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Abstract. A collection F of operators on a vector space V is said to be semitran-
sitive if for every pair of nonzero vectors x and y in V there exists a member T
of F such that either Tx = y or Ty = x (or both). We study semitransitive alge-
bras and semigroups of operators. One of the main results is that if the underlying
field is algebraically closed, then every semitransitive algebra of operators on a space
of dimension n contains a nilpotent element of index n. Among other results on
semitransitive semigroups, we show that if the rank of nonzero members of such a
semigroup acting on an n-dimensional space is a constant k, then k divides n.

1. Introduction

As is well known, a collection F of linear transformations on a vector space V is

said to be transitive if for every pair of nonzero vectors x, y ∈ V there exists a

transformation T ∈ F such that Tx = y.

We shall consider a weaker version of this property, which was recently introduced in

[6] and proved not only interesting in its own right, but also fruitful in connection with

the properties of lattices of invariant subspaces of algebras of operators. Although our

primary interest in this paper lies in algebras and semigroups, we state the definition

for an arbitrary collection. We say that F is semitransitive if for every pair of

nonzero vectors x, y ∈ V there exists T ∈ F such that either Tx = y or Ty = x. Note,

that for groups the notions of transitivity and semitransitivity coincide.

It should be noted that if V is a topological vector space, then these two proper-

ties are sometimes referred to as strict transitivity and strict semitransitivity

respectively, while transitivity and semitransitivity are understood in the topolog-

ical sense, that is, for every pair of nonzero vectors x, y ∈ V and for every neighborhood

U of 0 there exists a transformation T ∈ F such that Tx ∈ y + U (or Ty ∈ x + U , for

semitransitivity). We will refer to the latter properties as topological transitivity

and topological semitransitivity .
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Semitransitive algebras of bounded operators on a Banach space were introduced

and investigated in [6]. There it is observed that a unital algebra of bounded operators

on a Banach space is semitransitive if and only if its invariant linear subspaces are

totally ordered by inclusion, and it is topologically semitransitive if and only if all its

closed invariant subspaces are totally ordered by inclusion. This implies that in the

finite-dimensional case the terms topological semitransitivity and semitransitivity are

equivalent for unital algebras of real or complex matrices.

If S is a uniformly bounded semitransitive semigroup of operators on a Banach

space B, then S has no invariant subspaces. Indeed, suppose that ‖T‖ < M for all

T ∈ S. Consider a subspace Z of B and choose a vector x ∈ Z with ‖x‖ > M and a

vector y /∈ Z with ‖y‖ = 1. Since no operator in S can map y to x, there must exist

an operator T ∈ S that maps x to y and hence Z is not invariant under T .

In this paper we study semitransitive algebras and semigroups of matrices, or equiv-

alently, operators on a finite-dimensional space. It turns out that even the case of

dimension one is not totally trivial.

2. Semitransitivity and preorders for abelian groups

We start with some algebraic considerations. For this section, let G be an abelian

group, and S a subsemigroup of G. We say that G is preordered (ordered) if it is

equipped with a reflexive, transitive (and antisymmetric for ordered) binary relation

“�” such that x � y implies xz � yz for all x, y, z ∈ G. We write G+ for the positive

cone {x ∈ G | x � e}. Note that G+ is a subsemigroup of G. Clearly, a preorder is

total if and only if G+∪G−1
+ = G. A preorder is an order if and only if G+∩G−1

+ = {e}.
We say that S is semitransitive , or acts semitransitively on G, if for any

x, y ∈ G there exists s ∈ S such that sx = y or sy = x. One can easily verify the

following characterization.

Proposition 1. The following are equivalent.

(i) S is semitransitive;

(ii) S−1 is semitransitive;

(iii) S ∪ S−1 = G;

(iv) S = G+ for some total preorder on G.

Proposition 2. Every semitransitive semigroup S in G contains the torsion group

t(G) of G.
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Proof. Let a ∈ t(G), then am = e for some m. By Proposition 1(iii) either a ∈ S or

a ∈ S−1. In the latter case, a−1 ∈ S, so that a = (a−1)m−1 ∈ S. �

We say that S is minimal semitransitive if it is semitransitive, and no proper

subsemigroup of S acts semitransitively on G.

Let Ĝ = G/ t(G), then Ĝ is a torsion-free group. Let π : G → Ĝ be the canonical

epimorphism.

