REAL PARTITIONS OF MEASURE SPACES V. G. Troitskiĭ

UDC 517.518.1

The notion of real partition introduced in the article presents a convenient tool for transferring many properties of the Lebesgue measure to a broad class of measure spaces. In particular, with the help of the notion introduced, existence is proved for measure-preserving mappings of several probability spaces onto the unit segment with the Lebesgue measure.

We recall that a measure space is called *nonatomic* if any measurable set in it of positive measure includes a measurable subset with a lesser but nonzero measure. A measure space is said to be *pointwise nonatomic* if all singletons in it are measurable and have zero measure. A space (X, \mathcal{A}, μ) , with X a complete separable metric space and \mathcal{A} its Borel σ -algebra, is referred to as *Polish space*.

We denote the Borel and Lebesgue algebras on the unit segment by Bo and Lb respectively. The symbol m will stand for the Lebesgue measure.

Theorem 1 (E. Marczewski (Szpilrajn) [1, 2]). Every pointwise nonatomic probability Polish space (X, \mathcal{A}, μ) is isomorphic to the space B = ([0, 1], Bo, m); i.e., there exists a mapping $T : X \rightarrow [0, 1]$ which is one-to-one to within sets of zero measure and such that T and T^{-1} are measure-preserving.

We introduce the notion of real partition.

DEFINITION 1. A real partition of a probability space (X, \mathcal{A}, μ) is defined to be a partition $(D_t)_{t \in [0,1]}$ of the space, such that $\mu(A_t^-) = \mu(A_t^+) = t$ for all $t \in [0,1]$, where $A_t^- = \bigcup_{s < t} D_s$ and

 $A_t^+ = \bigcup_{s \leq t} D_s$. A real partition is called *nondegenerate* if the set D_t is nonempty for every $t \in [0, 1]$.

Theorem 2. Every complete nonatomic probability space admits a real partition.

PROOF. Let $X = (X, \mathcal{A}, \mu)$ be a complete nonatomic probability space. Let S be the set of chains in \mathcal{A} of the form $(E_t)_{t\in T\subset[0,1]}$ such that $\mu(E_t) = t$ and $E_s \subset E_t$ for s < t. Introduce in S some natural order by putting $(E_t^1)_{t\in T_1} < (E_t^2)_{t\in T_2}$ when $T_1 \subset T_2$ and $E_t^1 = E_t^2$ for all t in T_1 . By Zorn's lemma, there exists a maximal chain $(E_t)_{t\in T_0} \subset [0,1]$ in S.

Demonstrate that $T_0 = [0, 1]$. Let $t_0 \in [0, 1] \setminus T_0$, $a = \sup\{t \in T_0 \mid t < t_0\}$, and $b = \inf\{t \in T_0 \mid t > t_0\}$. Prove that $a, b \in T_0$. Take an increasing sequence $(t_n)_{n \in \mathbb{N}} \subset T_0$ converging to a, and consider the set $A = \bigcup_{n \in \mathbb{N}} E_{t_n}$. It is obvious that $A \in \mathcal{A}$ and $\mu(A) = a$. If $t \in T_0$ and t < a, then there exists an n such that $t < t_n$. Consequently, $E_t \subset A$. But if $t \in T_0$ and t > a, then all E_{t_n} lie in E_t ; thus, $A \subset E_t$. Since $(E_t)_{t \in T_0}$ is maximal, we obtain $a \in T_0$. Analogously, $b \in T_0$. Assume that a < b; then $\mu(E_b \setminus E_a) = b - a > 0$. In this case, owing to the fact that X is nonatomic, there exists a subset

 $F \subset E_b \setminus E_a$ such that $0 < \mu(F) < b - a$. Hence $E_a \subset E_a \cup F \subset E_b$ and $\mu(E_a \cup F) = a + \mu(F) < b$, which contradicts the fact that $(E_t)_{t \in T_0}$ is maximal. Thus, $T_0 = [0, 1]$.

