
STRICTLY SEMI-TRANSITIVE
OPERATOR ALGEBRAS

H. P. ROSENTHAL AND V. G. TROITSKY

Abstract. An algebra A of operators on a Banach space X is called strictly semi-
transitive if for all non-zero x, y ∈ X there exists an operator A ∈ A such that
Ax = y or Ay = x. We show that if A is norm-closed and strictly semi-transitive,
then every A-invariant linear subspace is norm-closed. Moreover, LatA is totally and
well ordered by reverse inclusion. If X is complex and A is transitive and strictly semi-
transitive, then A is WOT-dense in L(X). It is also shown that if A is an operator
algebra on a complex Banach space with no invariant operator ranges, then A is
WOT-dense in L(X). This generalizes a similar result for Hilbert spaces proved
by Foiaş.

1. Introduction

Throughout the paper X is a real or complex Banach space, BX stands for the

closed unit ball of X. Let A be a subalgebra of L(X), the algebra of all bounded linear

operators on X. For x ∈ X the orbit of x under A is defined by Ax = {Ax | A ∈ A}.
We say that x0 ∈ X is cyclic for A if Ax0 is dense in X; x0 is called strictly cyclic if

Ax0 = X. The algebra A is called transitive (strictly transitive) if every non-zero

element of X is cyclic (respectively, strictly cyclic). We write Lat A for the lattice of

all closed A-invariant subspaces of X. It is easy to see that A is transitive if and only

if Lat A =
{
{0}, X

}
. Similarly, A is strictly transitive if and only if it has no invariant

linear subspaces other than {0} and X (by a linear subspace we mean a subspace which

is not necessarily closed). A remarkable result due independently to Yood [Yood49]

and Rickart [Ric50] yields that if A is a strictly transitive algebra of operators on a

complex Banach space, then it is WOT-dense in L(X). We refer the reader to [RR73]

for a detailed introduction to transitive algebras.

An algebra A is called semi-transitive if for all non-zero x, y ∈ X and ε > 0 there

exists an operator A ∈ A such that ‖Ax − y‖ < ε or ‖Ay − x‖ < ε. We say that A
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is strictly semi-transitive if for all non-zero x, y ∈ X there is an operator A ∈ A

with Ax = y or Ay = x. One can show that a unital algebra A is semi-transitive if and

only if it is unicellular , that is, Lat A is totally ordered by inclusion (see [RR73] for

a treatment of unicellular algebras). Similarly, A is strictly semi-transitive if and only

if all the A-invariant linear subspaces are totally ordered by inclusion. In Section 3

we investigate the structure of strictly semi-transitive algebras. We show that if A

is norm closed and strictly semi-transitive, then every A-invariant linear subspace is

norm-closed and Lat A is well-ordered by reverse inclusion. We deduce that a transitive

strictly semi-transitive operator algebra on a complex Banach space is WOT-dense in

L(X). In the special case of CSL-algebras on a Hilbert space similar results were

obtained in [Hop01, DHP01].

Foiaş proved in [Foi72] that if A is a WOT-closed algebra of operators on a Hilbert

space H, and A has no invariant operator ranges, then A = L(H). In Section 4 we

generalize the result of Foiaş to complex Banach spaces using a version of Arveson’s

Lemma of [Arv67]. For Y ⊆ X, we say that Y is an injective operator range if

Y = Range ~T for an injective bounded operator ~T ∈ L(M, X), where M is a closed

subspace of Xn for some n > 1. We show that if A has no invariant injective operator

ranges in X, then A is WOT-dense in L(X).

2. Preliminaries

We first formulate a version of the standard lemma for the Open Mapping Theorem,

and then use it to deduce a results concerning strictly cyclic vectors.

Lemma 2.1 (Open Mapping Lemma). Suppose that Y is a normed space, and T : X →
Y is a bounded operator. Assume that there exist K > 0 and 0 < ε < 1 such that

(2.1) BY ⊆ KT (BX) + εBY .

Then T is a surjective open map, and Y is complete.

Remark 2.2. In particular, (2.1) is satisfied if T (BX) has non-empty interior.

Proof. Fix y ∈ BY , choose x1 ∈ KBX such that ‖y − Tx1‖ 6 ε. Denote y1 = y − Tx1,

then y1 ∈ εBY , so that there exists x2 ∈ εKBX such that ‖y1 − Tx2‖ 6 ε2, let

y2 = y1 − Tx2. Continuing, we obtain sequences (xn) in X and (yn) in Y so that for

all n we have

(2.2) ‖xn‖ 6 εn−1K, and
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(2.3) ‖yn‖ 6 εn, and yn = y − T

n∑
j=1

xj.

Since X is complete, (2.2) yields that
∑∞

j=1 xj converges to an element x of X. Since

T is continuous, Tx = y by (2.3). Thus T is surjective. Moreover, it follows from (2.2)

that ‖x‖ 6 M where M = K
∑∞

j=0 εj = K
1−ε

, so that BY ⊆ MT (BX), hence T is open.