Theorem 3. The following are equivalent:

(i) S is minimal semitransitive;

(ii) S ∪ S−1 = G and S ∩ S−1 = t(G);

(iii) S = π−1(Ĝ+) for some total order on Ĝ.

Furthermore, every semitransitive subsemigroup of G contains a minimal semitransitive

subsemigroup.

Proof. The implication (ii)⇒(i) follows from Propositions 1 and 2. To show that

(iii)⇒(ii), let S = π−1(Ĝ+) for some total order on Ĝ, then

S ∪ S−1 = π−1
(
Ĝ+ ∪ Ĝ−1

+

)
= π−1(Ĝ) = G, and

S ∩ S−1 = π−1
(
Ĝ+ ∩ Ĝ−1

+

)
= π−1({e}) = t(G).

(1)

Suppose S is a semitransitive subsemigroup of G. Consider the group G = S ∩ S−1.

Propositions 1 and 2 yield t(G) ⊆ G. Let B = G/ t(G), then B is a torsion-free

subgroup of Ĝ. It is well known (see [2] or [3, p.5]) that every torsion-free group

admits a total order. Let C = π−1(B+) for some total order on B. Note that C ⊆ G is

a semigroup. Also, as in (1), C ∪C−1 = G, and C ∩C−1 = t(G). Put S0 = C ∪ (S \G).

Then S0 ⊆ S. Show that S0 is a semigroup: if x, y ∈ S0 then xy ∈ S0. Suppose not,

since xy ∈ S then xy ∈ G ⊆ S−1 so that x ∈ y−1S−1 ⊆ S−1. Hence, x, y ∈ S−1, so

that x, y ∈ G and, therefore, x, y ∈ C. It follows that xy ∈ C ⊆ S0. Thus, S0 is a

semigroup. Furthermore,

S0 ∪ S−1
0 = C ∪ (S \G) ∪ C−1 ∪ (S \G)−1

= (C ∪ C−1) ∪
(
(S ∪ S−1) \G

)
= G ∪ (G \G) = G, and

S0 ∩ S−1
0 =

(
C ∪ (S \G)

)
∩

(
C−1 ∪ (S \G)−1

)
= (C ∩ C−1) ∪

(
C ∩ (S \G)−1

)
∪

(
(S \G) ∩ C−1

)
∪

(
(S \G) ∩ (S \G)−1

)
= t(G) ∪∅ ∪∅ ∪∅ = t(G),
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so that S0 is minimal semitransitive. Hence, every semitransitive semigroup in G
contains a minimal one.

Finally, show that (i)⇒(iii). Suppose that S is minimal semitransitive and construct

S0 as in the previous paragraph. The minimality of S implies that S0 = S, hence

G = C, and, therefore,

G = G ∩G−1 = C ∩ C−1 = t(G).

Let K = π(S), then it is easy to verify that S = π−1(K). Observe that K is a

semigroup, K ∪K−1 = Ĝ, and K ∩K−1 = {e}. Then K is the positive cone of a total

order on Ĝ as claimed. �

Corollary 4. If S is minimal semitransitive then T = S \ t(G) is a semigroup ideal

in S.

Proof. Suppose that x ∈ S \ t(G), y ∈ S. Theorem 3(ii) implies that x /∈ S−1. But

xy ∈ t(G) would imply x = (xy)y−1 ∈ S−1, a contradiction. �

3. Examples: one-dimensional case

Consider a semigroup of operators acting on a vector space V . In case dim V = 1,

the field F acts on itself by multiplication. Then F• = F \ {0} is an abelian group, and

it follows from Theorem 3 that every semitransitive semigroup contains a minimal such

semigroup and that minimal semitransitive semigroups are the preimages of positive

cones of total preorders on F̂•.

We also study those semitransitive semigroups of F ∈ {R, C} that are either bounded

or compact.

3.1. Real line. The semigroups [−1, 1] and [−1, 1]\{0} are the only bounded semi-

transitive semigroups in R.

3.2. Complex plane. It is easy to see that the closed unit disk D = {|z| 6 1} is

the only compact semitransitive semigroup in C and that any bounded semitransitive

subsemigroup of C is contained in D.

Proposition 5. A bounded semigroup S in C• is semitransitive if and only if it is the

union of the punctured open disk {0 < |z| < 1} and a semigroup S ′ ⊆ ∂D, which acts

semitransitively on the circle ∂D = {|z| = 1}.

