Automatic regularity of algebra homomorphisms

Ariel Blanco

Queen's University Belfast

July 21, 2017

Ariel Blanco (Queen's University Belfast) Automatic regularity of algebra homomorphisr

July 21, 2017 1 / 16

- Given Banach lattice algebras $\mathcal{A} \& \mathcal{B}$ and a continuous algebra homomorphism $\Theta : \mathcal{A} \to \mathcal{B}$, find conditions on \mathcal{A} and \mathcal{B} that imply regularity of Θ .
- There are a few results in the case where $\mathcal{A} \& \mathcal{B}$ are semisimple *f*-algebras.
- We shall be interested in the case in which $\mathcal{A} \& \mathcal{B}$ are Riesz subalgebras of $\mathcal{L}^{r}(X) \& \mathcal{L}^{r}(Y)$, respectively, with X & Y Banach lattices.

Let $\mathcal{A}^{r}(\ell_{2})$ be the closure of the finite rank operators in $\mathcal{L}^{r}(\ell_{2})$ and let $\Theta : \mathcal{A}^{r}(\ell_{2}) \to \mathcal{A}^{r}(\ell_{2})$ be an algebra automorphism. Then Θ is regular. Pf:

Let $\mathcal{A}^{r}(\ell_{2})$ be the closure of the finite rank operators in $\mathcal{L}^{r}(\ell_{2})$ and let $\Theta : \mathcal{A}^{r}(\ell_{2}) \to \mathcal{A}^{r}(\ell_{2})$ be an algebra automorphism. Then Θ is regular. Pf:

 There is U : ℓ₂ → ℓ₂ invertible such that Θ(T) = UTU⁻¹ (T ∈ A^r(ℓ₂)).

- **→ → →**

Let $\mathcal{A}^{r}(\ell_{2})$ be the closure of the finite rank operators in $\mathcal{L}^{r}(\ell_{2})$ and let $\Theta : \mathcal{A}^{r}(\ell_{2}) \to \mathcal{A}^{r}(\ell_{2})$ be an algebra automorphism. Then Θ is regular. Pf:

- There is U : ℓ₂ → ℓ₂ invertible such that Θ(T) = UTU⁻¹ (T ∈ A^r(ℓ₂)).
- There is (n_i) ⊂ N strictly increasing such that if P₁ is the natural projection onto [e_{n_i}] then UP₁ is regular.

Let $\mathcal{A}^{r}(\ell_{2})$ be the closure of the finite rank operators in $\mathcal{L}^{r}(\ell_{2})$ and let $\Theta : \mathcal{A}^{r}(\ell_{2}) \to \mathcal{A}^{r}(\ell_{2})$ be an algebra automorphism. Then Θ is regular. Pf:

- There is U : ℓ₂ → ℓ₂ invertible such that Θ(T) = UTU⁻¹ (T ∈ A^r(ℓ₂)).
- There is (n_i) ⊂ N strictly increasing such that if P₁ is the natural projection onto [e_{n_i}] then UP₁ is regular.
- Similarly, there is an infinite natural projection $P_2: \ell_2 \to \ell_2$ such that $P_2 U^{-1}$ is regular.

A (10) > A (10) > A (10)

Let $\mathcal{A}^{r}(\ell_{2})$ be the closure of the finite rank operators in $\mathcal{L}^{r}(\ell_{2})$ and let $\Theta : \mathcal{A}^{r}(\ell_{2}) \to \mathcal{A}^{r}(\ell_{2})$ be an algebra automorphism. Then Θ is regular. Pf:

- There is U : ℓ₂ → ℓ₂ invertible such that Θ(T) = UTU⁻¹ (T ∈ A^r(ℓ₂)).
- There is (n_i) ⊂ N strictly increasing such that if P₁ is the natural projection onto [e_{n_i}] then UP₁ is regular.
- Similarly, there is an infinite natural projection $P_2: \ell_2 \to \ell_2$ such that P_2U^{-1} is regular.
- There are $R_i, S_i \in \mathcal{L}^r(\ell_2)$ such that $R_i S_i = id \& S_i R_i = P_i$ (*i* = 1, 2).