Now let Z = X/ Null T and let π : X → Z be the canonical quotient map. Then Z

is complete and there is a one-to-one operator T̃ : Z → Y such that T̃ π = T . Since

T is open, the set T̃ (U) = T (π−1U) is open whenever U ⊆ Z is open, so that T̃−1 is

continuous. Hence, T̃ is an isomorphism between Z and Y , so that Y is complete. �

Proposition 2.3. Let A be norm closed and x0 ∈ X with x0 6= 0. The following are

equivalent.

(i) x0 is strictly cyclic.

(ii) There is a constant C > 0 so that for all y ∈ BX there is an operator A ∈ A

with ‖A‖ 6 C such that Ax0 = y.

(iii) There are C > 0 and 0 < ε < 1 so that for all y ∈ BX there is an operator

A ∈ A with ‖A‖ 6 C and ‖y − Ax0‖ < ε.

Proof. Define T : A → X by T (A) = Ax0, then T is a bounded linear operator from

A to X. Since A is norm closed, it is a Banach space. Thus, (i)⇒(ii) follows immedi-

ately from the Open Mapping Theorem. The implication (ii)⇒(iii) is trivial. Finally,

(iii)⇒(i) follows from the Open Mapping Lemma. �

Corollary 2.4. If A is norm-closed, then the set of strictly cyclic vectors for A is

open.

Proof. Let x0 be a strictly cyclic vector for A, and choose C as in Proposition 2.3(ii).

Let 0 < δ < 1/C, and suppose that x ∈ X with ‖x − x0‖ < δ. Now if y ∈ BX , we

choose A ∈ A with ‖A‖ 6 C and Ax0 = y. But then ‖Ax−y‖ = ‖Ax−Ax0‖ 6 Cδ < 1.

Hence x is strictly transitive by Proposition 2.3(iii). �

This yields an alternate proof of a result due to A. Lambert.

Corollary 2.5 ([Lam71]). If X is a complex Banach space and A is a transitive op-

erator algebra on X with a strictly cyclic vector, then A is WOT-dense in L(X).

Proof. We may assume that A is norm-closed by replacing A by A. Let x0 be a strictly

cyclic vector for A. By Corollary 2.4 there exists δ > 0 such that ‖x− x0‖ < δ implies

x is strictly cyclic. Let y ∈ X with y 6= 0. Since A is transitive we may choose A ∈ A
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with ‖Ay − x0‖ < δ. But then Ay is strictly cyclic, and so, of course, y is also strictly

cyclic. Thus, A is strictly transitive and so is WOT-dense in L(X). �

The next result shows that transitive algebras always have operators which are

almost zero on prescribed vectors.

Proposition 2.6. Let A be a transitive operator algebra on a complex Banach space

X, then for all x ∈ X and ε > 0 there is an A ∈ A with ‖A‖ = 1 and ‖Ax‖ < ε.

Proof. Without loss of generality, A is WOT-closed. Indeed, suppose that the conclu-

sion holds for A
WOT

, show that it also holds for A. Fix x ∈ X and 0 < ε < 1, and let

δ = ε/4. There exists A ∈ A
WOT

with ‖A‖ = 1 and ‖Ax‖ < δ. Then ‖Ay‖ > 1 − δ

for some y ∈ X with ‖y‖ = 1. Since A
WOT

= A
SOT

, there exists B ∈ A such that∥∥(A − B)x
∥∥ < δ and

∥∥(A − B)y
∥∥ < δ. Then ‖Bx‖ < 2δ and ‖By‖ > 1 − 2δ, so that

‖B‖ > 1− 2δ. Let C = B
‖B‖ , then ‖Cx‖ < 2δ

1−2δ
< ε.

If A = L(X) then the conclusion is trivially satisfied. Suppose that A is a WOT-

closed proper subalgebra of L(X). Were the conclusion false, we could choose x of

norm one and ε > 0 so that ‖Ax‖ > ε whenever A ∈ A and ‖A‖ = 1. But then the

operator T : A → X defined by T (A) = Ax for A ∈ A is an isomorphism. In particular,

Ax is norm-closed being isomorphic to A. Then Ax = X since A is transitive. This

contradicts Corollary 2.5. �

The following generalization of this result is due to Jiaosheng Jiang, and we are

grateful to him for giving us permission to present his proof here.

Theorem 2.7 (J. Jiang). Let A be a commutative transitive operator algebra on a

complex Banach space. Then for all x0, x1, . . . xn ∈ X and ε > 0 there exists an

operator A ∈ A with ‖A‖ = 1 and ‖Axi‖ < ε for all 0 6 i 6 n.

Proof. We may assume without loss of generality that x0 6= 0. By the transitivity

of A, for each 1 6 i 6 n we may choose Bi ∈ A so that ‖Bix0 − xi‖ 6 ε/2. Let

δ = min
{
ε, ε

2·maxi‖Bi‖

}
. By Proposition 2.6, we may choose A ∈ A with ‖A‖ = 1 and

‖Ax0‖ < δ. Then ‖Ax0‖ < ε and for all 1 6 i 6 n,

‖Axi‖ 6
∥∥A(xi −Bix0)

∥∥ + ‖ABix0‖

6 ‖xi −Bix0‖+ ‖BiAx0‖ 6 ε/2 + ‖Bi‖ · δ < ε.