Proof. It is clear that any z outside D can be mapped to any nonzero element in D

by multiplication with a nonzero number in the interior of D. It is also easy to see,
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that the entire punctured interior of D is needed for that purpose. Hence S ⊆ D is

semitransitive if and only if it contains {0 < |z| < 1} and S ∩ ∂D acts semitransitively

on ∂D. �

Remark 6. It follows from Theorem 3 that a semigroup S ′ ⊆ ∂D acts semitransitively

on ∂D if an only if it contains the preimage of the positive cone of some total order

on ∂̂D.

Theorem 3 and Proposition 5 also yield the following.

Corollary 7. There exists a bounded minimal semitransitive semigroup S in C.

4. Examples: n-dimensional case

In this section we are going to consider some examples of semitransitive algebras and

semigroups of matrices. Let Mn = Mn(F). For the following examples let SF = S ′
F∪{0},

where S ′
F is a fixed minimal semitransitive semigroup in F•.

4.1. Upper-triangular Toeplitz algebra and semigroup. Let A be the algebra

of all upper-triangular Toeplitz operators. More precisely, A is the algebra generated

by the shift S, that is, the algebra of all the operators of the form a1I + a2S + a3S
2 +

· · ·+ anS
n−1 or, in matrix form,

a1 a2 a3 . . . an

0 a1 a2 . . . an−1

. . . . . . . . . . . . . . .
0 0 0 . . . a1


where a1, . . . , an are arbitrary scalars. Let S be the set of all matrices inA with a1 ∈ SF.

We claim that A is a semitransitive algebra and S is a semitransitive semigroup.

The following shows that S is semitransitive. We claim, that given x,y ∈ Fn, there

is a T ∈ S such that either Tx = y or Ty = x. Let xk and ym be the last non-zero

components of x and y respectively. Without loss of generality we may assume that

k > m and that yk

xk
∈ SF. Finding T ∈ A satisfying Tx = y is equivalent to solving

the system

(2)


a1x1 + a2x2 + . . . + ak−1xk−1 + akxk = y1

a1x2 + a2x3 + . . . + ak−1xk = y2
...

a1xk = yk

for a1, a2, . . . , ak.
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The system (2) is consistent, so that there exists T ∈ A such that Tx = y. Since
yk

xk
∈ SF, it follows from the last equation of (2) that a1 ∈ SF, hence T ∈ S.

Any semitransitive subset of A must contain the identity matrix (I is the only

element of A that maps en to itself) and also any matrix of the form a2S+ . . .+anS
n−1

(we denote the semigroup of all the matrices of this form by R), since such a matrix

is the only matrix in A mapping en to x = ane1 + . . . + a2en−1 and no matrix in A
can map x to en. Therefore A is a minimal semitransitive algebra and, as we shall see

later, is unique up to conjugation if the field F is algebraically closed.

We will show that S contains a minimal semitransitive semigroup. To make notation

less cumbersome we identify the field F with the scalars in Mn. As above, let R denote

the semigroup of all the matrices of the form a2S + . . . + anS
n−1. Observe that R

coincides with the set of matrices in S of determinant zero. Thus, S is a disjoint union

of R and the semigroup of the form S ′
F +R and R is a semigroup ideal in S. As we

noted, any minimal subsemigroup of S will contain R. So we study the semigroup

S ′
F +R. It is easy to see that any semitransitive subsemigroup of S must also contain

all matrices of the form a1I +R, where a1 ∈ S ′
F is not a root of unity. Now, S ′

F +R is a

disjoint union of t(F•)+R, which is a group, and (S ′
F\ t(F•))+R, which is a semigroup

ideal in S ′
F +R by Corollary 4. So, finally, we consider the abelian group t(F•) +R.

Observe that it acts transitively and freely on the set of vectors with xn ∈ t(F•). So by

Theorem 3 there exists a minimal semitransitive semigroup for this action, which we

denote by P . It is easy to see that P ∪ ((S ′
F\ t(F•))+R)∪R is minimal semitransitive.

Now, the structure of this semigroup depends on the characteristic of the field F. If

char(F) = p > 0, then every element of t(F•) +R is torsion, so P = t(F•) +R in this

case. If, in addition, F is algebraic over the prime field, then F• = t(F•) and S was

minimal to begin with.

If char(F) = 0, then t(F•) +R, as an abelian group, is a product of its torsion part

t(F•) and the group I +R, where the latter is torsion free. So P , and thus any minimal

subsemigroup in S, corresponds to a certain total order on I +R by Theorem 3.

