Lp-Spaces with respect to conditional expectation on Riesz spaces

Youssef. AZOUZI

University of Carthage,
Tunisia

Positivity IX
July 2017, University of Alberta, Edmonton
Some notations
We consider
a Dedekind complete Riesz space E
with weak order unit e, and
a conditional expectation T.
Here $T : E \rightarrow E$ satisfies the following conditions

1. positive projection,
2. order continuous
3. $Te = e$,
4. T is strictly positive (i.e., $Tx > 0$ whenever $x > 0$),
5. $R(T)$ is a Dedekind complete Riesz subspace of E.
The sup-completion of a Riesz space
This notion is introduced by Donner in 1982
E_s plays the same role for E as $\mathbb{R}_\infty : \mathbb{R} \cup \{\infty\}$ does for \mathbb{R}.
We recall that E_s is a Dedekind complete lattice cone which satisfies the following conditions.

1. E is an ordered subset of E_s,
2. E_s has a biggest element,
3. If $x \in E_s$ then $x = \sup \{y \in E : y \leq x\}$,
4. if $y \leq x$ with $x \in E$ and $y \in E_s$ then $y \in E$.

Examples
1. If $E = \mathbb{R}$ then $E_s = \mathbb{R}_\infty := \mathbb{R} \cup \{\infty\}$
2. More generally if $E = \mathbb{R}^n$ then $E_s = \mathbb{R}_\infty^n$.
3. If $E = L^p$ then $E_s = \{f$ measurable: $f \geq g$ for some $g \in L^p\}$.
Functional Calculus

If \(f \) is a real function and \(x \in E \), what is the meaning of \(f(x) \)?
We will use two kinds of functional calculus.

1. In the sense of Buskes, de Pagter, and von Rooij (1991).
 For \(f \in \mathbb{R}^\mathbb{R} \), the equality \(b = f(x) \) in \(E \) means that there exists a Riesz subspace \(V \) of \(E \) such that
 - \(b, x \in V \);
 - \(H(V) \) separates the points of \(V \);
 - \(\omega(b) = f(\omega(x)) \) for all \(\omega \in H(V) \).

2. In the sense of Grobler
 Here we use the Daniell Integral on Riesz spaces.
First kind

- Let $\mathcal{H}(E)$ be the set of all Riesz homomorphisms on E.
- The Riesz subspace of E generated by a subset $A \subset E$ is denoted by $\langle A \rangle_E$.
- If A is finite and $V = \langle A \rangle_E$ then $\mathcal{H}(V)$ *separates the points* of V.
- If such a b exists, it is unique.
- If, in addition, E is an f-algebra, we use $\mathcal{H}_m(V)$ rather than $\mathcal{H}(V)$. Here, $\mathcal{H}_m(V)$ is the subset of $\mathcal{H}(V)$ of all multiplicative.
Second kind

For $x \in E$ and $t \in \mathbb{R}$, let

\[p_t = e - P_{(x-te)+e}, \quad t \in \mathbb{R} \]

\[L = \text{span} \left\{ \chi_{(a,b]} \right\} \subset \mathbb{R}^\mathbb{R}. \]

Define $f(x)$ by

1. $f(x) = p_b - p_a$ if $f = \chi_{(a,b]}$
2. the definition is extended via a linearity process on L.
3. If $f_n \in L$, $f_n \geq 0$ and $f_n \uparrow f$ in $\mathbb{R}^\mathbb{R}$, we put $f(x) = \sup f_n(x) \in E_s$, (This is well defined)
4. If $f^+(x)$ and $f^-(x) \exists$ and $f^-(x) \in E$ we put $f(x) = f^+(x) - f^-(x) \in E_s$.

