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Abstract. We show that C. J. Read’s example [Read85, Read86] of an operator
T on `1 which does not have any non-trivial invariant subspaces is not the adjoint
of an operator on a predual of `1. Furthermore, we present a bounded diagonal
operator D such that even though D−1 is unbounded but D−1TD is a bounded
operator on `1 with invariant subspaces, and is adjoint to an operator on c0.

1. Introduction

In this note we deal with the Invariant Subspace Problem, the problem of the
existence of a closed non-trivial invariant subspace for a given bounded operator on a
Banach space. The problem was solved in the positive for certain classes of operators
(see [RR73, AAB98] for details), however in the mid-seventies P. Enflo [Enf76, Enf87]
constructed an example of a continuous operator on a Banach space with no invariant
subspaces, thus answering the Invariant Subspace Problem for general Banach spaces
in the negative. In [Read85] C. J. Read presented an example of a bounded operator
T on `1 with no invariant subspace. Recently V. Lomonosov suggested that every
adjoint operator has an invariant subspace. In the first part of this note we show
that the Read operator T is not an adjoint of any bounded operator defined on some
predual of `1.

Suppose that A has a non-trivial invariant (or a hyperinvariant) subspace, and
suppose that B is similar to A, that is, B = CAC−1 for some invertible operator C.
Clearly, B also has a non-trivial invariant (respectively hyperinvariant) subspace.
Moreover, it is known (see [RR73, Theorem 6.19]) that if A has a hyperinvariant
subspace and B is quasi-similar to A (that is, CA = BC and AD = DB, where C
and D are two bounded one-to-one operators with dense range), then B also has a
hyperinvariant subspace. To our knowledge it is still unknown whether or not A has
a non-trivial invariant subspace if and only if B has a non-trivial invariant subspace,
assuming A and B are quasi-similar.

Recall (cf. [Sz-NF68]) that an operator A is said to be a a quasi-affine transform of
B if CA = BC, for some injective operator C with dense range. In the second part of
this paper we construct an injective diagonal operator D on `1 such that even though
D−1 is unbounded, the operator S = D−1TD (T being Read’s operator) is bounded
and has an invariant subspace. Thus, we show that a quasi-affine transform of an
operator with no non-trivial invariant subspace might have a non-trivial invariant
subspace. Furthermore, S is the adjoint of a bounded operator on c0.
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Although we prove our statement for a specific choice of D, it is true for a much more
general choice, and it seems to be true for any diagonal operator D that S = D−1TD
has a non-trivial invariant subspace, whenever S is an adjoint of an operator on c0.
More generally, the following question is of interest in view of the above-mentioned
conjecture by V. Lomonosov.

Question. Does every quasi-affine transform of Read’s operator, which is an adjoint
of an operator on c0, have a non-trivial invariant subspace?

We introduce the following notations. Following [Read86] we denote by F the
vector space of all eventually vanishing scalar sequences, and by (fi) the standard
unit vector basis of F . For an x =

∑
aifi ∈ F , we define the support of x to be the

set {i ∈ N : ai 6= 0} and denote it by supp(x). The linear span of some subset A of a
vector space is denoted by lin A.

2. Read’s operator is not adjoint

We begin by reminding the reader of the construction of the operator T in [Read85,
Read86]. It depends on a strictly increasing sequence d = (a1, b1, a2, b2, . . .) of positive
integers which has to be chosen to be sufficiently rapidly increasing. Also let a0 = 1,
v0 = 0, and vn = n(an + bn) for n > 1.

Read’s operator T is defined by prescribing the orbit (ei)i>0 of the first basis ele-
ment f0.