4.2. Upper triangular one-column matrices. Consider the set

S = {xeT
i | 1 6 i 6 n, x ∈ Fn, xi ∈ SF and xj = 0 for j > i}

in Mn(F). It can be easily verified that S is a semigroup. We claim that it is minimal

semitransitive.

First we show that S is semitransitive. Let x and y be arbitrary nonzero vectors

in Fn. Define i and j to be the smallest integers such that xk = 0 = yl for all k > i
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and l > j. Without any loss of generality we can assume that i > j and that yi

xi
∈ SF.

Now note that 1
xi

yeT
i ∈ S maps x to y.

Now suppose that S ′ ⊆ S is a semitransitive semigroup. Choose A = xeT
i ∈ S. We

will show that A ∈ S ′, thus proving minimality of S. We consider two cases.

Case: xi is not a root of unity. Then A is the only element of S that maps ei to x

and there is no element in S that would map x to ei. Hence A ∈ S ′.

Case: xk
i = 1 for some positive integer k. Then A is the only element of S that

maps x to xix and 1
x2

i
A is the only element of S that maps xix to x. Hence A ∈ S ′,

since ( 1
x2

i
A)k−1 = A.

4.3. One-column contractions on `n
∞. Consider the set

S =
{
xeT

i | 1 6 i 6 n, ‖x‖∞ 6 1, |xj| < 1 for all j > i, and xi ∈ SF
}
.

Here we assume that F ∈ {R, C} and that SF is bounded. Clearly, S is a subsemigroup

of contractions on `n
∞. We claim that S is a minimal semitransitive semigroup. First,

show that S is semitransitive. Fix x,y ∈ Fn.

Case ‖x‖∞ > ‖y‖∞. If k is such that ‖x‖∞ = |xk| then the operator T = 1
xk

yeT
k ∈ S,

since ‖ 1
xk

y‖∞ < 1, and maps x to y.

Case ‖x‖∞ = ‖y‖∞. Let k and l be largest integers, such that ‖x‖∞ = |xk| and

‖y‖∞ = |yl|. Without any loss of generality assume that k > l and that yk

xk
∈ SF and

note that the matrix T = 1
xk

yeT
k ∈ S maps x to y.

Now assume that S ′ is a semitransitive subsemigroup of S. We show that any

operator T = xeT
j ∈ S, must also belong to S ′. Note that T is the only matrix in S

mapping ej to x.

If xj is not a root of unity, then we show that no matrix (yeT
i ) ∈ S maps x to ej

and therefore T ∈ S ′. Indeed, if (yeT
i )x = ej for some yeT

i ∈ S, then y = 1
xi

ej, thus

|xi| = |yj| = 1 (since |xi| 6 1 and |yj| = 1
|xi| 6 1) and hence also i = j. But then

yj 6∈ SF (the only elements of SF whose inverses are in SF as well, are roots of unity),

contradicting yeT
j ∈ S.

If xj is a root of unity, say xk
j = 1, then the only element of S mapping x to xjx

is T . Indeed, if (yeT
i )x = xjx, then xiy = xjx, hence |xi| = 1 = |yj|, thus i = j and

therefore yeT
i = T . Also, 1

x2
j
T is the unique matrix in S mapping xjx to x. Hence

T ∈ S ′, since ( 1
x2

j
T )k−1 = T .

4.4. Rank-one Euclidean contractions. Let S be the set of all rank-one complex

matrices with Euclidean norm at most one together with the zero matrix. This is

clearly a closed semigroup. It is easy to see that it is semitransitive. Indeed, given
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x,y ∈ Cn, without loss of generality ‖x‖2 > ‖y‖2. Let T = 1
‖x‖22

yx∗. Then T is clearly

a contraction, and Tx = y. It will follow from Corollary 21 that S contains a minimal

closed semitransitive subsemigroup.

We claim that S also contains a minimal semitransitive subsemigroup T . Note that

any semitransitive semigroup contained in S must necessarily contain all self-adjoint

rank-one projections. Indeed, if ‖x‖ = 1 then xx∗ is the only rank-one matrix that

takes x to x. As a consequence, it must contain all rank-one proper contractions

(operators of norm strictly less than one) since every rank-one proper contractions is a

product of rank-one projections; see [4]. Thus, we only have to care about the norm-

one rank-one elements. These are uniquely determined by pairs of norm-one vectors:

if ‖x‖ = 1 = ‖y‖, then yx∗ is the only element of S that maps x to y.

