) \subset \mathcal{A}$ convergent, $\left(a_{n} b_{n}\right) \&\left(b_{n} a_{n}\right)$ converge.
- $\left(a_{n}\right) \subset \mathcal{A}$ factors through $\left(b_{n}\right) \subset \mathcal{A}$ if there are bounded, convergence preserving sequences $\left(u_{n}\right),\left(v_{n}\right) \subset \mathcal{A}_{+}$such that $a_{n}=u_{n} b_{k_{n}} v_{n}(n \in \mathbb{N})$, where $\left(k_{n}\right) \subset \mathbb{N}$ is increasing.
- an idempotent $p \in \mathcal{A}$ is o-minimal if it is positive and $p \mathcal{A} p=\mathbb{K} p$.

Recall \mathcal{A} is semiprime if $\{0\}$ is the only two-sided ideal \mathcal{I} of \mathcal{A} such that $\mathcal{I}^{2}=\{0\}$.

Theorem

Let $\mathcal{A} \& \mathcal{B}$ be Riesz and topological algebras, and $\Theta: \mathcal{A} \rightarrow \mathcal{B}$ a continuous algebra homomorphism.

Suppose

$-\mathcal{A}_{+}$is closed and \mathcal{A} is semiprime;

- there is an order complete, locally solid topological Riesz algebra $\widetilde{\mathcal{B}}$ such that \mathcal{B} is an ideal in $\widetilde{\mathcal{B}}$ and $\mathcal{A} \rightarrow \widetilde{\mathcal{B}}, a \mapsto \Theta(a)$, is compact; - there are a bounded approx. identity $\left(e_{n}\right) \subset \mathcal{A}$, a sequence of mutually orthogonal o-minimal idempotents $\left(p_{i}\right) \subset \mathcal{A}$, and disjoint sequences $\left(P_{i}\right) \subset \mathcal{M}_{l}(\widetilde{\mathcal{B}}) \&\left(Q_{i}\right) \subset \mathcal{M}_{r}(\widetilde{\mathcal{B}})$ of continuous band projections such that
- $\left(\sum_{i=1}^{n} p_{i}\right)$ is bounded, convergence preserving and $\left(e_{n}\right)$ factors through it;
- $\sum_{i}\left|P_{i}\left(\Theta\left(p_{i}\right)\right)-\Theta\left(p_{i}\right)\right|\left|\Theta\left(p_{i}\right)\right| \& \sum_{i}\left|\Theta\left(p_{i}\right)\right|\left|Q_{i}\left(\Theta\left(p_{i}\right)\right)-\Theta\left(p_{i}\right)\right|$ exist in \mathcal{B}.

Then Θ is regular.

In fact, if $\left(u_{i}\right),\left(v_{i}\right) \subset \mathcal{A}_{+}$are convergence preserving such that $e_{i}=u_{i} \pi_{k_{i}} v_{i}(i \in \mathbb{N})$, where $\pi_{n}=\sum_{i=1}^{n} p_{i}(n \in \mathbb{N})$, then there are $\widetilde{b}_{u}, \widetilde{b}_{v} \in \widetilde{\mathcal{B}}$ such that

$$
\Theta(a)=\widetilde{b}_{u} \psi\left(\lim _{i} \lim _{j} v_{i} a u_{j}\right) \widetilde{b}_{v}, \forall a \in \mathcal{A},
$$

where

$$
\Psi: \mathcal{A} \rightarrow \mathcal{B}, a \mapsto \Theta\left(\lim _{m} \lim _{n} \pi_{m} a \pi_{n}\right) .
$$

Now let $\mathcal{A} \subseteq \mathcal{L}^{r}(X)$ and $\mathcal{B} \subseteq \mathcal{L}^{r}(Y)$, with X and Y Banach lattices.
Given such \mathcal{A} and \mathcal{B}, we should like to find conditions (as weak as possible) on X and Y that force an algebra homomorphism $\Theta: \mathcal{A} \rightarrow \mathcal{B}$ (possibly with some additional properties) to be regular.
We shall start with the 'atomic' case and then extend the results to the 'non-atomic' case by means of 'direct limits'.

The atomic case

We shall say a separable atomic Banach lattice X satisfies \star if there is $\mu \geq 1$ and an arrangement of its normalized atoms $\left\{x_{i}: i \in \mathbb{N}\right\}$ such that, $\forall n \in \mathbb{N}$, if $I_{1}<I_{2}<\cdots<I_{n}$ satisfy $\left(x_{i}\right)_{i=1}^{n} \sim\left(x_{I_{i}}\right)_{i=1}^{n}$ then $\forall k$ there is $I_{n+1} \geq I_{n}+k$ such that $\left(x_{i}\right)_{i=1}^{n+1} \sim\left(x_{I_{i}}\right)_{i=1}^{n+1}$.
Here $\left(x_{i}\right)_{i=1}^{n} \sim\left(y_{i}\right)_{i=1}^{n}$ stands for

$$
\frac{1}{\mu}\left\|\sum_{1}^{n} a_{i} x_{i}\right\| \leq\left\|\sum_{1}^{n} a_{i} y_{i}\right\| \leq \mu\left\|\sum_{1}^{n} a_{i} x_{i}\right\|
$$

$\left(a_{1}, \ldots, a_{n} \in \mathbb{K}\right)$.