Definition 2.1. There is a unique sequence (ei)
∞
i=0 ⊂ F with the following properties:

(0) f0 = e0;
(A) if integers r, n, and i satisfy 0 < r 6 n, i ∈ [0, vn−r] + ran, we have

fi = an−r(ei − ei−ran);

(B) if integers r, n, and i satisfy 1 6 r < n, i ∈ (ran+vn−r, (r+1)an), (respectively,
1 6 n, i ∈ (vn−1, an)), then

fi = 2(h−i)/
√

anei, where h = (r + 1
2
)an (respectively, h = 1

2
an);

(C) if integers r, n, and i satisfy 1 6 r 6 n, i ∈ [r(an + bn), nan + rbn], then

fi = ei − bnei−bn ;

(D) if integers r, n, and i satisfy 0 6 r < n, i ∈ (nan + rbn, (r + 1)(an + bn)), then

fi = 2(h−i)/
√

bnei, where h = (r + 1
2
)bn.

Indeed, since fi =
∑i

j=0 λijej for each i > 0 and λii is always nonzero, this linear
relation is invertible. Further,

lin{ei | i = 1, . . . , n} = lin{fi | i = 1, . . . , n} for every n > 0.

In particular, all ei are linearly independent and also span F . Then Read defines
T : F → F to be the unique linear map such that Tei = ei+1. Read proves that T
can be extended to a bounded operator on `1 with no invariant subspaces provided
d increases sufficiently rapidly.

Proposition 2.2. T is not the adjoint of an operator S : X → X where X is a
Banach space whose dual is isometric to `1.
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Proof. Assume that our claim is not true. Then there is a local convex topology τ on
`1 so that

(a) τ is weaker than the norm topology of `1;
(b) B(`1) is sequentially compact with respect to τ ;
(c) if (xn) ⊂ `1 converges with respect to τ to x, then lim infn→∞‖xn‖ > ‖x‖;
(d) T is continuous with respect to τ .

Note that with respect to any predual X of `1 the weak∗ topology has properties
(a)–(d). Let s ∈ N be fixed, and n > s. Then f(n−s)an = as(e(n−s)an − e0) by (A)
above. It follows that T vs+1f(n−s)an = as(e(n−s)an+vs+1 − evs+1). Further, it follows

from (B) that e(n−s)an+vs+1 equals 2(1+vs− 1
2
an)/

√
anf(n−s)an+vs+1 and converges to zero

in norm (and, hence, in τ) as n →∞. Therefore

(1) τ -lim
n→∞

T vs+1f(n−s)an = −asevs+1 = T vs+1(−ase0).

Notice that T vs+1 is τ -continuous and one-to-one because its null space is T -invariant.
By sequential compactness of B(`1), the sequence f(n−s)an must have a τ -convergent
subsequence. Then, by (1), the limit point has to be −ase0. Since that argument
applies to any subsequence, we deduce that

(2) τ -lim
n→∞

f(n−s)an = −ase0.

Since ‖f(n−s)an‖ = 1 for each n and s while ‖ase0‖ = as > 1, this contradicts (2). ¤
Remark. The statement of the theorem remains valid if we consider an equivalent
norm on `1. Indeed, suppose 1

K
|||·||| 6 ‖·‖ 6 K|||·|||. Then |||f(n−s)an||| 6 K for each n

and s, but since limn→∞ an = ∞, we can choose as in (2) so that |||ase0||| > K.

3. An adjoint operator with invariant subspaces
of the form D−1TD

Define a sequence of positive reals (di) as follows:

(3) di =

{
1
r

if ram 6 i 6 ram + vm−r for some 0 < r 6 m,

1 otherwise.

Let D be the diagonal operator with diagonal (di), that is, Dfi = difi for every i.
Define S = D−1TD. Clearly, S is defined on F . Once we write S in matrix form
it will be clear that it is bounded on F and, therefore, can be extended to `1. Let
êi = D−1ei, in particular ê0 = e0. Then Sêi = D−1Tei = êi+1, so that the sequence
(êi) is the orbit of e0 under S.

Next, we examine Definition 2.1 to represent the fi’s in terms of êi’s.

