Lp-Spaces with respect to conditional expectation on Riesz spaces

Youssef. AZOUZI

University of Carthage, Tunisia

Positivity IX July 2017, University of Alberta, Edmonton

Some notations

We consider

a Dedekind complete Riesz space E

with weak order unit e, and

a conditional expectation T.

Here $T: E \longrightarrow E$ satisfies the following conditions

- positive projection,
- order continuous
- If the set of the s
- T is strictly positive (i.e., Tx > 0 whenever x > 0),
- R(T) is a Dedekind complete Riesz subspace of E.

The sup-completion of a Riesz space

This notion is introduced by Donner in 1982 E_s plays the same role for E as $\mathbb{R}_{\infty} : \mathbb{R} \cup \{\infty\}$ does for \mathbb{R} . We recall that E_s is a Dedekind complete lattice cone which satisfies the following conditions.

- E is an ordered subset of E_s ,
- 2 E_s has a biggest element,

$$If x \in E_s then x = \sup \{y \in E : y \le x\},$$

• if $y \leq x$ with $x \in E$ and $y \in E_s$ then $y \in E$.

Examples

1 If
$$E = \mathbb{R}$$
 then $E_s = \mathbb{R}_\infty := \mathbb{R} \cup \{\infty\}$

2 More generally if
$$E = \mathbb{R}^n$$
 then $E_s = \mathbb{R}^n_\infty$.

If
$$E = L^p$$
 then $E_s = \{f \text{ measurable: } f \ge g \text{ for some } g \in L^p \}$

Functional Calculus

If f is a real function and $x \in E$, what is the meaning of f(x)? We will use two kinds of functional calculus.

- In the sense of Buskes, de Pagter, and von Rooij (1991).
 For f ∈ ℝ^ℝ, the equality b = f (x) in E means that there exists a Riesz subspace V of E such that
 - $b, x \in V$;
 - H(V) separates the points of V;
 - $\omega(b) = f(\omega(x))$ for all $\omega \in H(V)$.

 In the sense of Grobler Here we use the Daniell Integral on Riesz spaces.

□ ▶ ▲ 臣 ▶ ▲ 臣 ▶

First kind

- Let H(E) be set of all Riesz homomorphisms on E.
- The Riesz subspace of *E* generated by a subset $A \subset E$ is denoted by $\langle A \rangle_E$.
- If A is finite and $V = \langle A \rangle_E$ then H(V) separates the points of V.
- If such a *b* exists, it is unique.
- If, in addition, E is an f-algebra, we use $H_m(V)$ rather than H(V). Here, $H_m(V)$ is the subset of H(V) of all multiplicative.

通 ト イヨト イヨト

Second kind

For $x \in E$ and $t \in \mathbb{R}$, let $p_t = e - P_{(x-te)^+}e$, $t \in \mathbb{R}$ $L = span \left\{ \chi_{(a,b]} \right\} \subset \mathbb{R}^{\mathbb{R}}$. Define f(x) by

•
$$f(x) = p_b - p_a$$
 if $f = \chi_{(a,b]}$

Ithe definition is extended via a linearity process on L.

● If $f_n \in L$, $f_n \ge 0$ and $f_n \uparrow f$ in $\mathbb{R}^{\mathbb{R}}$, we put $f(x) = \sup f_n(x) \in E_s$, (This is well defined)

● If
$$f^+(x)$$
 and $f^-(x) \exists$ and $f^-(x) \in E$ we put $f(x) = f^+(x) - f^-(x) \in E_s$.

Some results

- If $f_n \longrightarrow f$ uniformly and $f_n^D(x)$ and $f^D(x)$ exist in E. Then $f_n^D(x) \longrightarrow f^D(x)$ in order in E.
- If f is continuous and $f \circ g$ is well-defined and $g^{D}(x) \in E$. Then

$$(f \circ g)^{D}(x) = f^{D}(g^{D}(x)) \in E_{s}.$$

- f^D and f^H coincide on I_e .
- If f is increasing and continuous and f^D(x) ∈ E then
 f^D(x ∧ ne) ↑ f^D(x) in E and if f(x ∨ -ke) ∈ E for some k ∈ N
 then f^D(x ∨ -ne) ↓ f^D(x) in E.
- If f is continuous and $f^{H}(x)$ and $f^{H}(y)$ exist then