Y. Azouzi (IPEST)
Some results

- If $f_n \rightarrow f$ uniformly and $f_n^D(x)$ and $f^D(x)$ exist in E. Then $f_n^D(x) \rightarrow f^D(x)$ in order in E.
- If f is continuous and $f \circ g$ is well-defined and $g^D(x) \in E$. Then
 \[(f \circ g)^D(x) = f^D \left(g^D(x)\right) \in E_s.\]
- f^D and f^H coincide on l_e.
- If f is increasing and continuous and $f^D(x) \in E$ then $f^D(x \land ne) \uparrow f^D(x)$ in E and if $f(x \lor -ke) \in E$ for some $k \in \mathbb{N}$ then $f^D(x \lor -ne) \downarrow f^D(x)$ in E.
- If f is continuous and $f^H(x)$ and $f^H(y)$ exist then
 1. f increasing $\implies f^H(x \land y) = f^H(x) \land f^H(y)$.
 2. $f(0) = 0$ and $x \perp y \implies f^H(x + y) = f^H(x) + f^H(y)$.
Some results

- If f is increasing and continuous and $f^D(x)$ and $f^D(y)$ exist in E then
 1. $f^D(x \wedge y) = f^D(x) \wedge f^D(y)$.
 2. If $x \perp y$ then $f^D(x + y) = f^D(x) + f^D(y) - f(0) e$.

- Assume that E is in addition an f-algebra with e as multiplicative identity.
 Let $x \in E^+$ and $f, g \in \mathbb{R}^{\mathbb{R}}$ be continuous functions on \mathbb{R}^+ of bounded variation on each closed interval $[0, a]$ with $a \in (0, \infty)$. If $f^D(x), g^D(x), (fg)^D(x)$ exist in E then $(fg)^D(x) = f^D(x)g^D(x)$.

- Let f be a convex increasing real-valued function on $[0, \infty)$ and (x_α) be an increasing net in E^+ with $x = \sup x_\alpha$. If $f(x) \in E$. then $f(x_\alpha) \uparrow f(x)$.
Convex functions

A function \(f : C \longrightarrow E \) is said to be

- convex if

\[
 f(tx + (1-t)y) \leq tf(x) + (1-t)f(t)
\]

for all \(x, y \in C, t \in [0,1] \).
Convex functions

A function $f : C \rightarrow E$ is said to be

- convex if
 $$f(tx + (1 - t)y) \leq tf(x) + (1 - t)f(t)$$
 for all $x, y \in C$, $t \in [0, 1]$.

- positively homogeneous if (C is a cone and)
 $$f(tx) = tf(x) \quad \text{for all } x \in C \text{ and } t \in [0, \infty)$$
Convex functions

A function $f : C \rightarrow E$ is said to be

- convex if
 \[f(tx + (1-t)y) \leq tf(x) + (1-t)f(t) \]
 for all $x, y \in C$, $t \in [0, 1]$.
- positively homogeneous if (C is a cone and)
 \[f(tx) = tf(x) \]
 for all $x \in C$ and $t \in [0, \infty)$
- sub-additive if (C is a cone and)
 \[f(x + y) \leq f(x) + f(y) \]
 for all $x, y \in E$.

Y. Azouzi (IPEST)
Two Theorems

We define the *lower-level set* is meant any subset of C of the form

$$L(f, a) = \{ x \in C : f(x) \leq a \}, \quad \in E$$ \hspace{1cm} (1)

Theorem

Let C be a cone in E. A positively homogeneous function $f : C \rightarrow E$ is convex if and only if f is sub-additive.

Theorem

Let C be a cone in the Euclidean Riesz space \mathbb{R}^n and $f : C \rightarrow \mathbb{R}^+$ be a positively homogeneous function. If $L(f, 1)$ is convex then f is a convex function.
Generalization

Theorem
Let C be a cone in E. A positively homogeneous function $f : C \rightarrow E^+$ is convex if and only if f is sub-additive.

Theorem
Let C be a cone C in E and $f : C \rightarrow E^+$ be a positively homogeneous function. Then f is convex if and only if the $L(f, e)$ is a convex set.

- Is it true?
Generalization

Theorem
Let C be a cone in E. A positively homogeneous function $f : C \to E_+$ is convex if and only if f is sub-additive.

Theorem
Let C be a cone C in E and $f : C \to E^+$ be a positively homogeneous function. Then f is convex if and only if the $L(f, e)$ is a convex set.

- Is it true?
- YES
Generalization

Theorem
Let C be a cone in E. A positively homogeneous function $f : C \to E_+$ is convex if and only if f is sub-additive.

Theorem
Let C be a cone C in E and $f : C \to E^+$ be a positively homogeneous function. Then f is convex if and only if the $L(f, e)$ is a convex set.

- Is it true?
- YES
- NO
What 's the "good" statement?

- Let C be a cone in E.