(0̂) f0 = e0 = ê0;

(Â) if i satisfies i ∈ [0, vn−r] + ran for some 0 < r 6 n, then

fi = diD
−1fi = diD

−1
(
an−r(ei − ei−ran)

)
= an−r

r
(êi − êi−ran);

(B̂) if integers r, n, and i satisfy 1 6 r < n, i ∈ (ran+vn−r, (r+1)an), (respectively,
1 6 n, i ∈ (vn−1, an)), then

fi = diD
−1fi = 2(h−i)/

√
an êi, where h = (r + 1

2
)an (respectively, h = 1

2
an);
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(Ĉ) if integers r, n, and i satisfy 1 6 r 6 n, i ∈ [r(an + bn), nan + rbn], then

fi = diD
−1fi = êi − bnêi−bn ;

(D̂) if integers r, n, and i satisfy 0 6 r < n, i ∈ (nan + rbn, (r + 1)(an + bn)), then

fi = diD
−1fi = 2(h−i)/

√
bn êi, where h = (r + 1

2
)bn.

We see that it differs from Definition 2.1 only in case (Â). Now we can actually
write the matrix of S:

Sfi =





2(1− 1
2
a1)/

√
a1f1 if i = 0

fi+1 if i ∈ [0, vn−r) + ran,

with r = 1, 2, . . . , n

fi+1 if i ∈ [r(an + bn), nan + rbn),

with r = 1, 2, . . . , n

21/
√

anfi+1 if i ∈ (ran + vn−r, (r + 1)an − 1),

with r = 1, 2, . . . , n− 1

or i ∈ (vn−1, an − 1)

21/
√

bnfi+1 if i∈(nan+rbn,(r+1)(an+bn)−1)

with r = 0, 1, . . . , n− 1
an−r

r
(ε1fi+1−ε2fvn−r+1) if i = ran + vn−r,

where with r = 1, 2, . . . , n

ε2 =2(1+vn−r− 1
2
an−r+1)/

√
an−r+1

ε1 =2(1+vn−r− 1
2
an)/

√
an if r < n and

ε1 =2(1+nan− 1
2
bn)/

√
bn if r = n,

2(1− 1
2
an)/

√
an [f0 + (r+1)fi+1

an−r−1
] if i = (r + 1)an − 1

with r = 0, 1, . . . , n− 1

ε1fi+1 − bnε2fi+1−bn if i = nan + rbn

where with r = 1, 2, . . . , n

ε2 =2(1+nan− 1
2
bn)/

√
bn

ε1 = 2(1+nan− 1
2
bn)/

√
bn if r < n, and

ε1 = 2(vn+1− 1
2
an+1)/

√
an+1 if r = n

2−((r+1)an+ 1
2
bn−1)/

√
bn if i = (r + 1)(an + bn)− 1

·
[∑r

j=0 bj
nfi−jbn+1

+br+1
n

(
f0 +

(r+1)f(r+1)an

an−r−1

)]
with r = 0, 1, . . . , n− 1

Inspecting the matrix line by line we observe that, assuming (an) and (bn) are
increasing sufficiently rapidly, it follows that ‖S‖ 6 2. Again by inspecting each line
of the matrix, we deduce that if f ∗j is the j-th coordinate functional on `1, j > 0, it
follows that limi→∞ f ∗j (S(fi)) = 0. In other words, the rows of the matrix converge
to zero. Therefore S is the adjoint of a linear bounded operator on c0.

Theorem 3.1. S has a non-trivial closed invariant subspace.
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We shall show that S has an invariant subspace by producing a vector x∞ such that
the linear span of the orbit of x∞ stays away from e0, hence its closure is a non-trivial
S-invariant subspace.

We will introduce the following notations.
First we choose two sequences of positive integers (mi) and (ri) as follows. Let

m0 > 2 be arbitrary, put r0 = 1. Once mi and ri are defined, choose ri+1 ∈ N so that

(4) ri+1 ∈ [ami−1 · max
`6vmi−1

‖ê`‖, 1 + ami−1 · max
`6vmi−1

‖ê`‖]

and let

(5) mi+1 = mi + ri+1.