1 f increasing
$$\implies f^H(x \wedge y) = f^H(x) \wedge f^H(y).$$

2 $f(0) = 0$ and $x \perp y \implies f^H(x+y) = f^H(x) + f^H(y).$

個 と く ヨ と く ヨ と

Some results

• If f is increasing and continuous and $f^{D}(x)$ and $f^{D}(y)$ exist in E then

• Assume that *E* is in addition an *f*-algebra with *e* as multiplicative identity.

Let $x \in E^+$ and $f, g \in \mathbb{R}^{\mathbb{R}}$ be continuous functions on \mathbb{R}^+ of bounded variation on each closed interval [0, a] with $a \in (0, \infty)$. If $f^D(x), g^D(x), (fg)^D(x)$ exist in E then $(fg)^D(x) = f^D(x)g^D(x)$.

Let f be a convex increasing real-valued function on [0,∞) and (x_α) be an increasing net in E⁺ with x = sup x_α. If f (x) ∈ E. then f (x_α) ↑ f (x).

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ 二 国

Convex functions

A function $f: C \longrightarrow E$ is said to be

• convex if

$$f(tx + (1 - t)y) \le tf(x) + (1 - t)f(t)$$

for all $x, y \in C$, $t \in [0, 1]$.

æ

Convex functions

A function $f: C \longrightarrow E$ is said to be

• convex if

$$f(tx + (1 - t)y) \le tf(x) + (1 - t)f(t)$$

for all $x, y \in C$, $t \in [0, 1]$.

• positively homogeneous if (C is a cone and)

$$f(tx) = tf(x)$$
 for all $x \in C$ and $t \in [0, \infty)$

・ 同 ト ・ ヨ ト ・ ヨ ト

Convex functions

A function $f: C \longrightarrow E$ is said to be

• convex if $f(tx + (1 - t)y) \le tf(x) + (1 - t)f(t)$ for all $x, y \in C, t \in [0, 1]$.

• positively homogeneous if (C is a cone and)

$$f\left(tx
ight)=tf\left(x
ight)$$
 for all $x\in {\mathcal C}$ and $t\in [0,\infty)$

• *sub-additive* if (*C* is a cone and)

$$f(x+y) \leq f(x) + f(y)$$
 for all $x, y \in E$.

Two Theorems

We define the *lower-level set* is meant any subset of C of the form

$$L(f, a) = \{x \in C : f(x) \le a\}, \in E$$
 (1)

Theorem

Let C be a cone in E. A positively homogeneous function $f : C \longrightarrow E$ is convex if and only if f is sub-additive.

Theorem

Let C be a cone in the Euclidean Riesz space \mathbb{R}^n and $f : C \to \mathbb{R}^+$ be a positively homogeneous function. If L(f, 1) is convex then f is a convex function.

Generalization

Theorem

Let C be a cone in E. A positively homogeneous function $f : C \longrightarrow E_+$ is convex if and only if f is sub-additive.

Theorem

Let C be a cone C in E and $f : C \to E^+$ be a positively homogeneous function. Then f is convex if and only if the L(f, e) is a convexset.

• Is it true?

Generalization

Theorem

Let C be a cone in E. A positively homogeneous function $f : C \longrightarrow E_+$ is convex if and only if f is sub-additive.

Theorem

Let C be a cone C in E and $f : C \to E^+$ be a positively homogeneous function. Then f is convex if and only if the L(f, e) is a convexset.

- Is it true?
- YES

Generalization

Theorem

Let C be a cone in E. A positively homogeneous function $f : C \longrightarrow E_+$ is convex if and only if f is sub-additive.

Theorem

Let C be a cone C in E and $f : C \to E^+$ be a positively homogeneous function. Then f is convex if and only if the L(f, e) is a convexset.

- Is it true?
- YES
- NO

• Let C be a cone in E.

æ

通 ト イヨ ト イヨト

• Let C be a cone in E.