Proof.

It is enough to show that f is sub-additive. Let $x, y \in C$ and put $z = \|x\| + \|y\| + \|f(x)\| + \|f(y)\| + \|f(x+y)\|$. The ideal E_z is an AM-space with z as a strong order unit.

By Kakutani Representation Theorem we may assume that $E_z = C(K)$, where K is compact and Hausdorff and $z = 1_K$. ...
What ’s the "good" statement?

- Let C be a cone in E.

Theorem

An increasing positively homogeneous function $f : C \to E^+$ is convex if and only if $L(f, a)$ is convex for all $a \in E$.
What's the "good" statement?

- Let C be a cone in E.

Theorem

An increasing positively homogeneous function $f : C \to E^+$ is convex if and only if $L(f, a)$ is convex for all $a \in E$.

Proof.

It is enough to show that f is sub-additive. Let $x, y \in C$ and put $z = \|x\| + \|y\| + \|f(x)\| + \|f(y)\| + \|f(x + y)\|$.
What's the "good" statement?

- Let C be a cone in E.

Theorem

An increasing positively homogeneous function $f : C \rightarrow E^+$ is convex if and only if $L(f, a)$ is convex for all $a \in E$.

Proof.

- It is enough to show that f is sub-additive.
What's the "good" statement?

- Let C be a cone in E.

Theorem

An increasing positively homogeneous function $f : C \to E^+$ is convex if and only if $L(f, a)$ is convex for all $a \in E$.

Proof.

- It is enough to show that f is sub-additive.
- Let $x, y \in C$ and put $z = |x| + |y| + |f(x)| + |f(y)| + |f(x+y)|$.

The ideal E_z is an AM-space with z as a strong order unit. By Kakutani Representation Theorem we may assume that $E_z = C(K)$, where K is compact and Hausdorff and $z = 1_K$.

...
What's the "good" statement?

- Let C be a cone in E.

Theorem

An increasing positively homogeneous function $f : C \to E^+$ is convex if and only if $L(f, a)$ is convex for all $a \in E$.

Proof.

- It is enough to show that f is sub-additive.
- Let $x, y \in C$ and put $z = |x| + |y| + |f(x)| + |f(y)| + |f(x + y)|$.
- The ideal E_z is an AM-space with z as a strong order unit.
What's the "good" statement?

- Let C be a cone in E.

Theorem

An increasing positively homogeneous function $f : C \to E^+$ is convex if and only if $L(f, a)$ is convex for all $a \in E$.

Proof.

- It is enough to show that f is sub-additive.
- Let $x, y \in C$ and put $z = |x| + |y| + |f(x)| + |f(y)| + |f(x + y)|$.
- The ideal E_z is an AM-space with z as a strong order unit.
- By Kakutani Representation Theorem we may assume that $E_z = C(K)$, where K is compact and Hausdorff and $z = 1_K$.
What's the "good" statement?

- Let C be a cone in E.

Theorem

An increasing positively homogeneous function $f : C \rightarrow E^+$ is convex if and only if $L(f, a)$ is convex for all $a \in E$.

Proof.

- It is enough to show that f is sub-additive.
- Let $x, y \in C$ and put
 $$z = |x| + |y| + |f(x)| + |f(y)| + |f(x + y)|.$$
- The ideal E_z is an AM-space with z as a strong order unit.
- By Kakutani Representation Theorem we may assume that $E_z = C(K)$, where K is compact and Hausdorff and $z = 1_K$.
-
Convex function still convex

Theorem

Let $f \in \mathbb{R}^\mathbb{R}$ be a convex function and C be a sublattice cone in E^+ which contains e. If $f(x)$ exists in E for all $x \in C$ then f is convex on C.
T is an averaging operator

- Let T be a conditional expectation.
T is an averaging operator

- Let T be a conditional expectation.
- We denote by $L^1(T)$ the natural domain of T.
T is an averaging operator

- Let T be a conditional expectation.
- We denote by $L^1(T)$ the natural domain of T.

Theorem (Kuo-Labushagne-Watson, 2005)

Let E be a Dedekind complete f-algebra with order unit e and T be a conditional expectation operator T on E with $Te = e$. Then T is an averaging operator, i.e., $T(xy) = xTy$, for $y \in E$, $x \in R(T)$.
T is an averaging operator

- Let \(T \) be a conditional expectation.
- We denote by \(L^1(T) \) the natural domain of \(T \).