The atomic case

We shall say a separable atomic Banach lattice X satisfies \star if there is $\mu \geq 1$ and an arrangement of its normalized atoms $\left\{x_{i}: i \in \mathbb{N}\right\}$ such that, $\forall n \in \mathbb{N}$, if $I_{1}<l_{2}<\cdots<I_{n}$ satisfy $\left(x_{i}\right)_{i=1}^{n} \sim\left(x_{i}\right)_{i=1}^{n}$ then $\forall k$ there is $I_{n+1} \geq I_{n}+k$ such that $\left(x_{i}\right)_{i=1}^{n+1} \sim\left(x_{i}\right)_{i=1}^{n+1}$.
Here $\left(x_{i}\right)_{i=1}^{n} \sim\left(y_{i}\right)_{i=1}^{n}$ stands for

$$
\frac{1}{\mu}\left\|\sum_{1}^{n} a_{i} x_{i}\right\| \leq\left\|\sum_{1}^{n} a_{i} y_{i}\right\| \leq \mu\left\|\sum_{1}^{n} a_{i} x_{i}\right\|
$$

$\left(a_{1}, \ldots, a_{n} \in \mathbb{K}\right)$.
Example: Any Banach lattice of the form $\left(\oplus_{i=1}^{\infty} X_{i}\right)_{\left(e_{i}\right)}$, with $\left(e_{i}\right)$ a 1 -unconditional basis and (X_{i}) a sequence of Banach lattices with subsymmetric bases, satisfies \star.

We shall say

- $\mathcal{A} \subseteq \mathcal{L}^{r}(X)$ is a Riesz operator subalgebra if it is a subalgebra and a Riesz subspace of $\mathcal{L}^{r}(X)$ containing $\mathcal{F}(X)$;
- $\mathcal{B} \subseteq \mathcal{L}^{r}(Y)$ is a Riesz algebra ideal if it is an algebra ideal and a Riesz subspace of $\mathcal{L}^{r}(Y)$.

We shall say

- $\mathcal{A} \subseteq \mathcal{L}^{r}(X)$ is a Riesz operator subalgebra if it is a subalgebra and a Riesz subspace of $\mathcal{L}^{r}(X)$ containing $\mathcal{F}(X)$;
- $\mathcal{B} \subseteq \mathcal{L}^{r}(Y)$ is a Riesz algebra ideal if it is an algebra ideal and a Riesz subspace of $\mathcal{L}^{r}(Y)$.

Theorem

Let X be a separable atomic Banach lattice satisfying \star and let Y be atomic and reflexive. Let $\mathcal{A} \subseteq \mathcal{L}^{r}(X)$ be a Riesz operator subalgebra, let $\mathcal{B} \subseteq \mathcal{L}^{r}(Y)$ be a Riesz algebra ideal and let $\Theta: \mathcal{A} \rightarrow \mathcal{B}$ be a continuous injective algebra homomorphism such that $\overline{\Theta(\mathcal{A})} \cap \mathcal{F}(Y) \neq\{0\}$. Then Θ is regular.

About the pf:
We take in \mathcal{A} the topology generated by the system of seminorms $\left(\tau_{X}\right)_{x \in X}$, where

$$
\tau_{x}(T):=\||T|(|x|)\| \quad(T \in \mathcal{A})
$$

We let $\widetilde{\mathcal{B}}:=\mathcal{L}^{r}(Y)$ with the weak*-top. and endow \mathcal{B} with the subspace top.
In this situation, provided Θ is injective, one can show Θ is τ-weak* continuous.
If $\left(x_{i}\right)$ is the sequence of normalized atoms of X in the 'right' order, then $\left(p_{i}\right)$, defined by $p_{i}:=x_{i}^{*} \otimes x_{i}(i \in \mathbb{N})$, is a sequence of mutually orthogonal o-minimal idempotents.
One just needs to choose a 'suitable' subsequence of $\left(p_{i}\right)$ and 'suitable' disjoint sequences of band projections $\left(P_{i}\right) \subset \mathcal{M}_{l}\left(\mathcal{L}^{r}(Y)\right)$ and $\left(Q_{i}\right) \subset \mathcal{M}_{r}\left(\mathcal{L}^{r}(Y)\right.$.

The non-atomic case

We shall assume X is such that there is a bounded set of positive projections $\Pi \subset \mathcal{L}^{r}(X)$ such that

- $\overline{\bigcup_{\pi \in \Pi} \pi(X)}=X$;
- $\pi(X)$ is a Riesz subspace of $X, \forall \pi \in \Pi$;
- $\{\pi(X): \pi \in \Pi\}$ is directed by inclusion.