Theorem

An increasing positively homogeneous function $f : C \to E^+$ is convex if and only if L(f, a) is convex for all $a \in E$.

• Let C be a cone in E.

Theorem

An increasing positively homogeneous function $f : C \to E^+$ is convex if and only if L(f, a) is convex for all $a \in E$.

• Let C be a cone in E.

Theorem

An increasing positively homogeneous function $f : C \to E^+$ is convex if and only if L(f, a) is convex for all $a \in E$.

Proof.

• It is enough to show that f is sub-additive.

• Let C be a cone in E.

Theorem

An increasing positively homogeneous function $f : C \to E^+$ is convex if and only if L(f, a) is convex for all $a \in E$.

- It is enough to show that f is sub-additive.
- Let $x, y \in C$ and put z = |x| + |y| + |f(x)| + |f(y)| + |f(x+y)|.

• Let C be a cone in E.

Theorem

An increasing positively homogeneous function $f : C \to E^+$ is convex if and only if L(f, a) is convex for all $a \in E$.

- It is enough to show that f is sub-additive.
- Let $x, y \in C$ and put z = |x| + |y| + |f(x)| + |f(y)| + |f(x+y)|.
- The ideal E_z is an AM-space with z as a strong order unit.

• Let C be a cone in E.

Theorem

An increasing positively homogeneous function $f : C \to E^+$ is convex if and only if L(f, a) is convex for all $a \in E$.

- It is enough to show that f is sub-additive.
- Let $x, y \in C$ and put z = |x| + |y| + |f(x)| + |f(y)| + |f(x+y)|.
- The ideal E_z is an AM-space with z as a strong order unit.
- By Kakutani Representation Theorem we may assume that $E_z = C(K)$, where K is compact and Hausdorff and $z = 1_K$.

• Let C be a cone in E.

Theorem

An increasing positively homogeneous function $f : C \to E^+$ is convex if and only if L(f, a) is convex for all $a \in E$.

Proof.

- It is enough to show that f is sub-additive.
- Let $x, y \in C$ and put z = |x| + |y| + |f(x)| + |f(y)| + |f(x+y)|.
- The ideal E_z is an AM-space with z as a strong order unit.
- By Kakutani Representation Theorem we may assume that $E_z = C(K)$, where K is compact and Hausdorff and $z = 1_K$.

•

Convex function still convex

Theorem

Let $f \in \mathbb{R}^{\mathbb{R}}$ be a convex function and C be a sublattice cone in E^+ which contains e. If f(x) exists in E for all $x \in C$ then f is convex on C.

• Let T be a conditional expectation.

★撮▶ ★ 国▶ ★ 国▶

- Let T be a conditional expectation.
- We denote by $L^{1}(T)$ the natural domain of T.

@▶ ▲登▶ ▲登▶

- Let T be a conditional expectation.
- We denote by $L^{1}(T)$ the natural domain of T.

Theorem (Kuo-Labushagne-Watson, 2005)

Let E be a Dedekind complete f-algebra with order unit e and T be a conditional expectation operator T on E with Te = e. Then T is an averaging operator, i. e., T(xy) = xTy, for $y \in E$, $x \in R(T)$.

- Let T be a conditional expectation.
- We denote by $L^{1}(T)$ the natural domain of T.

Theorem (Kuo-Labushagne-Watson, 2005)

Let E be a Dedekind complete f-algebra with order unit e and T be a conditional expectation operator T on E with Te = e. Then T is an averaging operator, i. e., T(xy) = xTy, for $y \in E$, $x \in R(T)$.

Theorem (K-L-W, 2005)

Let E be a Dedekind complete Riesz space with weak order unit and T a conditional expectation on E. Then extension $T : L^1(T) \rightarrow L^1(T)$ is an averaging operator, i. e.,

$$T\left(xy
ight)=xT\left(y
ight)$$
 for all $x\in R\left(T
ight)$ and $y\in L^{1}\left(T
ight)$ with $xy\in L^{1}\left(T
ight)$.

< ロト < 同ト < ヨト < ヨト

By definition, the range of T is a Dedekind complete Riesz subspace of E.

くほと くほと くほと

By definition, the range of T is a Dedekind complete Riesz subspace of E.