Theorem (Kuo-Labushagne-Watson, 2005)

Let \(E \) be a Dedekind complete \(f \)-algebra with order unit \(e \) and \(T \) be a conditional expectation operator \(T \) on \(E \) with \(Te = e \). Then \(T \) is an averaging operator, i.e., \(T(xy) = xTy \), for \(y \in E, \ x \in R(T) \).

Theorem (K-L-W, 2005)

Let \(E \) be a Dedekind complete Riesz space with weak order unit and \(T \) a conditional expectation on \(E \). Then extension \(T : L^1(T) \to L^1(T) \) is an averaging operator, i.e.,

\[
T(xy) = xT(y) \quad \text{for all} \ x \in R(T) \ \text{and} \ y \in L^1(T) \ \text{with} \ xy \in L^1(T).
\]
The range of T

1. By definition, the range of T is a Dedekind complete Riesz subspace of E.
The range of T

1. By definition, the range of T is a Dedekind complete Riesz subspace of E.

Theorem

Let T be a positive conditional expectation with domain $L^1(T)$.
The range of T

1. By definition, the range of T is a Dedekind complete Riesz subspace of E.

Theorem

Let T be a positive conditional expectation with domain $L^1(T)$.

1. The range $R(T)$ of T is an f-subalgebra of $L^1(T)^u$.
The range of T

1. By definition, the range of T is a Dedekind complete Riesz subspace of E.

Theorem

Let T be a positive conditional expectation with domain $L^1(T)$.

1. The range $R(T)$ of T is an f-subalgebra of $L^1(T)^u$.
2. $R(T)L^1(T) \subseteq L^1(T)$.

Y. Azouzi (IPEST)
Lp(T)-Spaces for finite p

Let \(p \in [1, \infty) \) and let \(T \) be a CE.
Lp(T)-Spaces for finite p

Let $p \in [1, \infty)$ and let T be a CE.

Define

$$L^p(T) = \{ x \in L^1(T) : |x|^p \in L^1(T) \}.$$

and

$$N_p(x) = T(|x|^p)^{1/p} \text{ for all } x \in L^p(T)$$.
Lp(T)-Spaces for finite p

- Let $p \in [1, \infty)$ and let T be a CE.
- Define

$$L^p(T) = \left\{ x \in L^1(T) : |x|^p \in L^1(T) \right\}.$$

and

$$N_p(x) = T (|x|^p)^{1/p} \text{ for all } x \in L^p(T).$$

Theorem

*Under these assumptions $L^p(T)$ is an order ideal in $L^1(T)$.***
Lp(T)-Spaces for finite p

- Let $p \in [1, \infty)$ and let T be a CE.
- Define

$$L^p(T) = \{ x \in L^1(T) : |x|^p \in L^1(T) \} .$$

and

$$N_p(x) = T(|x|^p)^{1/p} \text{ for all } x \in L^p(T) .$$

Theorem

*Under these assumptions $L^p(T)$ is an order ideal in $L^1(T)$.***

Theorem

Let T be a conditional expectation with natural domain $L^1(T)$ and $1 \leq p < \infty$. Then

$$N_p(x + y) \leq N_p(x) + N_p(y) \text{ for all } x, y \in L^p(T) .$$
Inequalities

Let T be a conditional expectation with natural domain $L^1(T)$ and $1 \leq p, q < \infty$ with $\frac{1}{p} + \frac{1}{q} = 1$.

Young Inequality

$|xy| \leq \left(\frac{1}{p} |x|^{p} + \frac{1}{q} |y|^{q}\right)$ for all $x \in L^p(T)$ and $y \in L^q(T)$.

Hölder Inequality

If $x \in L^p(T)$ and $y \in L^q(T)$ then $xy \in L^1(T)$ and $\|xy\|_1 \leq \|x\|_p \|y\|_q$.

Lyapunov Inequality

$\|L^p(T)\|_q \|L^q(T)\|_p$ for all $x \in L^p(T)$.

Y. Azouzi (IPEST)
Inequalities

- Let T be a conditional expectation with natural domain $L^1(T)$ and $1 \leq p, q < \infty$ with $\frac{1}{p} + \frac{1}{q} = 1$.