�
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We do not know if the conclusion of this proposition holds for general transitive

algebras. The following result gives a partial answer. Recall that A is said to be n-

transitive for some n > 1 if every linearly independent n-tuple in Xn is cyclic for the

algebra A(n) =
{
A⊕ · · · ⊕ A | A ∈ A

}
.

Proposition 2.8. Let A be an operator algebra on a complex Banach space. If A is

n-transitive for some n > 1, then for all x1, . . . , xn ∈ X and ε > 0 there exists an

operator A ∈ A with ‖A‖ = 1 and ‖Axi‖ < ε for all i.

Proof. As in the proof of Proposition 2.6, we may assume that A is a WOT-closed

proper subalgebra of L(X). Were the conclusion false, we could find x1, . . . , xn ∈ X

and ε > 0 such that max
16i6n

‖Axi‖ > ε for all A ∈ A with ‖A‖ = 1. Without loss of

generality, we may assume that x1, . . . , xk are linearly independent for some k 6 n,

and xj ∈ span{x1, . . . , xk} whenever k < j 6 n. It follows that there is a C > 1 such

that

max
16i6n

‖Axi‖ 6 C · max
16i6k

‖Axi‖

whenever A ∈ A with ‖A‖ = 1, so that max
16i6k

‖Axi‖ > ε/C. Then the map T : A → Xk

defined by T (A) = (Ax1, . . . , Axk) for A ∈ A is an isomorphism, and hence T (A)

is closed. Since A is n-transitive, it is also k-transitive. Then T (A) = Xk because

x1, . . . , xk are linearly independent. This implies, in particular, that x1 is strictly

cyclic for A, and, since A is transitive, A is WOT-dense in L(X) by Corollary 2.5, a

contradiction. �

Recall that T ∈ L(X, Y ) is called a semi-embedding if it is one-to-one and T (BX)

is closed. The following result is certainly known, and we include a proof for the sake

of completeness.

Proposition 2.9. Let Y be a normed space, and T : Y → X a semi-embedding. Then

Y is complete.

Proof. Let S : Range(T ) → Y be the inverse of T , and let Ỹ be the completion of Y .

Then T may be extended to a continuous operator T̃ : Ỹ → X. Since T (BY ) is closed

in X we have T̃ (BeY ) = T (BY ), and hence Range T̃ = Range T . Consider the operator

ST̃ : Ỹ → Y . If y ∈ Y then ST̃y = STy = y. Moreover, ST̃ (BeY ) = S
(
T (BY )

)
=

BY ⊆ BeY . It follows that ST̃ is a bounded projection of Ỹ onto Y , and thus Y is

complemented in Ỹ , so that it is closed in Ỹ , hence Ỹ = Y . �



6 H. P. ROSENTHAL, V. G. TROITSKY

We are now prepared for the final result of this section. For W ⊆ X and ε > 0, let

Wε =
{
x ∈ X | dist(x, W ) 6 ε

}
. The continuity of the map x 7→ dist(x, W ) from X

to R implies that Wε is a closed set.

Lemma 2.10. Let X be a Banach space and W a bounded circled closed convex subset

of X with void interior. Then for any ε > 0 the set Wε contains no ball of radius larger

than ε.

Proof. Let Y = span W =
⋃∞

n=1 nW . Then Y equipped with the norm given by

the Minkowski functional of W is a normed space. Let T : Y → X be the inclusion

operator. Then T is bounded, one-to-one, and T (BY ) = W . Hence, T is a semi-

embedding, so by Proposition 2.9 Y is complete.

Clearly, Wε is also circled and convex. Suppose that Wε contains a ball of radius r > ε

centered at x0. Since Wε is circled, it also contains the ball of radius r centered at −x0,

and since Wε is convex, it contains the ball of radius r centered at the origin. Indeed,

if ‖z‖ 6 r then x0 +z and −x0 +z belong to Wε, so that z = (x0+z)+(−x0+z)
2

∈ Wε. Now

let ε < ε′ < r. Then rBX ⊆ Wε ⊆ W + ε′BX , thus, BX ⊆ 1
r
W + ε′

r
BX . Since ε′

r
< 1,

we conclude by by Lemma 2.1 that T is surjective. This yields X = Y =
⋃∞

n=1 nW ,

which contradicts the Baire Category Theorem since W has void interior. �

3. The structure of strictly semi-transitive algebras

A subalgebra A of L(X) is called strictly semi-transitive if for all non-zero

x, y ∈ X there exists an operator A ∈ A so that Ax = y or Ay = x.

Proposition 3.1. Let A be a unital subalgebra of L(X). Then the following are equiv-

alent.

(i) A is strictly semi-transitive;

(ii) All the A-invariant linear subspaces of X are totally ordered by inclusion;

(iii) All the orbits are totally ordered by inclusion.