Theorem

Let T be a positive conditional expectation with domain $L^{1}(T)$.

By definition, the range of T is a Dedekind complete Riesz subspace of E.

Theorem

Let T be a positive conditional expectation with domain $L^{1}(T)$.

• The range R(T) of T is an f-subalgebra of $L^{1}(T)^{u}$.

By definition, the range of T is a Dedekind complete Riesz subspace of E.

Theorem

Let T be a positive conditional expectation with domain $L^{1}(T)$.

- The range R(T) of T is an f-subalgebra of $L^1(T)^u$.
- $R(T) L^{1}(T) \subseteq L^{1}(T).$

• Let $p \in [1, \infty)$ and let T be a CE.

æ

イロト イ理ト イヨト イヨト

• Let $p \in [1, \infty)$ and let T be a CE.

Define

$$L^{p}(T) = \left\{ x \in L^{1}(T) : |x|^{p} \in L^{1}(T) \right\}.$$

and

$$N_{p}\left(x
ight)=T\left(\left|x
ight|^{p}
ight)^{1/p}$$
 for all $x\in L^{p}\left(T
ight)$

-2

▲口 ≻ ▲圖 ≻ ▲ 圖 ≻ ▲ 圖 ≻ …

• Let $p \in [1, \infty)$ and let T be a CE.

Define

$$L^{p}(T) = \{x \in L^{1}(T) : |x|^{p} \in L^{1}(T)\}.$$

and

$$N_{p}(x) = T(|x|^{p})^{1/p}$$
 for all $x \in L^{p}(T)$

Theorem

Under these assumptions $L^{p}(T)$ is an order ideal in $L^{1}(T)$.

- 本間 と 本語 と 本語 と

• Let $p \in [1, \infty)$ and let T be a CE.

Define

$$L^{p}(T) = \{x \in L^{1}(T) : |x|^{p} \in L^{1}(T)\}.$$

and

$$N_{p}(x) = T(|x|^{p})^{1/p}$$
 for all $x \in L^{p}(T)$

Theorem

Under these assumptions $L^{p}(T)$ is an order ideal in $L^{1}(T)$.

Theorem

Let T be a conditional expectation with natural domain $L^1(T)$ and $1 \le p < \infty$. Then

$$N_{
ho}(x+y) \leq N_{
ho}\left(x
ight) + N_{
ho}\left(y
ight)$$
 for all $x, y \in L^{
ho}\left(T
ight)$

• Let T be a conditional expectation with natural domain $L^{1}(T)$ and $1 \le p, q < \infty$ with $\frac{1}{p} + \frac{1}{q} = 1$.

Let T be a conditional expectation with natural domain L¹(T) and 1 ≤ p, q < ∞ with ¹/_p + ¹/_q = 1.
Young Inequality

$$|xy| \leq rac{1}{p} |x|^p + rac{1}{q} |y|^q$$
 for all $x \in L^p(T)$ and $y \in L^q(T)$.

★掃▶ ★ 国▶ ★ 国▶ 二 国

- Let T be a conditional expectation with natural domain L¹(T) and 1 ≤ p, q < ∞ with ¹/_p + ¹/_q = 1.
 Young Inequality
 - $|xy| \leq rac{1}{p} |x|^p + rac{1}{q} |y|^q$ for all $x \in L^p(T)$ and $y \in L^q(T)$.
- Hölder Inequality If $x \in L^{p}(T)$ and $y \in L^{q}(T)$ then $xy \in L^{1}(T)$ and $N_{1}(xy) \leq N_{p}(x) N_{q}(y)$.

個人 不適人 不適人 一道

- Let T be a conditional expectation with natural domain L¹(T) and 1 ≤ p, q < ∞ with ¹/_p + ¹/_q = 1.
 Young Inequality
 - $|xy| \leq \frac{1}{p} |x|^p + \frac{1}{q} |y|^q$ for all $x \in L^p(T)$ and $y \in L^q(T)$.
- Hölder Inequality If $x \in L^{p}(T)$ and $y \in L^{q}(T)$ then $xy \in L^{1}(T)$ and $N_{1}(xy) \leq N_{p}(x) N_{q}(y)$.
- Lyapunov Inequality

$$L^{p}\left(T
ight) \subset L^{q}\left(T
ight)$$
 and $N_{q}\left(x
ight) \leq N_{p}\left(x
ight)$ for all $x\in L^{p}\left(T
ight)$.