Define an increasing sequence (ji) of positive integers inductively: pick any

(6) j0 ∈ [r0am0 , r0am0 + vm0−r0 ],

and once ji is defined, put

(7) ji+1 = ji + ribmi
+ ri+1ami+1

.

Finally, for each i > 0 define

pi =
i∏

k=0

b−rk
mk

,(8)

zi = fji+ribmi
+ bmi

fji+(ri−1)bmi
+ · · ·+ bri−1

mi
fji+bmi

+
ri+1fji+1

ami

,(9)

xi = pi−1êji
.(10)

We note the following easy-to-prove properties for our choices.

Proposition 3.2. For each i > 0 the following statements hold:

(a) ji ∈ [riami
, riami

+ vmi−ri
];

(b) xi+1 = xi + pizi, and thus xi = êj0 +
∑i−1

k=0 pkzk;
(c) if i and i+` both belong to [ran, ran +vn−r] or both belong to [r(an +bn), nan +

rbn], then S`fi = fi+`;
(d) if ` < miami

− ji, then min supp S`zk > ji + bmi
whenever k > i.

Proof. (a) The proof is by induction. For i = 0 the required inclusion follows from
the choice of j0, and if this condition holds for ji, then

ji+1 = ji + ribmi
+ ri+1ami+1

∈ [riami
+ ribmi

+ ri+1ami+1
, riami

+ vmi−ri
+ ribmi

+ ri+1ami+1
]

⊆ [ri+1ami+1
, ri+1ami+1

+ mi(ami
+ bmi

)] = [ri+1ami+1
, ri+1ami+1

+ vmi
].
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(b) First note that by using (D̂) we obtain for a i ∈ [r(an + bn), nan + rbn], with
1 6 r 6 n in N, that

êi = bnêi−bn + fi(11)

= b2
nêi−2bn + bnfi−bn + fi

...

= br
nêi−rbn + br−1

n fi−(r−1)bn + . . . + bnfi−bn + fi.

Note that ji + ribmi
∈ [ri(ami

+ bmi
),miami

+ ribmi
]. By using first (Â) and then

(11) we obtain

êji+1
= êji+ribmi+ri+1ami

= êji+ribmi
+

ri+1

ami

fji+ribmi+ri+1ami

= bri
mi

êji
+ bri−1

mi
fji+bmi

+ . . . + bmi
fji+(ri−1)bmi

+
ri+1

ami

fji+ribmi+ri+1ami

= bri
mi

êji
+ zi.

Thus, xi+1 = piêji+1
= pi−1êji

+ pizi = xi + pizi.

(c) If i and i + ` are both in [ran, ran + vn−r], it follows from (Â) that

S`(fi) =
an−r

r
S`(êi − êi−ran) =

an−r

r
(êi+` − êi−ran+`) = fi+`.

The second part of (c) can be deduced in a similar way using (Ĉ).
(d) First note that for k > i it follows that (recall that mk > m0 > 2)

mkamk
− jk > (mk − rk − 1)amk

= (mk−1 − 1)amk
> mk−1amk−1

− jk−1.

We can therefore assume that k = i. Furthermore, note that for any 1 6 r 6 ri it
follows that

r(ami
+ bmi

) 6 ji + rbmi
6 ji + rbmi

+ ` 6 miami
+ rbmi

and

ri+1ami+1
6 ji+1 6 ji+1 + ` 6 ji+1 + miami

− ji

= ri+1ami+1
+ ribmi

+ miami

6 ri+1ami+1
+ vmi

= ri+1ami+1
+ vmi+1−ri+1

.

Therefore the claim follows from the definition of zi, (9) and part (c). ¤

Notice that

‖zi‖ = 1 + bmi
+ b2

mi
+ · · ·+ bri−1

mi
+

ri+1

ami

6 mib
ri−1
mi

+
ri+1

ami

.