The non-atomic case

We shall assume X is such that there is a bounded set of positive projections $\Pi \subset \mathcal{L}^{r}(X)$ such that

- $\overline{\bigcup_{\pi \in \Pi} \pi(X)}=X$;
- $\pi(X)$ is a Riesz subspace of $X, \forall \pi \in \Pi$;
- $\{\pi(X): \pi \in \Pi\}$ is directed by inclusion.

We shall call Π a directed bounded generating system for X.
Example: Banach lattices of the form $L^{p}(\mu, X)$, where X admits a bounded generating system Π with each $\pi(X)$ a Banach lattice satisfying \star for some fixed μ, and rearrangement invariant spaces on $[0,+\infty)$ have the above property.

Given X with a set Π as above, we shall say $\mathcal{A} \subseteq \mathcal{L}^{r}(X)$ is a Π hereditary Riesz operator subalgebra if:

- $\pi \mathcal{A} \pi \subseteq \mathcal{A}, \forall \pi \in \Pi$;
- $\left\{T \in \mathcal{L}^{r}(\pi(X)): \imath_{\pi} T p_{\pi} \in \mathcal{A}\right\}$ is a Riesz operator subalgebra of $\mathcal{L}^{r}(X), \forall \pi \in \Pi$, where $p_{\pi}: X \rightarrow \pi(X), x \mapsto \pi(x)$, and $\imath_{\pi}: \pi(X) \rightarrow X$ is the inclusion map.

Given X with a set Π as above, we shall say $\mathcal{A} \subseteq \mathcal{L}^{r}(X)$ is a Π hereditary Riesz operator subalgebra if:

- $\pi \mathcal{A} \pi \subseteq \mathcal{A}, \forall \pi \in \Pi$;
- $\left\{T \in \mathcal{L}^{r}(\pi(X)): \imath_{\pi} T p_{\pi} \in \mathcal{A}\right\}$ is a Riesz operator subalgebra of $\mathcal{L}^{r}(X), \forall \pi \in \Pi$, where $p_{\pi}: X \rightarrow \pi(X), x \mapsto \pi(x)$, and $\imath_{\pi}: \pi(X) \rightarrow X$ is the inclusion map.

Example: Any order and algebra ideal of $\mathcal{L}^{r}(X)$ is a Π hereditary Riesz operator subalgebra of $\mathcal{L}^{r}(X)$ for any directed bounded generating system of X.

We shall call a seminormalized sequence $\left(x_{i}\right) \subset X$ asymptotically disjoint (a.d. in short) if for some disjoint sequence $\left(\xi_{i}\right) \subset X$, $\lim _{i}\left\|x_{i}-\xi_{i}\right\|=0$.
Recall E is Levi if every increasing norm-bounded net in E has a supremum.

We shall call a seminormalized sequence $\left(x_{i}\right) \subset X$ asymptotically disjoint (a.d. in short) if for some disjoint sequence $\left(\xi_{i}\right) \subset X$, $\lim _{i}\left\|x_{i}-\xi_{i}\right\|=0$.
Recall E is Levi if every increasing norm-bounded net in E has a supremum.

Theorem

Let X be order continuous with a directed bounded generating system Π such that $\pi(X)$ has property $\star(\pi \in \Pi)$, let Y be reflexive such that any complemented seminormalized unconditional basic sequence, either in Y or in Y^{\prime}, contains an a.d. subsequence. Let $\mathcal{A} \subseteq \mathcal{L}^{r}(X)$ be a Π hereditary Riesz operator subalgebra, let $\mathcal{B} \subseteq \mathcal{L}^{r}(Y)$ be a Levi Riesz algebra ideal, and let $\Theta: \mathcal{A} \rightarrow \mathcal{B}$ be a continuous injective algebra homomorphism such that $\overline{\Theta(\mathcal{A})} \cap \mathcal{F}(Y) \neq\{0\}$ and $w^{*}-\lim _{\pi} \Theta(\pi T \pi)=\Theta(T)(T \in \mathcal{A})$. Then Θ is regular.

If Θ preserves ranks then the additional assumption on Y can be dropped.

Theorem

Let X be as in the previous theorem and let Y be reflexive. Let $\mathcal{A} \subseteq \mathcal{L}^{r}(X)$ be a Π hereditary Riesz operator subalgebra, let $\mathcal{B} \subseteq \mathcal{L}^{r}(Y)$ be a Levi Riesz algebra ideal, and let $\Theta: \mathcal{A} \rightarrow \mathcal{B}$ be a continuous injective algebra homomorphism such that $\overline{\Theta(\mathcal{A})} \cap \mathcal{F}(Y)$ contains elements of rank one and $w^{*}-\lim _{\pi} \Theta(\pi T \pi)=\Theta(T)(T \in \mathcal{A})$. Then Θ is regular.

A question of Sourour

Let $\Theta: \mathcal{L}^{r}(X) \rightarrow \mathcal{L}^{r}(X)$ be an algebra automorphism. Is there $U \in \mathcal{L}^{r}(X)$ invertible such that $\Theta(T)=U T U^{-1}\left(T \in \mathcal{L}^{r}(X)\right) ?$

So far, the answer is yes for all reflexive Banach lattices of the kind described earlier.