Proof. (i)⇒(ii). Let Y and Z be two A-invariant linear subspaces of X, and suppose

that Z * Y . Show that Y ⊆ Z. Choose z ∈ Z \Y and y ∈ Y . There is no T ∈ A with

Ty = z, for otherwise z ∈ Y since Y is A-invariant. Hence there must be a T ∈ A with

Tz = y, and so y ∈ Z since Z is A-invariant.

(ii)⇒(iii) is trivial.

(iii)⇒(i). Let x, y ∈ X. Then Ax ⊆ Ay or Ay ⊆ Ax. Since A is unital, it follows

that x ∈ Ay or y ∈ Ax, hence A is strictly semi-transitive. �
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Remark 3.2. The implications (i)⇒(ii)⇒(iii) are still valid for non-unital algebras.

The next result is fundamental for our development. Recall that a set is residual if

its complement is of first category; residual subsets of X are dense by Baire Category

Theorem.

Lemma 3.3. Let (Wn) be a sequence of circled bounded closed convex sets, each with

void interior, such that Wn ⊆ Wn+1 and
∞⋃

n=1

Wn is dense in X, and let (εn) and (δn)

be sequences of positive reals tending to zero. Let

G1 =
{
x ∈ X | for all λ > 0, dist(λx,Wn) > εn for infinitely many n},

G2 =
{
x ∈ X | for all λ > 0, dist(λx,Wn) < δn for infinitely many n}.

Then G1 ∩G2 is residual.

Proof. Note that x ∈ G1 if and only if

(3.1) ∀λ > 0 ∀m ∈ N ∃n > m such that dist(λx,Wn) > εn.

In particular,

(3.2) ∀ k ∈ N ∀m ∈ N ∃n > m such that dist
(

1
k
x, Wn

)
> εn.

We claim that (3.1) and (3.2) are, in fact, equivalent. Indeed, suppose that (3.2) holds.

Given λ > 0 and m ∈ N, find a positive integer k such that 1
k

< λ, then there exists

n > m such that dist( 1
k
x, Wn) > εn. Since Wn is convex and circled, it follows that

dist(λx,Wn) > dist( 1
k
x, Wn) > εn.

It follows from (3.2) that x /∈ G1 if and only if there exist k,m ∈ N such that
1
k
x ∈ (Wn)εn for all n > m. Therefore,

∼G1 =
∞⋃

k,m=1

∞⋂
n=m

k(Wn)εn =
∞⋃

k,m=1

k
∞⋂

n=m

(Wn)εn .

It follows from Lemma 2.10 that (Wn)εn contains no balls of radius larger than εn.

Therefore, for every m the set
⋂∞

n=m(Wn)εn has void interior, so that ∼G1 is of first

category.

Similarly, x ∈ G2 if and only if

(3.3) ∀ k ∈ N ∀m ∈ N ∃n > m such that dist(kx, Wn) < δn.

Indeed, if x ∈ G2 then (3.3) is satisfied trivially. Conversely, suppose that x satis-

fies (3.3), let λ > 0 and m ∈ N. Let k ∈ N be such that λ 6 k. By (3.3) there

exists n > m such that dist(kx, Wn) < δn. But since Wn is convex and circled we
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have dist(λx,Wn) 6 dist(kx, Wn) < δn. Note that dist(kx, Wn) < δn is equivalent to

x ∈ 1
k
(Wn + δnB

◦
X), where B◦

X stands for the open unit ball of X. Thus,

G2 =
∞⋂

k,m=1

1
k

∞⋃
n=m

(Wn + δnB
◦
X).

Since
⋃∞

n=m(Wn + δnB
◦
X) is open and dense in X for every m, then by Baire Theorem

G2 is residual. Since G1 and G2 are both residual, so is their intersection. �

The next result is our main lemma. It shows that if Wn’s are as in the previous

lemma, then there are always u and v in X which “see” the Wn’s very differently.

Lemma 3.4. Let (Wn) be a nested increasing sequence of closed convex bounded circled

sets, each with void interior, so that Y =
⋃∞

n=1 Wn is dense in X. Then given any

u ∈ X \ Y , there is a vector v ∈ X \ Y so that

(3.4) lim sup
n→∞

dist(v, Wn)

dist(u, Wn)
= ∞ and lim inf

n→∞

dist(v, Wn)

dist(u, Wn)
= 0.

Proof. Note that Y is a linear subspace of X of first category, so Y 6= X by the Baire

Category Theorem. Let τn = dist(u, Wn), then the sequence (τn) is decreasing and

lim
n→∞

τn = 0. Now let G1 and G2 be as in Lemma 3.3 with εn =
√

τn and δn = τn/n,

then G1 ∩G2 is residual, hence non-empty. Let v ∈ G1 ∩G2, then

dist(v, Wn)

dist(u, Wn)
>

εn

τn

=
1
√

τn

for infinitely many n, proving the first equality in (3.4), and

dist(v, Wn)

dist(u, Wn)
<

δn

τn

=
1

n

for infinitely many n, proving the second equality. �

Remark 3.5. Notice that every v in G1∩G2, which is a residual set in X, satisfies (3.4).

Furthermore, by definition the sets G1 and G2 are positively homogeneous, that is, with

every vector they contain the entire ray passing through that vector, so that G1 ∩G2

is also positively homogeneous.