Further, since pi 6 1
b
ri
mi

, we have

‖pizi‖ 6 mi

bmi

+
ri+1

ami
bri
mi

.
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The series
∑∞

i=0
mi

bmi
converges because (bi) increases sufficiently rapidly. Secondly, it

follows from the definition of (ri) that

a−1
mi

ri+1 6 a−1
mi

[1 + ami−1 · max
`6vmi−1

‖ê`‖].

Thus, again since (bi) is increasing fast enough, it follows that the series
∞∑
i=0

ri+1

ami
bri
mi

converges. Therefore the
∑∞

i=0 pizi converges, and the following definition is justified.

Definition 3.3. Define x∞ = limi xi = limi pi−1êji
= êj0 +

∑∞
i=0 pizi.

Now we can state and prove the key result for proving Theorem 3.1.

Lemma 3.4. There exists a constant C > 0 such that dist(y, e0) > C for every i and
every vector of the form y =

∑miami
j=ji

γj êj.

Proof. Let C = inf
{

dist(y, e0) | y =
∑m0am0

j=j0
γj êj

}
. Since the infimum is taken over a

finite-dimensional set, it must be attained at some y0. However since all êj are linear
independent, it follows that C = dist(y0, e0) > 0.

We shall prove the statement of the lemma by induction on i. The way we defined
C guarantees that the base of the induction holds. Suppose y =

∑miami
j=ji

γj êj. Write
y = y1 + y2 + y3, where

y1 =

riami+vmi−1∑
j=ji

γj êj, y2 =

mi∑
r=ri+1

rami+vmi−r∑
j=rami

γj êj, and y3 =

mi−1∑
r=ri

(r+1)ami−1∑
j=rami+vmi−r+1

γj êj.

Notice that by (B̂)

y3 =

mi−1∑
r=ri

(r+1)ami−1∑
j=rami+vmi−r+1

γj2
−(r+ 1

2
−j)/

√
ami fj,

so that supp y3 ⊆
⋃mi−1

r=ri
(rami

+ vmi−r, (r + 1)ami
). Furthermore, using (Â), we write

y2 = y′2 + y′′2 where

y′2 =

mi∑
r=ri+1

rami+vmi−r∑
j=rami

γj êj−rami
=

mi∑
r=ri+1

vmi−r∑
j=0

γj+rami
êj

and y′′2 =

mi∑
r=ri+1

rami+vmi−r∑
j=rami

γjr

ami−r

fj.

Therefore,

supp(y1 + y2) ⊆ [0, riami
+ vmi−1

] ∪
mi⋃

r=ri+1

[rami
, rami

+ vmi−ri
].

One observes that the vectors y1 + y2 and y3 have disjoint supports; it follows that
dist(y, e0) > dist(y1 + y2, e0).
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Furthermore,

‖y′2‖ =
∥∥∥

mi∑
r=ri+1

rami+vmi−r∑
j=rami

γj êj−rami

∥∥∥ 6
mi∑

r=ri+1

rami+vmi−r∑
j=rami

|γj| · max
k6vmi−1−1

‖êk‖.

By choice of (ri) (4), we have max
k6vmi−1−1

‖êk‖ 6 ri

ami−ri−1
6 r

ami−r
when ri < r 6 mi.

This yields

‖y′2‖ 6
∥∥∥

mi∑
r=ri+1

rami+vmi−r∑
j=rami

γjr

ami−r

fj

∥∥∥ = ‖y′′2‖.

Since the support of y′′2 is disjoint from that of y1 + y′2 and doesn’t contain 0, we have

dist(y1, e0) 6 dist(y1 + y′2, e0) + ‖y′2‖
= dist(y1 + y′2 + y′′2 , e0)− ‖y′′2‖+ ‖y′2‖
6 dist(y1 + y2, e0) 6 dist(y, e0).