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Let (*E_n*) be the sequence of natural projections with respect to the unit vector basis. Then ∀ *T* ∈ *A^r*(*ℓ*₂),

Let (*E_n*) be the sequence of natural projections with respect to the unit vector basis. Then ∀ *T* ∈ *A^r*(*ℓ*₂),

$$\Theta(T) = \Theta(R_1 S_1 T R_2 S_2)$$

=
$$\lim_m \lim_n \Theta(R_1 E_m S_1 T R_2 E_n S_2)$$

=
$$\lim_m \lim_n \Theta(R_1 E_m) \Theta(S_1 T R_2) \Theta(E_n S_2).$$

1

Let (*E_n*) be the sequence of natural projections with respect to the unit vector basis. Then ∀ *T* ∈ *A^r*(*ℓ*₂),

$$\Theta(T) = \Theta(R_1 S_1 T R_2 S_2)$$

=
$$\lim_m \lim_n \Theta(R_1 E_m S_1 T R_2 E_n S_2)$$

=
$$\lim_m \lim_n \Theta(R_1 E_m) \Theta(S_1 T R_2) \Theta(E_n S_2).$$

• It only remains to note all the following are regular:

$$T \mapsto S_1 TR_2; T \mapsto \Theta(P_1 TP_2); T \mapsto \lim_m \lim_n \Theta(R_1 E_m) T\Theta(E_n S_2).$$

Let \mathcal{A} be a Riesz and topological algebra. We shall say:

- (*a_n*) ⊂ A is convergence preserving if ∀(*b_n*) ⊂ A convergent, (*a_nb_n*) & (*b_na_n*) converge.
- (a_n) ⊂ A factors through (b_n) ⊂ A if there are bounded, convergence preserving sequences (u_n), (v_n) ⊂ A₊ such that a_n = u_nb_{k_n}v_n (n ∈ N), where (k_n) ⊂ N is increasing.
- an idempotent $p \in A$ is **o-minimal** if it is positive and $pAp = \mathbb{K}p$.

Let \mathcal{A} be a Riesz and topological algebra. We shall say:

- (*a_n*) ⊂ A is convergence preserving if ∀(*b_n*) ⊂ A convergent, (*a_nb_n*) & (*b_na_n*) converge.
- (*a_n*) ⊂ A factors through (*b_n*) ⊂ A if there are bounded, convergence preserving sequences (*u_n*), (*v_n*) ⊂ A₊ such that *a_n* = *u_nb_{k_n}v_n* (*n* ∈ N), where (*k_n*) ⊂ N is increasing.
- an idempotent $p \in A$ is **o-minimal** if it is positive and $pAp = \mathbb{K}p$.

Recall \mathcal{A} is **semiprime** if $\{0\}$ is the only two-sided ideal \mathcal{I} of \mathcal{A} such that $\mathcal{I}^2 = \{0\}$.

A (10) A (10)

Theorem

Let $\mathcal{A} \& \mathcal{B}$ be Riesz and topological algebras, and $\Theta : \mathcal{A} \to \mathcal{B}$ a continuous algebra homomorphism.

Suppose

 $-A_+$ is closed and A is semiprime;

- there is an order complete, locally solid topological Riesz algebra $\widetilde{\mathcal{B}}$ such that \mathcal{B} is an ideal in $\widetilde{\mathcal{B}}$ and $\mathcal{A} \to \widetilde{\mathcal{B}}$, $a \mapsto \Theta(a)$, is compact; - there are a bounded approx. identity $(e_n) \subset \mathcal{A}$, a sequence of mutually orthogonal o-minimal idempotents $(p_i) \subset \mathcal{A}$, and disjoint sequences $(P_i) \subset \mathcal{M}_l(\widetilde{\mathcal{B}}) \& (Q_i) \subset \mathcal{M}_r(\widetilde{\mathcal{B}})$ of continuous band projections such that

- (∑ⁿ_{i=1} p_i) is bounded, convergence preserving and (e_n) factors through it;
- $\sum_{i} |P_i(\Theta(p_i)) \Theta(p_i)| |\Theta(p_i)| \& \sum_{i} |\Theta(p_i)| |Q_i(\Theta(p_i)) \Theta(p_i)|$ exist in \mathcal{B} .