- **Young Inequality**

 $$|xy| \leq \frac{1}{p} |x|^p + \frac{1}{q} |y|^q$$ for all $x \in L^p(T)$ and $y \in L^q(T)$.
Inequalities

- Let T be a conditional expectation with natural domain $L^1(T)$ and $1 \leq p, q < \infty$ with $\frac{1}{p} + \frac{1}{q} = 1$.

- **Young Inequality**
 \[|xy| \leq \frac{1}{p} |x|^p + \frac{1}{q} |y|^q \text{ for all } x \in L^p(T) \text{ and } y \in L^q(T). \]

- **Hölder Inequality**
 If $x \in L^p(T)$ and $y \in L^q(T)$ then
 \[xy \in L^1(T) \text{ and } N_1(xy) \leq N_p(x) N_q(y). \]
Inequalities

- Let T be a conditional expectation with natural domain $L^1(T)$ and $1 \leq p, q < \infty$ with $\frac{1}{p} + \frac{1}{q} = 1$.

- **Young Inequality**

 $$|xy| \leq \frac{1}{p} |x|^p + \frac{1}{q} |y|^q \text{ for all } x \in L^p(T) \text{ and } y \in L^q(T).$$

- **Hölder Inequality**

 If $x \in L^p(T)$ and $y \in L^q(T)$ then

 $$xy \in L^1(T) \text{ and } N_1(xy) \leq N_p(x) N_q(y).$$

- **Lyapunov Inequality**

 $$L^p(T) \subset L^q(T) \text{ and } N_q(x) \leq N_p(x) \text{ for all } x \in L^p(T).$$
More inequalities

Again T be a conditional expectation with natural domain $L^1(T)$ and $1 \leq p < \infty$.

- **Chebychev Inequality**
More inequalities

Again T be a conditional expectation with natural domain $L^1(T)$ and $1 \leq p < \infty$.

- **Chebychev Inequality**

Theorem

Let $0 \leq x \in L^p(T)$ and $u \in R(T)$. Then the following holds

$$u^p TP(x-u) + e \leq Tx^p.$$
Again T be a conditional expectation with natural domain $L^1(T)$ and $1 \leq p < \infty$.

- **Chebychev Inequality**

Theorem

Let $0 \leq x \in L^p(T)$ and $u \in R(T)$. Then the following holds

$$u^p TP(x-u) + e \leq Tx^p.$$

- **Another one**
More inequalities

Again T be a conditional expectation with natural domain $L^1(T)$ and $1 \leq p < \infty$.

- **Chebychev Inequality**

Theorem

Let $0 \leq x \in L^p(T)$ and $u \in R(T)$. Then the following holds

$$u^p TP(x-u) + e \leq Tx^p.$$

- **Another one**

Theorem

Under the same assumptions we have

$$u^{p-1} TP(x-u) + x \leq Tx^p.$$
T-uniform family

- The T-uniformity is an efficient tool in Martingale Theory.
T-uniform family

- The T-uniformity is an efficient tool in Martingale Theory.

Definition (Kuo-Vardy-Watson, 2013)

A family (x_α) in E is called T-uniform if

$$\sup_{\alpha} TP(x_\alpha - ce)^+ |x_\alpha| \to 0 \text{ as } c \to \infty.$$
T-uniform family

- The T-uniformity is an efficient tool in Martingale Theory.

Definition (Kuo-Vardy-Watson, 2013)

A family (x_α) in E is called T-uniform if

$$\sup_{\alpha} TP((x_\alpha - ce)^+) \cdot |x_\alpha| \rightarrow 0 \text{ as } c \rightarrow \infty.$$

Theorem

Let T be a conditional expectation with natural domain $L^1(T)$ and $1 < p < \infty$. Let $(x_\alpha)_{\alpha \in \Lambda}$ be a family in $L^1(T)$ which is bounded in $L^p(T)$, i.e., there exists $y \in L^1(T)$ such that

$$T(|x_\alpha|^p) \leq y \text{ for all } \alpha \in \Lambda.$$

Then (x_α) is T-uniform.
Theorem

Let T be a conditional expectation with natural domain $L^1(T)$ and $1 \leq p < \infty$. A locally bounded net (x_α) in $L^1(T)$ converges to x in $L^p(T)$ if and only if $(|x_\alpha|^p)$ has a T-uniform tail and converges to x in T-conditionally probability.
The space \(L_\infty \).