It is left to show that dist(y1, e0) > C. Since ji > riami
, it follows from (Â) that

y1 = y′1 + y′′1 where

y′1 =

riami+vmi−1∑
j=ji

γj êj−riami
and y′′1 =

riami+vmi−1∑
j=ji

γjr

ami−ri

fj.

Since ji = ji−1 + ri−1bmi−1
+ riami

, we have y′1 =
∑vmi−1

j=ji−1+ri−1bmi−1
βj êj, where βj =

γj+riami
. In particular this means, that supp y′1 ⊆ [0, vmi−1

], while min supp y′′1 > ji >
riami

. Thus, the supports are disjoint, which yields dist(y1, e0) > dist(y′1, e0).
Split the index set of y′1 into two disjoint subsets: let

A=[ji−1+ri−1bmi−1
, vmi−1

] ∩
mi−1⋃

r=ri−1

(
mi−1ami−1

+rbmi−1
, (r+1)(ami−1

+bmi−1
)
)
,

B=[ji−1+ri−1bmi−1
, vmi−1

] ∩
mi−1⋃

r=ri−1

[
r(ami−1

+bmi−1
),mi−1ami−1

+rbmi−1

]
.

Write y′1 = za + zb where za =
∑

j∈A βj êj and zb =
∑

j∈B βj êj. For j ∈ A we have

êj = 2((r+1/2)bmi−1−j)/
√

bmi−1fj, so that supp za ⊆ A. In view of (11) we can write
zb = z′b + z′′b , where

z′b =
∑
j∈B

r−1∑

k=0

βjb
k
mi−1

fj−kbmi−1
and z′′b =

∑
j∈B

βjb
r
mi−1

êj−rbmi−1
.

We first note that supp z′b ⊆ B and determine the support of z′′b as follows. If j ∈ B,
then j > ji−1 + ri−1bmi−1

and j ∈ [
r(ami−1

+ bmi−1
),mi−1ami−1

+ rbmi−1

]
for some

r ∈ [ri−1,mi−1]. If r = ri−1, then j − rbmi−1
> ji−1. If r > ri−1, then j − rbmi−1

>
rami−1

> ri−1ami−1
+ vmi−2

> ji−1 by (7). We see that z′′b is a linear combination of
êj’s with ji−1 6 j 6 mi−1ami−1

. Hence its support is contained in [0,mi−1ami−1
] and,

therefore, is disjoint from that of za and z′b. It follows that dist(y, e0) > dist(y′1, e0) >
dist(z′′b , e0). Finally, dist(z′′b , e0) > C by the induction hypothesis. ¤
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Proof of Theorem 3.1. We will prove that the linear span of the orbit of x∞ under
S is at least distance C from e0, hence its closure is a non-trivial invariant subspace
for S. Consider a linear combination

∑N
`=0 α`S

`x∞. It follows from (7) that the
sequence (miami

− ji) is unbounded, so that N < miami
− ji for some i > 0. Recall

that x∞ = xi +
∑∞

k=i pkzk; then

N∑

`=0

α`S
`x∞ =

N∑
s=0

α`S
`xi +

N∑

`=0

∞∑

k=i

α`S
`(pkzk).

Notice that the two sums have disjoint supports, and the support of the second one
does not contain 0. Indeed, since xi = pi−1êji

then S`xi = pi−1êji+` for ` = 1, . . . , N .
Furthermore,

ji 6 ji + ` 6 ji + N < ji + (miami
− ji) = miami

.

It follows that
∑N

`=0 S`xi is a linear combination of êj’s with ji 6 j 6 miami
. In

particular, its support is contained in [0,miami
]. On the other hand, Proposition 3.2

(d) implies that

min supp
( N∑

`=0

∞∑

k=i

S`(pkzk)
)

> ji + bmi
.

Therefore, by Lemma 3.4

dist
( N∑

`=0

S`x∞, e0

)
> dist

( N∑

`=0

S`xi, e0

)
> C.

¤
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