Then Θ is regular.

< ロ > < 同 > < 回 > < 回 >

In fact, if $(u_i), (v_i) \subset A_+$ are convergence preserving such that $e_i = u_i \pi_{k_i} v_i$ $(i \in \mathbb{N})$, where $\pi_n = \sum_{i=1}^n p_i$ $(n \in \mathbb{N})$, then there are $\widetilde{b}_u, \widetilde{b}_v \in \widetilde{B}$ such that

$$\Theta(a) = \widetilde{b}_u \Psi\Big(\lim_i \lim_j v_i a u_j \Big) \widetilde{b}_v, \forall \ a \in \mathcal{A},$$

where

$$\Psi: \mathcal{A} \to \mathcal{B}, \ a \mapsto \Theta\Big(\lim_m \lim_n \pi_m a \pi_n\Big).$$

1

Now let $\mathcal{A} \subseteq \mathcal{L}^{r}(X)$ and $\mathcal{B} \subseteq \mathcal{L}^{r}(Y)$, with X and Y Banach lattices.

Given such \mathcal{A} and \mathcal{B} , we should like to find conditions (as weak as possible) on X and Y that force an algebra homomorphism $\Theta : \mathcal{A} \to \mathcal{B}$ (possibly with some additional properties) to be regular.

We shall start with the 'atomic' case and then extend the results to the 'non-atomic' case by means of 'direct limits'.

We shall say a separable atomic Banach lattice X satisfies \star if there is $\mu \ge 1$ and an arrangement of its normalized atoms $\{x_i : i \in \mathbb{N}\}$ such that, $\forall n \in \mathbb{N}$, if $l_1 < l_2 < \cdots < l_n$ satisfy $(x_i)_{i=1}^n \sim (x_{l_i})_{i=1}^n$ then $\forall k$ there is $l_{n+1} \ge l_n + k$ such that $(x_i)_{i=1}^{n+1} \sim (x_{l_i})_{i=1}^{n+1}$.

Here $(x_i)_{i=1}^n \sim (y_i)_{i=1}^n$ stands for

$$\frac{1}{\mu} \left\| \sum_{1}^{n} a_{i} x_{i} \right\| \leq \left\| \sum_{1}^{n} a_{i} y_{i} \right\| \leq \mu \left\| \sum_{1}^{n} a_{i} x_{i} \right\|$$

 $(a_1,\ldots,a_n\in\mathbb{K}).$

We shall say a separable atomic Banach lattice X satisfies \star if there is $\mu \ge 1$ and an arrangement of its normalized atoms $\{x_i : i \in \mathbb{N}\}$ such that, $\forall n \in \mathbb{N}$, if $l_1 < l_2 < \cdots < l_n$ satisfy $(x_i)_{i=1}^n \sim (x_{l_i})_{i=1}^n$ then $\forall k$ there is $l_{n+1} \ge l_n + k$ such that $(x_i)_{i=1}^{n+1} \sim (x_{l_i})_{i=1}^{n+1}$.

Here $(x_i)_{i=1}^n \sim (y_i)_{i=1}^n$ stands for

$$\frac{1}{\mu} \Big\| \sum_{1}^{n} a_{i} x_{i} \Big\| \leq \Big\| \sum_{1}^{n} a_{i} y_{i} \Big\| \leq \mu \Big\| \sum_{1}^{n} a_{i} x_{i} \Big\|$$

 $(a_1,\ldots,a_n\in\mathbb{K}).$

Example: Any Banach lattice of the form $\left(\bigoplus_{i=1}^{\infty} X_i\right)_{(e_i)}$, with (e_i) a 1-unconditional basis and (X_i) a sequence of Banach lattices with subsymmetric bases, satisfies \star .