- If \((\Omega, \mathcal{F}, \mu)\) is a probability space, then \(L^\infty (\mu) \) is given by

\[
L^\infty (\mu) = \{ f \in L^1 (\mu) : |f| \leq \lambda \text{ for some } \lambda \in \mathbb{R} \}.
\]
The space L_∞.

- If $(\Omega, \mathcal{F}, \mu)$ is a probability space, then $L^\infty(\mu)$ is given by
 \[L^\infty(\mu) = \{ f \in L^1(\mu) : |f| \leq \lambda \text{ for some } \lambda \in \mathbb{R} \} . \]

- This is a Banach space with respect to the infinity norm defined by
 \[\|f\|_\infty = \inf \{ \lambda > 0 : |f| \leq \lambda \} \text{ for all } f \in L^\infty(\mu) . \]
The space L_∞.

- If $(\Omega, \mathcal{F}, \mu)$ is a probability space, then $L^\infty (\mu)$ is given by

 $$ L^\infty (\mu) = \{ f \in L^1 (\mu) : |f| \leq \lambda \text{ for some } \lambda \in \mathbb{R} \} . $$

- This is a Banach space with respect to the infinity norm defined by

 $$ \| f \|_\infty = \inf \{ \lambda > 0 : |f| \leq \lambda \} \text{ for all } f \in L^\infty (\mu) . $$

- One of the classical results stipulates that

 $$ L^\infty (\mu) = \left\{ f \in \bigcap_{1 \leq p < \infty} L^p (\mu) : \lim_{p \to \infty} \| f \|_p < \infty \right\} \quad (2) $$

 and

 $$ \| f \|_\infty = \lim_{p \to \infty} \| f \|_p \text{ for all } f \in L^\infty (\mu) . \quad (3) $$
The space L_∞.

- What's $L_\infty(T)$?
The space L_∞.

- What’s $L^\infty(T)$?

Definition (L-W, 2010)

$$L^\infty(T) = \{ x \in L^1(T) : |x| \leq \lambda e \text{ for some } \lambda \in \mathbb{R} \}.$$
The space L_∞.

- What's $L^\infty(T)$?

Definition (L-W, 2010)

$$L^\infty(T) = \{ x \in L^1(T) : |x| \leq \lambda e \text{ for some } \lambda \in \mathbb{R} \}.$$

- The vector-valued norm N_∞ should be defined:

$$N_\infty(x) = \inf \{ \lambda e : |x| \leq \lambda e \}.$$
The space L_∞.

- What's $L^\infty (T)$?

Definition (L-W, 2010)

$$L^\infty (T) = \{ x \in L^1 (T) : |x| \leq \lambda e \text{ for some } \lambda \in \mathbb{R} \} .$$

- The vector-valued norm N_∞ should be defined:

$$N_\infty (x) = \inf \{ \lambda e : |x| \leq \lambda e \} .$$

- But,... there is a problem !!
The "right" definition

- Does it exist?
The "right" definition

- Does it exist?

 Yes,

 \[
 L^\infty (T) = \left\{ x \in L^1 (T) : |f| \leq u \text{ for some } u \in R (T) \right\}.
 \]

 and

 \[
 N_\infty (x) = \inf \left\{ u \in R (T) : |x| \leq u \right\}, \quad x \in L^\infty (T).
 \]
Properties of $L_\infty(T)$

Let T be a conditional expectation with natural domain $L^1(T)$

Theorem

The following hold

1. $L^\infty(T)$ is an f-subalgebra of $L^1(T)^u$.
2. $L^\infty(T) L^p(T) \subset L^p(T)$ for $p \in [1, \infty]$.

Theorem

Let $x \in L^1(T)$.

1. The following are equivalent
 1. $x \in L^\infty(T)$;
 2. $x \in \bigcap_{1 \leq p < \infty} L^p(T)$ and \{ $N_p(x)$ \}$_{p \in [1, \infty)}$ is bounded in $L^1(T)$.

2. In this case we have the following formula

 $$N_\infty(x) = \sup \{ N_p(x) : p \in [1, \infty) \}.$$
Thank you