For ‖x‖ = ‖y‖ = 1 we write x ∼ y if λx = y for some |λ| = 1, and [x] =
{
z |

‖z‖ = 1 and z ∼ x
}
. Fix a total order on the set of all the equivalence classes of

norm-one vectors. Let L be a set of norm one vectors such that L contains exactly one

vector from each equivalence class. As before, let SC denotes a fixed bounded minimal

semitransitive subsemigroup of the complex plane. Put T = T1 ∪ T2 ∪ T3, where

T1 = all rank-one proper contractions,

T2 =
{

λxx∗ | λ ∈ SC, x ∈ L
}
, and

T3 =
{

yx∗ | ‖x‖ = ‖y‖ = 1 and [y] < [x]
}
.

We claim that T is a minimal semitransitive semigroup. First, show that T is a

semigroup. Let S, T ∈ T . Clearly, if either T or S belongs to T1, then the product

is also in T1. Suppose that S, T ∈ T2 ∪ T3. Then S = yx∗ and T = vu∗ where

‖x‖ = ‖y‖ = ‖u‖ = ‖v‖ = 1, [y] 6 [x], and [v] 6 [u]. Note that T attains its norm

only on the elements of [u], so that ‖ST‖ = 1 only when ‖STu‖ = 1, but ‖STu‖ =

‖yx∗vu∗u‖ 6 ‖x∗v‖. It follows that if [x] 6= [v] then ST ∈ T1. On the other hand, if

[x] = [v], then v = λx for some |λ| = 1, and then ST = yx∗ · λxu∗ = λyu∗ ∈ T2 ∪ T3

because [y] 6 [x] = [v] 6 [u].

In order to show that T is semitransitive, fix nonzero x and y, and observe that if

‖x‖ > ‖y‖ then Tx = y where T = 1
‖x‖22

yx∗ ∈ T1. Suppose that ‖x‖ = ‖y‖, we can

assume that ‖x‖ = ‖y‖ = 1. If x ∼ y then there is T ∈ T2 such that Tx = y or

Ty = x. Finally, if x � y then there is T ∈ T3 such that Tx = y when [y] < [x] or

Ty = x when [x] < [y].

Finally, show that T is minimal. Suppose T0 is a semitransitive subsemigroup of T .

Then T0 contains all self-adjoint rank-one projections, hence T1 ⊂ T0. Since the action
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of T0 on [x] is semitransitive for every x with ‖x‖ = 1, it follows that T2 ⊂ T0. Finally,

if [y] < [x] for some ‖x‖ = ‖y‖ = 1 then yx∗ is the only element of T that maps x

to y, while no element of T maps y to x, so that yx∗ ∈ T0. Therefore, T3 ⊂ T0. It

follows that T0 = T .

4.5. Multiples of unitaries. Let S be the set of all matrices of the form λU , where

λ ∈ [0, 1] and U is a unitary matrix. This is clearly a closed semitransitive semigroup.

As usual, let SUn be the group of all special unitary matrices A in Mn(C), i.e., A∗A = I

and det A = 1.

Proposition 8. The group SU2 is a minimal semigroup acting semitransitively on

norm-one vectors in C2.

Proof. Since the columns of every matrix in SU2 form an orthonormal basis, it follows

that SU2 consists of all the matrices of the form
(

x −ȳ
y x̄

)
with |x|2 + |y|2 = 1. A direct

calculation shows that whenever ‖u‖ = ‖v‖ = 1 in C2 then there exists a unique

matrix A ∈ SU2 such that Au = v. It follows that SU2 acts transitively on the norm

one vectors.

Let S ⊆ SU2 be a semigroup acting semitransitively on the unit sphere in C2. Then

S contains all the elements of SU2 of finite order. Indeed, suppose that A ∈ SU2 and

An = I. Fix any u with ‖u‖ = 1, then A is the only matrix in SU2 that takes u to

Au, while A−1 is the only matrix in SU2 that takes Au to u. Hence, either A ∈ S or

A−1 ∈ S. In the later case, S 3 (A−1)n−1 = A.

Since ( 0 −ᾱ
α 0 ) is of order 4 whenever |α| = 1, it belongs to S. In particular, ( 0 1

−1 0 ) ∈ S.

Since (
α 0
0 ᾱ

)
=

(
0 1
−1 0

)
·
(

0 −ᾱ
α 0

)
,

it follows that ( α 0
0 ᾱ ) ∈ S whenever |α| = 1. Since every conjugate of ( α 0

0 ᾱ ) ∈ S can

still be written as a product of matrices of order 4, it also has to be in S.