We are now ready for our first main structural result for strictly semi-transitive

algebras.

Theorem 3.6. Let A be norm-closed and strictly semi-transitive. Then Ax is closed

for every x ∈ X.
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Proof. Let X ′ = Ax. Define T : A → X ′ by T (A) = Ax for A ∈ A, and let

Wn = nT (BA) =
{
Ax | A ∈ A, ‖A‖ 6 n

}
for all n. Of course, Wn = nW1 and Wn ⊂ X ′ for every n. It suffices to prove that

W1 has non-void relative interior in X ′ because in this case Remark 2.2 would imply

that X ′ = T (A) = Ax. Suppose not. Then, of course, each Wn is a closed convex

bounded circled set, with void relative interior in X ′. Pick any u in X ′ \
⋃∞

n=1 Wn. It

follows from Lemma 3.4 that we may choose v in X ′ \
⋃∞

n=1 Wn satisfying (3.4). Since

A is strictly semi-transitive, there is an operator A ∈ A so that Au = v or Av = u. It

follows from Remark 3.5 that by scaling v and A we can also assume without loss of

generality that ‖A‖ = 1. Then A(Wn) ⊆ Wn for every n. If Au = v, then

dist(v, Wn) 6 dist(Au, AWn) 6 dist(u, Wn),

for every n, but this contradicts the first equality in (3.4). Similarly, the second equality

in (3.4) is violated if Av = u. This contradiction completes the proof. �

Theorem 3.7. Let A be a strictly semi-transitive operator algebra on a complex Banach

space X. If A is transitive, then it is WOT-dense in L(X).

Proof. We may assume without loss of generality that A is norm-closed. But then A

is strictly transitive by Theorem 3.6, hence WOT-dense in L(X). �

We now arrive at a second basic structural result.

Theorem 3.8. Let A is strictly semi-transitive. Then Lat A is well-ordered by reverse

inclusion. That is, every non-empty subset of Lat A has a maximal element.

Proof. We may without loss of generality assume that A is norm closed. Suppose that

W is a non-empty subset of Lat A with no maximal element. Then we can find an

infinite sequence X1 $ X2 $ X3 $ . . . in W . Let Y =
⋃∞

n=1 Xn. Then Y is not closed;

indeed each Xn is nowhere dense in the induced topology of Y , so that Y is of first

category in Y . Furthermore, Y is A-invariant (i.e., Y ∈ Lat A), and A reduced to Y is

again a strictly semi-transitive algebra. Set Wn = nBXn for all n. Again by Lemma 3.4

we may choose u, v ∈ Y \ Y satisfying (3.4). Again, choose A ∈ A of norm one so that

Au = v or Av = u. Then A(Wn) ⊆ Wn because Xn is an invariant subspace for A.

Now the rest of the argument for Theorem 3.6 yields a contradiction. �

The next result yields the surprising fact that every A-invariant linear subspace is

in Lat A.
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Corollary 3.9. Let A be unital, norm-closed, and strictly semi-transitive. Then every

A-invariant linear subspace Y of X is closed. Furthermore, Y = Ax for some x ∈ X.

Proof. Let W be the set of all orbits contained in Y , i.e., W = {Ax | Ax ⊆ Y }.
Note that W ⊆ Lat A by Theorem 3.6. Then Theorem 3.8 yields that W has a

maximal element, say Ax. We claim that Y = Ax. Suppose not, then there exists

y ∈ Y \Ax. Then Ax ⊆ Ay ⊆ Y by Proposition 3.1, and Ax 6= Ay because y ∈ Ay\Ax.

But this contradicts the maximality of Ax. Hence Y = Ax, so that Y is closed by

Theorem 3.6. �

The following result may alternatively be deduced from [RR73, Theorem 4.4] and

Theorem 3.6. We present a simple direct proof of it.

Corollary 3.10. Let A be unital, norm-closed, and strictly semi-transitive. Then A

has (a residual set of) strictly cyclic vectors.

Proof. If A is transitive, then every non-zero vector is strictly cyclic by Theorem 3.6.

Otherwise, A has a maximal proper closed invariant subspace Y by Theorem 3.8. Then

X \Y is residual. But if x ∈ X \Y , then Ax = X by Theorem 3.6 and the maximality

of Y . �

We conclude this section with an explicit description of Lat A when A a strictly semi-

transitive algebra acting on a separable space, and a description of all “full” strictly

semi-transitive algebras.

Corollary 3.11. Let X be separable and A be strictly semi-transitive. Then there

exists a countable ordinal η and a family of closed subspaces (Xα)α6η such that

(i) X0 = X, Xη = {0}, and Xα+1 $ Xα for all α < η;

(ii) Lat A = {Xα | α 6 η}.

Proof. This holds for arbitrary X by Theorem 3.8, except that η need not be countable.