Put $A_t^- = \bigcup_{s < t} E_s$ and $A_t^+ = \bigcap_{s > t} E_s$. Since the space is complete and the inner and outer measures of the sets A_t^- and A_t^+ coincide and equal t, it follows that A_t^- and A_t^+ are measurable and have measure t.

It is obvious that $A_{t_1}^- \subset E_{t_1} \subset A_{t_1}^+ \subset A_{t_2}^- \subset E_{t_2} \subset A_{t_2}^+$ for $t_1 < t_2$. Consider $D_t := A_t^+ \setminus A_t^-$. Then $D_{t_1} \cap D_{t_2} = \emptyset$. Demonstrate that $A_t^- = \bigcup_{s < t} D_s$. Given an $x_0 \in A_t^-$, put $t_0 = \inf\{t \mid x_0 \in E_t\}$ and prove that $x_0 \in D_{t_0}$. If $s \in]t_0, t[$, then x_0 belongs to E_s and $A_{t_0}^+$. Similarly, $x_0 \notin A_{t_0}^-$, for there would otherwise exist an $s < t_0$ such that $x_0 \in E_s$.

Novosibirsk. Translated from Sibirskii Matematicheskii Zhurnal, Vol. 35, No. 1, pp. 207–209, January–February, 1994. Original article submitted December 28, 1992.

Consequently, $x_0 \in A_{t_0}^+ \setminus A_{t_0}^- = D_{t_0}$. Thus, $A_t^- = \bigcup_{s < t} D_s$ and $A_t^+ = \bigcup_{s \le t} D_s$.

To complete the proof, it remains to observe that $A_0^- = \emptyset$ and $A_1^+ = X$.

DEFINITION 2. We say that a measure space *includes a Cantor set* if in this space there is a subset of zero measure that has the cardinality of the continuum.

The following observation was made by S. A. Mal'ugin.

Theorem 3. Let $X = (X, \mathcal{A}, \mu)$ be a complete nonatomic measure space. If the cardinality of the space X is greater than the cardinality of the continuum, then X contains a Cantor set.

PROOF. Without loss of generality, we assume that X is a probability space; otherwise we can take a subset of finite measure. In this case, by Theorem 2, there exists a real partition $(D_t)_{t \in [0,1]}$; moreover, $\mu(D_t) = 0$ for all $t \in [0,1]$. If the cardinality of each of the D_t 's were less than the cardinality of the continuum, then the cardinality of the space X would be less than the cardinality of the continuum, which fact would contradict the hypothesis. Thus, there exists t_0 such that the cardinality of the continuum. Since the measure is complete, every continual subset D_{t_0} is a Cantor set in X.

By using Theorem 2, we can essentially widen the class of spaces in Theorem 1 by replacing isomorphy with a weaker condition.

Theorem 4. For every complete nonatomic probability space that includes a Cantor set, there exists a measure-preserving epimorphism of the space onto the unit segment with the Lebesgue measure.

PROOF. Let $X = (X, \mathcal{A}, \mu)$ be a complete nonatomic probability space and let a set C of zero measure have the cardinality of the continuum. Our aim is to construct an epimorphism $\varphi : X \to I$, where I = ([0, 1], Lb, m).

Let $C = \{C_t\}_{t \in [0,1]}$. Consider the space $(\tilde{X}, \tilde{A}, \tilde{\mu})$, where $\tilde{X} = X \setminus C$, $\tilde{A} = \{A \setminus C \mid A \in A\}$, and $\tilde{\mu} = \mu|_{\widetilde{A}}$. It is a complete nonatomic probability space; therefore, by Theorem 2, it admits a real partition, i.e., a partition $(\tilde{D}_t)_{t \in [0,1]}$ such that $\tilde{\mu}(\tilde{A}_t^-) = \tilde{\mu}(\tilde{A}_t^+) = t$, where $\tilde{A}_t^- = \bigcup_{s < t} \tilde{D}_s$ and $\tilde{A}_t^+ = \bigcup_{s \leq t} \tilde{D}_s$. Put $D_t = \tilde{D}_t \cup \{C_t\}$, $A_t^- := \bigcup_{s < t} D_s$, and $A_t^+ := \bigcup_{s \leq t} D_s$. The completeness of X and