It is left to show that every matrix in SU2 is a conjugate of ( α 0
0 ᾱ ) for some |α| = 1.

Indeed, every matrix A in SU2 has an orthonormal basis of eigenvectors. Denote the

first eigenvector by ( x
y ), then, without loss of generality, we can assume that ( −ȳ

x̄ ) is

the second eigenvector. Let α and β be the eigenvalues of A. Since A is unitary, then

|α| = |β| = 1. Furthermore, αβ = det A = 1, so that β = ᾱ. It follows that

A =

(
x −ȳ
y x̄

) (
α 0
0 ᾱ

) (
x −ȳ
y x̄

)−1

.

�
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Corollary 9. The semigroup (0, 1]SU2 is minimal semitransitive.

5. Main results

Theorem 10. If F is an algebraically closed field, then every semitransitive subalgebra

of Mn(F) contains a nilpotent element of index n (i.e., T n = 0, but T n−1 6= 0).

Proof. Let A be a semitransitive subalgebra of Mn(F). It is easy to see that the

invariant subspaces of A are totally ordered. First, we consider the case when A is

unital. Furthermore, we can also assume that A has the block upper triangular form

given in [5, p. 13]. Denoting the block form of A ∈ A by (Aij)
k
i,j=1, observe that the

Jacobson radical R of A consists precisely of those R for which all diagonal blocks Rii

are zero. We shall show that for fixed i, 1 6 i 6 k − 1, the set {Ri,i+1 | R ∈ R} is the

full space of matrices of the given size. First of all, if this set were just {0}, then the

2× 2 algebra

L =

{(
Aii Ai,i+1

0 Ai+1,i+1

)∣∣∣∣ A ∈ A
}

would be semisimple; we can assume after a similarity that Ai,i+1 = 0 for all A ∈ A.

This is a contradiction to the total order of the invariant subspaces. Indeed, if the

invariant subspaces of A given by the above triangularization are denoted by

{0} ⊂ M1 ⊂ . . . ⊂Mk = Fn,

then the identity Ai,i+1 = 0 would give an invariant subspace

Mi−1 ⊕ (Mi+1 	Mi),

not comparable to Mi.

Now fix an R with Ri,i+1 6= 0, and note that the (i, i + 1)-block of AR + RB, with

A, B ∈ A is

AiiRi,i+1 + Ri,i+1Bi+1,i+1.

Since A and B here can be chosen in A independently of each other, and since {Ajj |
A ∈ A} is the full matrix algebra of its size for each j, we conclude that the (i, i + 1)

block can be arbitrarily chosen in R as desired.

By construction, since F is algebraically closed, A has a member N whose diagonal

is N1 ⊕ . . .⊕Nk, where each Ni is the mi ×mi Jordan cell
0 1

0 1
. . . . . .

0 1
0

 ,
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with mi the size of the ith block. If k = 1, then there is nothing to prove. Otherwise,

we view each member of A as an operator expressed in the ordered basis

{e1,1, . . . , e1,m1 ; e2,1, . . . , e2,m2 ; . . . ; ek,1, . . . , ek,mk
}

of the n-dimensional column space. By the preceeding paragraph, for each j 6 k − 1,

R has a member Rj with

Rjej+1,1 = ej,mj
.

One can inductively choose the scalars α1, . . . , αk−1 such that the k − 1 entries of

α1R1 + . . . + αk−1Rk−1 at (m1 + . . . + mj, m1 + . . . + mj + 1) are all nonzero. Put

A = N + α1R1 + . . . + αk−1Rk−1,

then all the (i, i + 1)-entries of the nilpotent matrix A are nonzero, so that we have

An−1 6= 0 and An = 0 as desired.

In the case when A is not unital, by applying the previous argument to the unital-

ization A′ of A we know that there is a nilpotent A of index n in A′. If A ∈ A, we are

done. Otherwise, we may assume, after multiplying A with a scalar, that there exists

T ∈ A such that A = I + T . Then T 2 + T is a nilpotent element of index n in A. �

Every semitransitive algebra of matrices contains a minimal semitransitive subalge-

bra because it is finite-dimensional.

Corollary 11. The algebra of upper triangular Toepliz matrices, described in Section

4.1 is the unique (up to simultaneous similarity) minimal semitransitive algebra of

matrices over an algebraically closed field. In particular, every minimal semitransitive

algebra of matrices over an algebraically closed field is commutative.