However, if X is assumed to be separable, it follows that η must be countable, otherwise

X would have an uncountable strictly decreasing chain of closed subspaces, which is

impossible. �

Remark 3.12. Assume that η and Xα’s are as in the above statement. It follows that

if α1 < α2 < . . . with αn < η for all n

and αn → α, then Xα =
∞⋂

n=1

Xαn.
(3.5)
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Indeed, let Y =
⋂∞

n=1 Xαn , then Y ∈ Lat A, hence Y = Xβ for some β. But then

β > αn for all n, hence β > α. This yields Xβ ⊆ Xα, but Xα ⊆ Xαn for all n, so that
∞⋂

n=1

Xαn = Xβ ⊆ Xα ⊆
∞⋂

n=1

Xαn ,

hence Xβ = Xα.

The above remark motivates our final result of this section, which is a partial converse

to Theorem 3.8.

Proposition 3.13. Let X be a separable Banach space, η a countable ordinal with

η > 1, and (Xα)α6η a family of closed subspaces of X satisfying (i) of Corollary 3.11

and (3.5). Let

A = {T ∈ L(X) | TXα ⊆ Xα for all α 6 η}.

Then A is strictly semi-transitive and Lat A = {Xα | α 6 η}.

Proof. Let x, y ∈ X \ {0}. Put

α = sup{γ 6 η | x ∈ Xγ} and β = sup{γ 6 η | y ∈ Xγ}

It follows from (3.5) that x ∈ Xα and y ∈ Xβ. Without loss of generality, α 6 β

and, of course, β < η. Then by the Hahn Banach Theorem, there is an f ∈ X∗ with

Xβ+1 ⊆ ker f and f(x) = 1. Define T ∈ L(X) by Tu = f(u)y for all u ∈ X. Evidently

Tx = y. If γ > β + 1 then Xγ ⊆ Xβ+1 ⊆ ker f , so TXγ = {0}, and if γ 6 β, then

Xβ ⊆ Xγ and, of course, TX = [y] ⊆ Xγ. In either case, TXγ ⊆ Xγ. Thus, T ∈ A,

and we have shown that A is strictly semi-transitive.

It follows by definition that {Xα | α 6 η} ⊆ Lat A, so we must prove that, conversely,

if Y ∈ Lat A, then Y = Xα for some α. Assume Y 6= {0} or X, and let α be the

greatest such that Y ⊆ Xα. We claim that Y = Xα. Suppose this were false. Now

since Y $ Xα, it follows from Proposition 3.1 and the definition of α that Xα+1 $ Y .

Now we may choose z ∈ Xα \ Y and y ∈ Y \Xα+1. But then by our initial discussion,

since neither z nor y are in Xα+1, yet both belong to Xα, there is a T ∈ A with Ty = z.

But then TY * Y , contradicting he assumption that Y ∈ Lat A. �

Example 3.14. Let X = `p for 1 6 p < +∞ and let (ei) be the standard basis of `p.

Let A be the set of all the bounded operators A on `p such that

(i) the matrix of A is lower triangular, that is, Aen ∈ [ei]
∞
i=n for every n, and

(ii) the matrix of A contains only finitely many non-zero columns or, equivalently,

there exists a positive integer n such that Aei = 0 for all i > n.
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It is easy to see that A is an algebra. Show that A is strictly semi-transitive. Given

x = (xi) and y = (yi) in `p, let xk be the first non-zero component of x and ym the

first non-zero component of y. Without loss of generality, k 6 m. Define an operator

A as follows: Aek = 1
xk

y and Aei = 0 for all i 6= k. Then A ∈ A and Ax = y.

Notice that this algebra is not norm closed. However, it follows that the algebra of

all lower-triangular compact operators and the algebra of all lower-triangular bounded

operators are strictly semi-transitive.

On the other hand, consider the algebra of all upper-triangular bounded operators.

The linear subspace of all sequences with finitely many non-zero entries is invariant

under the algebra, but it is not closed in `p. It follows from Corollary 3.9 that the

upper-triangular algebra is not strictly semi-transitive. However, it is easy to see that

this algebra is unicellular, hence semi-transitive.

4. Operator ranges in Banach spaces

A subspace Y of a Hilbert space H is termed an operator range by Foiaş [Foi72] if

there exists an operator T ∈ L(H) with Y = T (H). We generalize this to arbitrary

Banach spaces X as follows.

Definition 4.1. Let X be a Banach space and Y a linear subspace of X. Then Y is

called an operator range if there is a closed subspace M⊆ Xn for some n > 1 and

a bounded linear operator ~T : M→ X with Y = Range ~T . In this case, Y is called an

operator range of order n. Finally, Y is called an injective operator range if
~T may be chosen one-to-one.

Of course, every closed subspace of X is an operator range of order one. It is proved

in [Foi72] (see also [RR73, Theorem 8.9]) that if A is a WOT-closed algebra of operators

on a Hilbert space with no non-trivial invariant operator ranges, then A = L(H). The

main result of this section generalizes this fact.

Theorem 4.2. Let A be a subalgebra of L(X) for a complex Banach space X, and

n > 1. Then either A has a non-trivial invariant injective operator range of order n,

or A is n-transitive.

Note that A is WOT-dense in L(X) if and only if A is n-transitive for all n, c.f. [RR73,

Theorem 7.1]. This yields the following consequence.