 $s \leq t$ the equality $\mu(C) = 0$ yield measurability of A_t^- and A_t^+ ; moreover, $\mu(A_t^-) = \mu(A_t^+) = t$. Thereby, $(D_t)_{t \in [0,1]}$ presents a nondegenerate real partition of X.

We define the epimorphism $\varphi : X \to [0,1]$ by the rule $\varphi|_{D_t} = t$. In this event, $\varphi(A_t^-) = [0,t)$ and $\varphi(A_t^+) = [0,t]$. Since the segments of the forms [0,t) and [0,t], with the measure equal to t by definition, generate the Borel σ -algebra with the Lebesgue measure, the mapping φ^{-1} preserves the Lebesgue measure of Borel subsets in [0,1]. From the completeness of the space X, it follows that φ also preserves the measure of Lebesgue subsets.

As an illustration of Theorem 4, we present a simple proof for the following assertion:

Theorem 5. In every nonatomic probability space there is a nonmeasurable set.

This fact occurs implicitly in the article [3].

PROOF. Suppose that there exists a nonatomic probability space $X = (X, \mathcal{P}(X), \mu)$. The fact that the space X is nonatomic implies that X is pointwise nonatomic. Since a pointwise nonatomic measure cannot be defined on the algebra of all subsets of a set whose cardinality is less or equal to the cardinality of the continuum (see [3, 4]), we conclude that the cardinality of the space X is greater than the cardinality of the continuum. Now Theorems 3 and 4 guarantee existence for an epimorphism $\varphi: X \to I = ([0, 1], Lb, m)$; moreover, the sets $D_t = \varphi^{-1}(t)$ form a nondegenerate real partition of the space X. Denote this partition by ξ . Consider the σ -algebras

$$S = \varphi^{-1}(Lb) = \{\varphi^{-1}(A) \mid A \in Lb\}, \quad \mathcal{P} = \varphi^{-1}(\mathcal{P}[0,1]) = \{\varphi^{-1}(A) \mid A \subset [0,1]\}.$$

Take the quotient algebras by the partition ξ (the notion of the quotient algebra by a partition can be found, for instance, in [5]). It is obvious that the space $(X_{\xi}, \mathcal{S}_{\xi}, \mu_{\xi})$ is isomorphic to *I*. Observe that $\mathcal{S}_{\xi} \subset \mathcal{P}_{\xi} = \mathcal{P}(X_{\xi}) = (\mathcal{P}(X))_{\xi}$. Consequently, the space $(X_{\xi}, \mathcal{P}(X_{\xi}), \mu_{\xi})$ is pointwise nonatomic (since $\mathcal{S}_{\xi} \subset \mathcal{P}(X_{\xi})$) and has the cardinality of the continuum. The contradiction obtained proves the theorem.

References

- 1. E. Marczewski (Szpilrajn), "Sur les ensembles et les fonctions absolument mesurables," C. R. Soc. Sci. Varsovie, 30, 39-67 (1937).
- 2. K. R. Parthasarathy, Introduction to Probability and Measure [Russian translation], Mir, Moscow (1983).
- 3. S. Ulam, "Zur Masstheorie in der allgemeinen Mengenlehre," Fund. Math., 16, 140-150 (1930).
- 4. K. Kuratowski and A. Mostowski, Theory of Sets [Russian translation], Mir, Moscow (1970).
- 5. A. A. Samorodnitskii, Measure Theory [in Russian], Leningrad Univ., Leningrad (1990).

TRANSLATED BY G. V. DYATLOV