Proof. Let A be a semitransitive algebra of n×n matrices over an algebraically closed

field. By Theorem 10, A must contain an matrix S such that Sn = 0, but Sn−1 6= 0

(i.e. S is the backward shift in some basis). The subalgebra of A generated by S is

similar to the algebra of upper triangular Toepliz matrices and is semitransitive (see

Section 4.1).

On the other hand, if A is minimal semitransitive, then it must be equal to the

subalgebra generated by S. �

We now turn our attention to semitransitive semigroups of matrices. The lemma

below is needed to show that semitransitive semigroups in Mn of constant rank k exist

only for those k that divide n.
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Lemma 12. Let S be a semigroup of linear transformations of constant rank k (or 0)

acting on Fn and assume that U is a subspace of Fn of dimension m > k containing

the range of S (i.e. Tx ∈ U for all x ∈ Fn and T ∈ S). If S acts semitransitively on

U , then there exists a subspace W of U of dimension m− k and a subsemigroup S ′ of

S whose range is contained in W and acts semitransitively on W .

Proof. It is easy to see that S must contain an element T for which Range T 2 = Range T

(any nonnilpotent operator will suffice). We will show that S ′ = {S ∈ S | TS = 0} and

W = (ker T )∩U = ker T |U satisfy the required criteria. It is clear that RangeS ′ ⊆ W

and that dim(W ) = m− k (rank T |U = k, since rank T = k and Range T 2 = Range T ).

We complete the proof by showing that S ′ acts semitransitively on W . Let x and y be

nonzero vectors in W . Since S acts semitransitively on U (hence also on W ) there is

S ∈ S that maps one of the vectors into the other; suppose Sx = y. Note that TSx =

Ty = 0. If TS 6= 0, then rank(TS) = k and therefore S has the same kernel as TS

(clearly ker TS ⊆ ker S, we must have equality since dim ker TS = n− k = dim ker S);

but this would mean that Sx = 0. Thus TS = 0 and hence S ∈ S ′. �

The following result extends a known theorem for transitivity of semigroups [1,

Theorem 3.13].

Theorem 13. If S is a semitransitive semigroup of matrices in Mn(F) of rank k or 0,

then k divides n.

Proof. Suppose, if possible, that k does not divide n. Then we can write n = sk + r,

where 0 < r < k. Using Lemma 12 (s times) we obtain a subspace W of Fn of dimension

r and a subsemigroup S ′ of S whose image is contained in W and acts semitransitively

on W . But then S ′ would be a nonzero semigroup of rank at most r; a contradiction

to the assumption that all ranks in S and hence in S ′ are either 0 or k. �

Example 14. If n = kl and V = V1 ⊕ V2 ⊕ . . . ⊕ Vl, is a decomposition of an n-di-

mensional vector space V into k-dimensional subspaces, then all linear transformations

A : V → V of the form A = A1,i + . . . + Al,i, where each Aj,i : Vi → Vj is either 0 or

invertible, form a semitransitive semigroup of transformations of rank k or 0.

The lemma below will be used to construct examples of semitransitive semigroups

that contain no minimal semitransitive semigroups.

Lemma 15. If a semigroup S is either transitive or semitransitive, then so is {AB |
A, B ∈ S}, the subsemigroup of S consisting of products of two elements of S.
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Proof. If x,y is a pair of nonzero vectors, then note that ABx = y, provided that

Bx = y and Ay = y. �

Corollary 16. If F is a field of characteristic zero and n > 2, then

S = {A ∈ Mn(F) | det(A) = 2k for some positive integer k}

is a transitive semigroup that contains no minimal transitive (semitransitive) subsemi-

groups. In particular, if F ∈ {R, C}, then S is closed and contains no minimal closed

transitive (semitransitive) subsemigroups.

Proof. Note that if S ′ is a subsemigroup of S, then S ′ · S ′ is a proper subsemigroup

S ′. The exercise of showing that S is transitive is left to the reader. �

Corollary 17. Let Sα be the subsemigroup of Mn(C), generated by unitary matrices

of determinant α with |α| = 1. If n > 2 and α is not a root of unity, then

S ′
α = (0, 1] · Sα

is a bounded transitive semigroup that contains no minimal transitive (semitransitive)

subsemigroups.