We shall say

- A ⊆ L^r(X) is a Riesz operator subalgebra if it is a subalgebra and a Riesz subspace of L^r(X) containing F(X);
- B ⊆ L^r(Y) is a Riesz algebra ideal if it is an algebra ideal and a Riesz subspace of L^r(Y).

We shall say

- A ⊆ L^r(X) is a Riesz operator subalgebra if it is a subalgebra and a Riesz subspace of L^r(X) containing F(X);
- B ⊆ L^r(Y) is a Riesz algebra ideal if it is an algebra ideal and a Riesz subspace of L^r(Y).

Theorem

Let X be a separable atomic Banach lattice satisfying \star and let Y be atomic and reflexive. Let $\mathcal{A} \subseteq \mathcal{L}^{r}(X)$ be a Riesz operator subalgebra, let $\mathcal{B} \subseteq \mathcal{L}^{r}(Y)$ be a Riesz algebra ideal and let $\Theta : \mathcal{A} \to \mathcal{B}$ be a continuous injective algebra homomorphism such that $\overline{\Theta(\mathcal{A})} \cap \mathcal{F}(Y) \neq \{0\}$. Then Θ is regular.

A (10) A (10)

About the pf:

We take in A the topology generated by the system of seminorms $(\tau_x)_{x \in X}$, where

 $au_{\mathbf{x}}(\mathbf{T}) := \left\| |\mathbf{T}|(|\mathbf{x}|) \right\| \quad (\mathbf{T} \in \mathcal{A}).$

We let $\mathcal{B} := \mathcal{L}^{r}(Y)$ with the weak*-top. and endow \mathcal{B} with the subspace top.

In this situation, provided Θ is injective, one can show Θ is $\tau\text{-weak}^*$ continuous.

If (x_i) is the sequence of normalized atoms of X in the 'right' order, then (p_i) , defined by $p_i := x_i^* \otimes x_i$ $(i \in \mathbb{N})$, is a sequence of mutually orthogonal o-minimal idempotents.

One just needs to choose a 'suitable' subsequence of (p_i) and 'suitable' disjoint sequences of band projections $(P_i) \subset \mathcal{M}_l(\mathcal{L}^r(Y))$ and $(Q_i) \subset \mathcal{M}_r(\mathcal{L}^r(Y))$.

・ロト ・ 四ト ・ ヨト ・ ヨト … ヨ

We shall assume X is such that there is a bounded set of positive projections $\Pi \subset \mathcal{L}^{r}(X)$ such that

- $\overline{\bigcup_{\pi\in\Pi}\pi(X)}=X;$
- $\pi(X)$ is a Riesz subspace of X, $\forall \pi \in \Pi$;
- $\{\pi(X) : \pi \in \Pi\}$ is directed by inclusion.

We shall assume X is such that there is a bounded set of positive projections $\Pi \subset \mathcal{L}^{r}(X)$ such that

- $\overline{\bigcup_{\pi\in\Pi}\pi(X)}=X;$
- $\pi(X)$ is a Riesz subspace of X, $\forall \pi \in \Pi$;
- $\{\pi(X) : \pi \in \Pi\}$ is directed by inclusion.

We shall call Π a directed bounded generating system for *X*.

Example: Banach lattices of the form $L^{p}(\mu, X)$, where X admits a bounded generating system Π with each $\pi(X)$ a Banach lattice satisfying \star for some fixed μ , and rearrangement invariant spaces on $[0, +\infty)$ have the above property.

A (10) A (10)

Given X with a set Π as above, we shall say $\mathcal{A} \subseteq \mathcal{L}^{r}(X)$ is a Π hereditary Riesz operator subalgebra if:

- $\pi \mathcal{A}\pi \subseteq \mathcal{A}, \forall \pi \in \Pi;$
- { $T \in \mathcal{L}^r(\pi(X)) : \imath_{\pi} T p_{\pi} \in \mathcal{A}$ } is a Riesz operator subalgebra of $\mathcal{L}^r(X), \forall \pi \in \Pi$, where $p_{\pi} : X \to \pi(X), x \mapsto \pi(x)$, and $\imath_{\pi} : \pi(X) \to X$ is the inclusion map.