▲圖 ▶ ▲ 唐 ▶ ▲ 唐 ▶ 二 唐

Again T be a conditional expectation with natural domain $L^{1}(T)$ and $1 \leq p < \infty$.

• Chebychev Inequality

-2

|田 | |田 | |田 |

Again T be a conditional expectation with natural domain $L^{1}(T)$ and $1 \le p < \infty$.

• Chebychev Inequality

Theorem

Let $0 \le x \in L^{p}(T)$ and $u \in R(T)$. Then the following holds

 $u^p TP_{(x-u)^+} e \leq Tx^p.$

・ 同 ト ・ ヨ ト ・ ヨ ト

Again T be a conditional expectation with natural domain $L^{1}(T)$ and $1 \le p < \infty$.

• Chebychev Inequality

Theorem

Let $0 \le x \in L^{p}(T)$ and $u \in R(T)$. Then the following holds

 $u^p TP_{(x-u)^+} e \leq Tx^p$.

Another one

Again T be a conditional expectation with natural domain $L^{1}(T)$ and $1 \le p < \infty$.

• Chebychev Inequality

Theorem

Let $0 \leq x \in L^{p}(T)$ and $u \in R(T)$. Then the following holds

$$u^{p}TP_{(x-u)^{+}}e \leq Tx^{p}.$$

Another one

Theorem

Under the same assumptions we have

$$u^{p-1}TP_{(x-u)^+}x \leq Tx^p.$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

T-uniform family

• The *T*-uniformity is an efficient tool in Martingale Theory.

イロト イ理ト イヨト イヨト

T-uniform family

• The *T*-uniformity is an efficient tool in Martingale Theory.

Definition (Kuo-Vardy-Watson, 2013) A family (x_{α}) in E is called T-uniform if $\sup_{\alpha} TP_{(x_{\alpha}-ce)^{+}} |x_{\alpha}| \longrightarrow 0 \text{ as } c \longrightarrow \infty.$

伺 ト イヨ ト イヨト

T-uniform family

• The *T*-uniformity is an efficient tool in Martingale Theory.

Definition (Kuo-Vardy-Watson, 2013) A family (x_{α}) in E is called T-uniform if $\sup_{\alpha} TP_{(x_{\alpha}-ce)^{+}} |x_{\alpha}| \longrightarrow 0 \text{ as } c \longrightarrow \infty.$

Theorem

Let T be a conditional expectation with natural domain $L^1(T)$ and $1 . Let <math>(x_{\alpha})_{\alpha \in \Lambda}$ be a family in $L^1(T)$ which is bounded in $L^p(T)$, i.e., there exists $y \in L^1(T)$ such that

$$T(|x_{\alpha}|^{p}) \leq y$$
 for all $\alpha \in \Lambda$.

Then (x_{α}) is *T*-uniform.

Theorem

Let T be a conditional expectation with natural domain $L^1(T)$ and $1 \le p < \infty$. A locally bounded net (x_{α}) in $L^1(T)$ converges to x in $L^p(T)$ if and only if $(|x_{\alpha}|^p)$ has a T-uniform tail and converges to x in T-conditionally probability.

• If $(\Omega, \mathcal{F}, \mu)$ is a probability space, then $L^{\infty}(\mu)$ is given by

$$L^{\infty}(\mu) = \left\{ f \in L^{1}(\mu) : |f| \leq \lambda \text{ for some } \lambda \in \mathbb{R} \right\}$$

▲口> ▲圖> ▲注> ▲注> 三注

• If (Ω,\mathcal{F},μ) is a probability space, then $L^{\infty}\left(\mu\right)$ is given by

$$L^{\infty}\left(\mu
ight)=\left\{ f\in L^{1}\left(\mu
ight):\left|f
ight|\leq\lambda$$
 for some $\lambda\in\mathbb{R}
ight\}$.