Proof. Note that T · T ( T ,whenever T is a subsemigroup of S ′
α. It remains to show

that the semigroup S ′
α is transitive. For that, it is sufficient to prove that unitary

matrices of determinant α act transitively on the unit sphere of vectors in Cn. If x,y

is a pair of unit vectors in Cn, then choose an orthonormal basis V = {v1, . . . ,vn} for

Cn, so that x = v1 and y = y1v1 + y2v2. Now note that (in basis V),

A =

(
y1 −αȳ2

y2 αȳ1

)
⊕ In−2

is a unitary transformation of determinant α that maps x to y. �

The examples above show that in general semitransitive semigroups need not contain

any minimal semitransitive semigroups. In the remainder of our paper, we give some

conditions which guarantee the existence of such a subsemigroup.

Theorem 18. If S0 is a semitransitive semigroup in Mn(F) consisting of matrices with

at most one non-zero column then it contains a minimal semitransitive subsemigroup.

Proof. Let G be the set of all semitransitive subsemigroups of S0, ordered by the

reverse inclusion. We use Zorn’s lemma to prove that G contains a maximal element.

Suppose that (Sα)α∈Λ is a chain in G. We claim that the semigroup S =
⋂

α∈Λ Sα is
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semitransitive. We can assume that Λ is infinite. Pick a pair of nonzero vectors x,y

and define

Λ′ =
{

α ∈ Λ | Ax = y for some A ∈ Sα

}
Λ′′ =

{
α ∈ Λ | Ay = x for some A ∈ Sα

}
.

Since Λ′ ∪ Λ′′ = Λ we can, without any loss of generality, assume that
⋂

Λ′ Sα = S.

For each α ∈ Λ′ choose a matrix Aα ∈ Sα so that Aαx = y and note that Aα = zαe
T
jα

for some integer jα and nonzero vector zα. If Λj = {α ∈ Λ′ | jα = j} then clearly

Λ′ =
⋃n

j=1 Λj and hence
⋂

Λj0
Sα = S for some 1 6 j0 6 n, since at least one of the Λj

has no upper bound.

For every α ∈ Λj0 we have y = Aαx = zαe
T
j0
x = xj0zα, thus zα = 1

xj0
y, hence

Aα = 1
xj0

yej0 for all α ∈ Λj0 and therefore 1
xj0

yej0 ∈ S. �

The proof of the theorem above can be modified to show the following.

Theorem 19. Suppose that X is a Banach space and S is a semitransitive semigroup

of bounded operators on X. If S is compact in operator norm, then it contains a

minimal compact semitransitive semigroup.

Proof. Let G be the set of all compact semitransitive subsemigroups of S0, ordered by

the reverse inclusion. We use Zorn’s lemma to show that G has a maximal element. If

(Sα)α∈Λ is a chain in G then define S =
⋂

Λ Sα. We claim, that S is semitransitive (it

is clearly a compact semigroup). Pick a pair of nonzero vectors x,y and define

Λ′ =
{

α ∈ Λ | Ax = y for some A ∈ Sα

}
Λ′′ =

{
α ∈ Λ | Ay = x for some A ∈ Sα

}
.

Since Λ′ ∪ Λ′′ = Λ we can, without any loss of generality, assume that
⋂

Λ′ Sα = S.

If α ∈ Λ′ then choose an operator Aα ∈ Sα, so that Aαx = y. Since (Aα)α∈Λ′ is a

chain in S0, it contains a convergent subnet (Aα)α∈Λ′
0
→ A. Note that A ∈ Sα for all

α, since every Sα is closed and contains a tail of the net (Aα)α∈Λ′
0
. Hence A ∈ S and

Ax = limα∈Λ′
0
Aαx = y. �

Remark 20. Observe that operator norm compactness in Theorem 19 can be replaced

with compactness in any Hausdorff operator topology τ that satisfies the following

condition: if Aα
τ−→ A and Aαx = y for some net (Aα) and some nonzero vectors x

and y, then Ax = y. In particular, Theorem 19 remains valid for the weak operator

topology and, in case when X is a dual space, for the weak* operator topology.
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Corollary 21. A closed bounded semitransitive semigroup in Mn(F), where F ∈ {R, C},
contains a minimal closed semitransitive subsemigroup.

Remark 22. The only semigroup property that we used in the proof of Theorem 19

is that the intersection of a chain of semigroups is a semigroup. Thus Theorem 19,

Remark 20 and Corollary 21 apply also to semitransitive sets or groups of operators.

References
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