Corollary 4.3. Let A be a subalgebra of L(X) for a complex Banach space X such

that A has no non-trivial invariant injective operator ranges. Then A is WOT-dense

in L(X).
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Remark 4.4. It is easily seen that every operator range in a Hilbert space is injective

of order one. It seems we need the concept of operator range of order n, however, to

obtain a general result. Also, we don’t know if every operator range in a Banach space

is also an injective operator range. This question was posed by P. Rosenthal.

Before proving the theorem, we need some preliminary results, which also hold in

real Banach spaces. We start with the following simple consequences of the definition

of an operator range, given in [Foi72] in a Hilbert space case.

Proposition 4.5. Let Y1 and Y2 be operator ranges in X. Then Y1 + Y2 and Y1 ∩ Y2

are operator ranges.

Proof. For i = 1, 2 choose ni, Mi a closed subspace of Xni , and Ti : Mi → X bounded

linear with Yi = Range Ti. Now if

M = M1 ⊕M2 ⊆ Xn1 ⊕Xn2 = Xn1+n2 ,

and T = T1 ⊕ T2, then T (M) = Y1 + Y2, hence Y1 + Y2 is an operator range. The

argument for Y1 ∩ Y2 is not quite obvious. Let

W = {(w1, w2) ∈M | T1w1 = T2w2}.

Evidently, W is a linear subspace of M. If (un, vn) → (u, v) with (un, vn) ∈ W for

all n, then T1u = lim
n→∞

T1un = lim
n→∞

T2vn = T2v, so that (u, v) ∈ W , hence W is closed.

Show that T (W) = Y1 ∩ Y2. Indeed, if (w1, w2) ∈ W then T (w1, w2) = T1w1 + T2w2 =

2T1w1 = 2T2w2 ∈ Y1 ∩ Y2. Conversely, if y ∈ Y1 ∩ Y2, then there exist wi ∈ Mi with

Tiwi = y for i = 1, 2. Then
(

w1

2
, w2

2

)
∈ W and T

(
w1

2
, w2

2

)
= y. �

The following theorems refine some of the results in [Arv67], we will use them in the

proof of Theorem 4.2.

Theorem 4.6. Let A be (n − 1)-transitive for some n > 1 and M = A(n)~x for some

linearly independent n-tuple ~x = (x1, . . . , xn) in Xn. Then either M = Xn or M
consists only of linearly independent n-tuples and zero.

Proof. First, we show that if N is a closed A(n)-invariant subspace of Xn such that

M⊆ N , then N satisfies the following two properties.

(i) If N contains an n-tuple of the form (u1, . . . , un−1, 0) where u1, . . . , un−1 are

linearly independent, then N = Xn.

(ii) If N contains both linearly independent and non-zero linearly dependent n-

tuples, then N = Xn.
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Note that if A is unital, then ~x ∈ M; in this case applying (ii) with N = M would

immediately yield the conclusion of the theorem.

To prove (i), notice that since A is (n − 1)-transitive then Xn−1 ⊕ {0} ⊆ N . Since

A is transitive, then Axn 6= 0 for some A ∈ A. It follows that there exists (w1, . . . , wn)

in M with wn 6= 0. But Xn−1 ⊕ {0} ⊆ N implies (w1, . . . , wn−1, 0) ∈ N , so that

(0, . . . , 0, wn) ∈ N , which yields {0}n−1 ⊕X ⊆ N . Hence, N = Xn.

To prove (ii) suppose that N contains a linearly independent n-tuple ~v = (v1, . . . , vn)

and a non-zero linearly dependent n-tuple ~y = (y1, . . . , yn). Without loss of generality,

y1, . . . , yk are linearly independent for some k < n, and yi =
∑k

j=1 αijyj as i = k +

1, . . . , n. Since A is k-transitive, there exists a sequence (Am) in A such that Amy1 → v1

and Amyi → 0 as i = 2, . . . , k. Then for k + 1 6 i 6 n we have Amyi → αi,1v1. It

follows that

Am
(n)~y → (v1, 0, . . . , 0, αk+1,1v1, . . . αn,1v1),

so that the latter n-tuple belongs to N . Subtracting it form ~v we see that N contains

an element of the form (0, z2, . . . , zn), where z2, . . . , zn are linearly independent. Now

N = Xn by (i).

To complete the proof, assume that M contains a linearly dependent non-zero n-

tuple and M 6= Xn. Notice that M+ [~x] is A-invariant, so that M+ [~x] = Xn by (ii).

In particular, there exists ~w ∈ M and a scalar λ such that ~w + λ~x = (x1, 0, . . . , 0).

Then

~w =
(
(1− λ)x1,−λx2, . . . ,−λxn)

)
.

If λ = 1 then ~w = (0,−x2, . . . ,−xn), so that M = Xn by (i), contradiction. If λ 6= 1

and λ 6= 0 then all the components of ~w are linearly independent, hence M = Xn

by (ii) which, again, would contradict our assumptions. It follows that λ = 0, and

so (x1, 0, . . . , 0) ∈ M. Similarly, (0, . . . , 0, xi, 0, . . . , 0) ∈ M for every i = 1, . . . , n. It

follows that ~x ∈M, so that M = M+ [~x] = Xn, contradiction. �

Remark 4.7. Assuming that A is unital and (n− 1)-transitive, it can be shown that

any M ∈ Lat A(n) is either in Lat
(
L(X)

)
(n) (that is, consists of n-tuples satisfying

a fixed set of linear dependence relations), or consists only of linearly independent

n-tuples and zero.

Corollary 4.8. Let A be transitive and assume that for any linearly independent x1

and x2 in X there exists an operator A ∈ A with (Ax1, Ax2) non-zero and linearly

dependent. Then A is WOT-dense in L(X).
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Proof. We will show by induction that A is n-transitive for all n > 1, then A
WOT

= L(X)

by [RR73, Theorem 7.1]. It is given that A is 1-transitive. Suppose that A is (n− 1)-

transitive for some n > 1, and let ~x = (x1, . . . , xn) be a linearly independent n-tuple.

Choose A ∈ A so that (Ax1, Ax2) is non-zero and linearly dependent. Then ~x is cyclic

for A(n) by Theorem 4.6. Hence, A is n-transitive. �

Our next result is a refinement of Corollary 2.5 in [Arv67] (see also Lemma 8.8

in [RR73]).

Theorem 4.9 (Graph Theorem). Suppose that A is n-transitive. Then A is not (n+1)-

transitive if and only if there exists a closed operator ~T : D ⊆ X → Xn where D is

a dense A-invariant linear subspace of X and ~T = T1 ⊕ · · · ⊕ Tn, each Ti commutes

with A, and (x, T1x, . . . , Tnx) is linearly independent for each non-zero x ∈ D. In

particular, each Ti is one-to-one and non-scalar.

Proof. Suppose that A is n-transitive. If A is not (n+1)-transitive then by Theorem 4.6

there exists a closed A(n+1)-invariant subspace M of Xn+1 such that every non-zero

element of M is a linearly independent (n + 1)-tuple. We claim that M is the graph

of a closed operator ~T : D ⊆ X → Xn satisfying the required conditions. Indeed,

let D =
{
x0 | (x0, x1, . . . , xn) ∈ M

}
. For (x0, x1, . . . , xn) ∈ M define Tix0 = xi for

i = 1, . . . , n, and put ~T = T1 ⊕ · · · ⊕ Tn. Notice that ~T is well-defined: suppose that

(x0, x1, . . . , xn) and (x0, x
′
1, . . . , x

′
n) are both in M, then (0, x1−x′1, . . . , xn−x′n) ∈M,

but this (n + 1)-tuple is linearly dependent, hence equals zero, so that xi = x′i for all

1 6 i 6 n. Clearly, ~T is closed because M is closed.

Now let x ∈ D, then (x, T1x, . . . , Tnx) ∈ M. Since M is A(n+1)-invariant, if A ∈ A

then (Ax, AT1x, . . . , ATnx) ∈ M. It follows that Ax ∈ D, so that D is A-invariant

and, therefore, dense in X. Furthermore, it also follows that ATix = Ti(Ax) for all

i = 1, . . . , n, so that Ti commutes with A. Finally, (x, T1x, . . . , Tnx) is in M for each

non-zero x ∈ D, so that this (n + 1)-tuple is linearly independent. It follows that each

Ti is non-scalar. It also follows that Tix = 0 implies x = 0, so that Ti is one-to-one.

To prove the converse, suppose that ~T is such an operator, and let M be the graph

of ~T . Then M is closed and every non-zero element of M is linearly independent.

It follows that M 6= Xn+1. It is easy to see that M is A(n+1)-invariant, so that

every linearly independent (n + 1)-tuple in M is not cyclic for A(n+1), hence A is not

(n + 1)-transitive. �

Now we are ready to prove Theorem 4.2.
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Proof of Theorem 4.2. Suppose that A has no non-trivial invariant injective operator

ranges of order n for some n. It follows that A has no non-trivial invariant injective

operator ranges of order k whenever 1 6 k 6 n. In particular, A is transitive.

Note first, that A′ = [I]. Indeed, let T ∈ A′. Pick λ ∈ σ(T ), and show that T = λI.

Suppose not, then Range(T − λI) 6= 0. Since Null(T − λI) is an A-invariant closed

subspace then T − λI is one-to-one. Then Range(T − λI) is an A-invariant injective

operator range of order 1, so that Range(T − λI) = X. But this would mean that

T − λI is invertible, contradiction.

Suppose that A is not n-transitive, and show that this leads to a contradiction. Let

k be the greatest such that A is k-transitive but not (k+1)-transitive, then 1 6 k < n.

Let ~T : D → Xk where T = T1⊕· · ·⊕Tk is as in Theorem 4.9. LetM be the graph of ~T .

Also, let P : M→ X be the projection on the first component. Then D = Range P is

an injective operator range of order (k + 1). It follows that D = X, so that Ti ∈ L(X)

for each i = 1, . . . , k and, therefore, Ti ∈ A′. But then Ti have to be scalar because

A′ = [I], contradiction. �
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