- E - - E -

Given X with a set Π as above, we shall say $\mathcal{A} \subseteq \mathcal{L}^{r}(X)$ is a Π hereditary Riesz operator subalgebra if:

- $\pi \mathcal{A}\pi \subseteq \mathcal{A}, \forall \pi \in \Pi;$
- { $T \in \mathcal{L}^r(\pi(X)) : \iota_{\pi} T p_{\pi} \in \mathcal{A}$ } is a Riesz operator subalgebra of $\mathcal{L}^r(X), \forall \pi \in \Pi$, where $p_{\pi} : X \to \pi(X), x \mapsto \pi(x)$, and $\iota_{\pi} : \pi(X) \to X$ is the inclusion map.

Example: Any order and algebra ideal of $\mathcal{L}^{r}(X)$ is a Π hereditary Riesz operator subalgebra of $\mathcal{L}^{r}(X)$ for any directed bounded generating system of *X*.

We shall call a seminormalized sequence $(x_i) \subset X$ asymptotically **disjoint** (a.d. in short) if for some disjoint sequence $(\xi_i) \subset X$, $\lim_i ||x_i - \xi_i|| = 0$.

Recall *E* is **Levi** if every increasing norm-bounded net in *E* has a supremum.

We shall call a seminormalized sequence $(x_i) \subset X$ asymptotically disjoint (a.d. in short) if for some disjoint sequence $(\xi_i) \subset X$, $\lim_i ||x_i - \xi_i|| = 0$.

Recall *E* is **Levi** if every increasing norm-bounded net in *E* has a supremum.

Theorem

Let X be order continuous with a directed bounded generating system Π such that $\pi(X)$ has property \star ($\pi \in \Pi$), let Y be reflexive such that any complemented seminormalized unconditional basic sequence, either in Y or in Y', contains an a.d. subsequence. Let $\mathcal{A} \subseteq \mathcal{L}^r(X)$ be a Π hereditary Riesz operator subalgebra, let $\mathcal{B} \subseteq \mathcal{L}^r(Y)$ be a Levi Riesz algebra ideal, and let $\Theta : \mathcal{A} \to \mathcal{B}$ be a continuous injective algebra homomorphism such that $\overline{\Theta(\mathcal{A})} \cap \mathcal{F}(Y) \neq \{0\}$ and $w^*-\lim_{\pi} \Theta(\pi T\pi) = \Theta(T)$ ($T \in \mathcal{A}$). Then Θ is regular.

・ロト ・ 四ト ・ ヨト ・ ヨト

If Θ preserves ranks then the additional assumption on *Y* can be dropped.

Theorem

Let X be as in the previous theorem and let Y be reflexive. Let $\mathcal{A} \subseteq \mathcal{L}^{r}(X)$ be a Π hereditary Riesz operator subalgebra, let $\mathcal{B} \subseteq \mathcal{L}^{r}(Y)$ be a Levi Riesz algebra ideal, and let $\Theta : \mathcal{A} \to \mathcal{B}$ be a continuous injective algebra homomorphism such that $\overline{\Theta(\mathcal{A})} \cap \mathcal{F}(Y)$ contains elements of rank one and w^* -lim $_{\pi} \Theta(\pi T \pi) = \Theta(T)$ ($T \in \mathcal{A}$). Then Θ is regular.

July 21, 2017

15/16

Let $\Theta : \mathcal{L}^{r}(X) \to \mathcal{L}^{r}(X)$ be an algebra automorphism. Is there $U \in \mathcal{L}^{r}(X)$ invertible such that $\Theta(T) = UTU^{-1}$ $(T \in \mathcal{L}^{r}(X))$?

So far, the answer is yes for all reflexive Banach lattices of the kind described earlier.

July 21, 2017

16/16