• This is a Banach space with respect to the infinity norm defined by

$$\|f\|_{\infty} = \inf \left\{ \lambda > 0 : |f| \le \lambda \right\}$$
 for all $f \in L^{\infty}(\mu)$.

-2

★檀★ ★温★ ★温★ …

• If $(\Omega, \mathcal{F}, \mu)$ is a probability space, then $L^{\infty}(\mu)$ is given by

$$L^{\infty}\left(\mu
ight)=\left\{ f\in L^{1}\left(\mu
ight):\left|f
ight|\leq\lambda$$
 for some $\lambda\in\mathbb{R}
ight\}$.

This is a Banach space with respect to the infinity norm defined by

$$\|f\|_{\infty} = \inf \left\{ \lambda > 0 : |f| \le \lambda \right\}$$
 for all $f \in L^{\infty}(\mu)$.

• One of the classical results stipulates that

$$L^{\infty}(\mu) = \left\{ f \in \bigcap_{1 \le p < \infty} L^{p}(\mu) : \lim_{p \longrightarrow \infty} \|f\|_{p} < \infty \right\}$$
(2)

and

$$\|f\|_{\infty} = \lim_{p \to \infty} \|f\|_{p} \text{ for all } f \in L^{\infty}(\mu).$$
(3)

▲圖▶ ▲ 国▶ ▲ 国▶ …

• What's $L^{\infty}(T)$?

<ロト < 回 > < 回 > < 回 > < 回 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• What's $L^{\infty}(T)$?

Definition (L-W, 2010)

$L^{\infty}(T) = \left\{ x \in L^{1}(T) : |x| \leq \lambda e \text{ for some } \lambda \in \mathbb{R} \right\}..$

• What's $L^{\infty}(T)$?

Definition (L-W, 2010)

$$L^{\infty}(T) = \left\{ x \in L^{1}(T) : |x| \leq \lambda e \text{ for some } \lambda \in \mathbb{R} \right\}.$$

• The vector-valued norm N_{∞} should be defined:

$$N_{\infty}(x) = \inf \left\{ \lambda e : |x| \leq \lambda e \right\}.$$

- 4 目 ト - 4 日 ト - 4 日 ト

• What's $L^{\infty}(T)$?

Definition (L-W, 2010)

$$L^{\infty}(T) = \left\{ x \in L^{1}(T) : |x| \leq \lambda e \text{ for some } \lambda \in \mathbb{R} \right\}.$$

• The vector-valued norm N_{∞} should be defined:

$$N_{\infty}(x) = \inf \left\{ \lambda e : |x| \leq \lambda e \right\}.$$

• But,... there is a problem !!

The "right" definition

• Does it exist?

-2

イロト イ理ト イヨト イヨト

The "right" definition

• Does it exist?

• Yes,

$$L^{\infty}(T) = \left\{ x \in L^{1}(T) : |f| \leq u \text{ for some } u \in R(T) \right\}.$$

and

$$N_{\infty}\left(x
ight)=\inf\left\{u\in R\left(T
ight):\left|x
ight|\leq u
ight\},\qquad x\in L^{\infty}\left(T
ight).$$

<ロト < 回 > < 回 > < 回 > < 回 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Properties of $L_{\infty}(T)$

Let T be a conditional expectation with natural domain $L^{1}(T)$

Theorem

The following hold

•
$$L^{\infty}(T)$$
 is an *f*-subalgebra of $L^{1}(T)^{u}$.
• $L^{\infty}(T) L^{p}(T) \subset L^{p}(T)$ for $p \in [1, \infty]$.

Theorem

Let $x \in L^{1}(T)$.

The following are equivalent

•
$$x \in L^{\infty}(T)$$
;
• $x \in \bigcap_{1 \le p < \infty} L^{p}(T)$ and $\{N_{p}(x)\}_{p \in [1,\infty)}$ is bounded in $L^{1}(T)$.

In this case we have the following formula

$$N_{\infty}(x) = \sup \left\{ N_{p}(x) : p \in [1,\infty) \right\}$$

Thank you

<ロト < 回 > < 回 > < 回 > < 回 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <