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Abstract. [2, 11] used representation spaces to study measures of non-compactness
and spectral radii of operators on Banach lattices. In this paper, we develop repre-
sentation spaces based on the nonstandard hull construction (which is equivalent to
the ultrapower construction). As a particular application, we present a simple proof
and some extensions of the main result of [6] on the monotonicity of the measure
of non-compactness and the spectral radius of AM-compact operators. We also use
the representation spaces to characterize d-convergence and discuss the relationship
between d-convergence and the measures of non-compactness.

1. Introduction

Recall that an operator T between Banach lattices is said to be positive if it maps
positive vectors to positive vectors. In this case, we write T > 0. We write S 6 T if
T − S > 0. We say that S is dominated by T if |Sx| 6 T |x| for each x. An operator
T between Banach lattices is said to be order bounded if it maps order intervals into
order intervals. It can be easily verified that if T dominates S then both S and T are
order bounded. An order bounded operator is AM-compact if it maps order intervals
(or almost order bounded sets) into precompact sets. A set A ⊆ E is almost order
bounded if for every ε > 0 there exists u ∈ E+ such that A ⊆ [−u, u] + εBE , where
BE stands for the unit ball of E. An operator T between Banach lattices is said to
be semicompact if it maps bounded sets to almost order bounded sets. We refer the
reader to [1, 8, 9, 17] for a detailed study of Banach lattices and positive operators.
All Banach lattices in this paper are assumed to be complex unless specified otherwise,
all operators are assumed to be linear and bounded.

A lot of work has been done on the problem of the relationship between compact
operators and the order structure of a Banach lattice, see, e.g. [2, 12, 14, 15]. Still
there are many open questions. In particular, the problem can be considered from
the point of view of spectra of the operators. It is well known that if T is a positive
operator on a Banach lattice then the spectral radius r(T ) belongs to the spectrum
σ(T ). If S is dominated by T then ‖S‖ 6 ‖T‖ and r(S) 6 r(T ). The central question
of this paper is whether similar statements hold for the essential spectrum, essential
spectral radius, and the measure of non-compactness.
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Recall that the Calkin algebra of a Banach space X is the quotient of the algebra
of L(X) over the closed algebraic ideal of all compact operators. The essential spec-
trum σess(T ) and the essential spectral radius ress(T ) of an operator T on X are
defined as the spectrum and, respectively, the spectral radius of the canonical image
of T in the Calkin algebra.

If A is a bounded subset of a Banach space X then the measure of noncompact-
ness χ(A) (it is sometimes referred as the Hausdorff or ball measure of non-compactness)
is defined via:

χ(A) = inf{ δ > 0 : A can be covered with a finite number of balls of radius δ }.
Clearly χ(A) = 0 if and only if A is relatively compact. The measure of noncompactness
of an operator T : X → Y between Banach spaces is defined via χ(T ) = χ(TBX). Then
χ is a seminorm on L(X, Y ). It was shown in [10] that:

(*) ress(T ) = lim
n→∞

n
√

χ(Tn).

for every T ∈ L(X). We refer the reader to [3] for more details on measures of
noncompactness.
Questions.

(i) Does ress(S) ∈ σess(S) for any positive operator S on a Banach lattice?
(ii) Is ress(S) 6 ress(T ) for any operators S and T provided T dominates S?
(iii) Is χ(S) 6 χ(T ) for any operators T and S provided T dominates S?

These questions were first addressed in [6], and the following results were obtained
(see also [9, Section 4.3]):

Theorem 1 ([6]).
(i) If S is a positive AM-compact operator on a Banach lattice then ress(S) ∈

σess(S).
(ii) If S and T are two operators on a Banach lattice such that 0 6 S 6 T and S

is AM-compact, then ress(S) 6 ress(T ).
(iii) If S, T : E → F are two operators between Banach lattices such that 0 6 S 6

T , S is AM-compact, and both E′ and F have order continuous norms, then
χ(S) 6 χ(T ).

In the same paper, an example is given of two non-AM-compact operators 0 6 S 6 T
with ress(S) > ress(T ) and ress(S) /∈ σess(S).

It is easy to see that if an operator S : E → E is dominated by a compact operator
T then ress(S) = 0. Indeed, 0 6 S + T 6 2T , so that (S + T )3 is compact by the Cube
Theorem [1, Theorem 16.14], and it follows that ress(S) = 0. But, as far as we know, it
is still not known whether every operator dominated by an essentially quasinilpotent
operator is itself essentially quasinilpotent.

An important technical tool used in [6] is a measure of non-semicompactness,
introduced analogously to the Hausdorff measure of noncompactness: if A is a norm
bounded set in a Banach lattice, then

ρ(A) = inf{ δ > 0 : A ⊆ [−u, u] + δBE for some u ∈ E+ },
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and ρ(T ) = ρ(TBE) whenever T is an operator between Banach lattices. Clearly,
ρ(A) = 0 iff A is almost order bounded, and ρ(T ) = 0 iff T is semi-compact. Fur-
thermore, ρ(A) 6 χ(A) for each bounded set A and ρ(T ) 6 χ(T ) for each bounded
operator T . It was proved in [6, Theorem 2.5] that ρ(T ) = χ(T ) for every order
bounded AM-compact operator T : E → F when E′ and F have order continuous
norms.

In this paper, we develop a certain representation space technique and, using this
technique, we present a simple proof of Theorem 1 as well as some improvements of it.
Our technique is based on the nonstandard hull construction of Nonstandard Analysis
(which is equivalent to the ultrapower construction). Recall the construction briefly.
If X is a (standard) Banach space, denote by ∗X the nonstandard extension of X.
The symbols x, y, z, etc., will usually stand for elements of ∗X. If T is a standard
operator on X, we use the same symbol T instead of ∗T to denote the extension of
T to ∗X. The symbol fin(∗X) stands for the subspace of all elements of ∗X of finite
norm, while the monad of zero, µ(0), consists of those elements of ∗X whose norm
is infinitesimal. The Banach space X̂ = fin(∗X)/µ(0) is called the nonstandard hull

of X. If x ∈ fin(∗X) then x̂ will stand for the corresponding element in X̂. Every
bounded operator between Banach spaces T : X → Y induces a bounded operators
T̂ : X̂ → Ŷ via T̂ x̂ = T̂ x. Clearly, X is isometrically isomorphic to ns(∗X)/µ(0), where
ns(∗X) stands for the set of all near-standard elements of ∗X. Thus, one can view X

as a closed subspace of X̂. For A ⊆ X we write Â = {x̂ : x ∈ ∗A}. It is known
that a standard set A ⊆ X is relatively compact iff ∗A ⊆ ns(∗X) iff Â ⊆ X. If E

is a Banach lattice then Ê also is a Banach lattice. Further details on nonstandard
analysis and nonstandard hulls can be found in [5, 7, 16]. A reader familiar with the
technique of ultraproducts can view X̂ as an ultrapower of X. Clearly, all the proofs
in this paper can be redone in terms of ultrapowers, but we believe that the language
of Nonstandard Analysis is more appropriate for this problem.

Define X̃ = X̂/X. We will see in Section 2 that this space is a representation space
for χ and σess, that is, χ(T ) = ‖T̃‖ and σess(T ) = σ(T̃ ). For a Banach lattice E,
let I(E) be the order ideal generated by E in Ê, and let iE = I(E). Now we define
Ě = Ê/iE. It will be shown in Section 2 that Ě is a representation space for ρ(T ),
that is, ρ(T ) = ‖Ť‖. We will also show that T : E → F is AM-compact if and only if
T̂ maps iE into F . In Section 3 we use these representation spaces to prove Theorem 1
and similar results. It should be mentioned that various representation spaces have
been used to study the essential spectrum of an operator, see e.g., [2, 11].

Finally, in Section 4 we discuss the d-topology on a Banach lattice. We say that a net
(xα) d-converges to x in E if |xα−x|∧y converges to zero in norm for every y ∈ E+.
We investigate the relation between the d-topology, the space Ê, and the questions
stated in the beginning of the paper. We also discuss examples of d-topologies.

2. Representation Spaces

Given a Banach space X, we define X̃ = X̂/X. If x ∈ ∗X, then x̃ will stand for
the corresponding element in X̃. Every operator T : X → Y induces an operators



4

T̃ : X̃ → Ỹ given by T̃ x̃ = T̃ x. An operator T : X → Y is compact iff the range of T̂

is contained in Y iff T̃ = 0.

Lemma 2. If A is a bounded subset of X then χ(A) = max
y∈∗A

‖ỹ‖.

Proof. Fix y ∈ ∗A. For every standard ε > 0 there is a finite set F ⊂ X such that A
(and hence ∗A) is within χ(A) + ε of F . Then ‖ỹ‖ 6 dist(ŷ, F ) 6 χ(A) + ε, so that
‖ỹ‖ 6 χ(A). Conversely, for every finite family of balls of radius less than χ(A) there
exists a point in A which is not covered by the balls. By the idealization (saturation)
principle, there exists y ∈ ∗A which does not belong to any standard ball of radius less
than χ(A). Therefore ‖ỹ‖ > χ(A). ¤

From this point of view, χ(A) measures how far the set ∗A is from ns(∗X). Then
χ(T ) measures how much closer sets become to ns(∗X) after we apply T . Actually, the
following lemma describes the relation. Similar results were proved in [16, 11].

Corollary 3. If T is a bounded operator on X then χ(T ) = ‖T̃‖.
Corollary 3 and formula (*) imply that ress(T ) = r(T̃ ) for every bounded operator

on a Banach space. Moreover, it was shown in [4] and in [16, Theorem 3.11] that T̃ is
invertible iff T is Fredholm, so that σ(T̃ ) = σess(T ).

Now we turn to Banach lattices. It is well known that if E is a Banach lattice then
Ê is also a Banach lattice.

Remark 4. The following simple observation turns out to be quite handy in the
context of our problem. Suppose that I is an (order) ideal in a vector lattice E and
consider the quotient vector lattice E/I. It is known that the canonical epimorphism
from E onto E/I is a lattice homomorphism, hence it maps order intervals onto order
intervals. It follows that if a, b, x ∈ E are such that a 6 b and [a] 6 [x] 6 [b], where
[a], [x], and [b] are the equivalence classes of a, x, and b respectively in the quotient
vector lattice E/I, then a 6 x′ 6 b for some x′ ∈ [x]. In particular, if E is a Banach
lattice and â 6 x̂ 6 b̂ for some a, x, b ∈ ∗E such that a 6 b, then a 6 x′ 6 b for some
x′ ∈ ∗E such that x′ ≈ x.

The following important characterization was obtained in [5].

Theorem 5. The following statements are equivalent:
(i) Ê is Dedekind complete;
(ii) Ê has the projection property;
(iii) Ê has order continuous norm;
(iv) c0 is not lattice finitely representable1 in E.

Notice that Ẽ need not be a Banach lattice because E might not be an (order) ideal
in Ê. In fact, this happens only when E is atomic with order continuous norm. It

1Recall that a Banach lattice F is lattice finitely representable in a Banach lattice E if for each finite
dimensional vector sublattice H in F and for each δ > 0 there exists a lattice embedding T : H → E
such that ‖T‖, ‖T−1‖ 6 1 + δ.
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was first noticed in [5] that E is an ideal in Ê if and only if the order intervals in E
are compact. Indeed, [−u, u] is a compact set in E for each u ∈ E+ if and only if
[−u, u]∗E ⊂ ns(∗E). In view of Remark 4 this is equivalent to [−û, û] bE ⊂ E for each
u ∈ E+. It was shown in [14, 13] that the intervals in a Banach lattice E are compact if
and only if E is atomic with order continuous norm. Thus, the following result holds.

Proposition 6. The space Ẽ is a Banach lattice if and only if E is atomic with order
continuous norm.

Denote by I(E) the ideal generated by E in Ê. This ideal was extensively studied
in [5].

Theorem 7 ([5]). The following statements are equivalent:
(i) I(E) is Dedekind complete;
(ii) I(E) has the projection property;
(iii) I(E) has order continuous norm;
(iv) E has order continuous norm;

It also follows from Proposition 6 that I(E) = E if and only if E is atomic with
order continuous norm.

Example 8. I(E) need not be norm closed. Let E = L1[0, 1], fix an infinite positive
integer N , and consider the partition of ∗[0, 1] into 2N equal subintervals. Let A be
the union of all odd-numbered intervals, i.e., A =

⋃N
i=1[

i
N − 1

2N , i
N ], and f = χA, the

characteristic function of A. We claim that zero is the greatest standard function in Ê
dominated by f̂ . Indeed, suppose that ĝ 6 f̂ for some g ∈ L1[0, 1] such that g is positive
on a set of positive measure. Then there exists ε > 0 such that m(C) > 0, where C =
{g > ε} and m stands for the Lebesgue measure. Clearly (εχC − f)+ 6 (g − f)+ ≈ 0.
Let δ = ε·m(C)

4+ε . Then one can find a set D ⊆ [0, 1] such that D is a finite union of
intervals and m(C 4D) < δ. It follows that

∥∥(εχD − f)+
∥∥ 6

∥∥(εχC − f)+
∥∥ + δ . δ.

On the other hand, since m(A ∩ I) = 1
2m(I) for every standard interval I ⊆ [0, 1], we

have
∥∥(εχD − f)+

∥∥ = ε
2m(D) > ε

2

(
m(C)− δ

)
= 2δ, a contradiction. It can be shown

in a similar fashion that χ[0,1] is the smallest standard function that dominates f .
Now let E = L1(R). Again, fix an infinite positive integer N , and let A1 be the set

A from the previous paragraph. Cut the interval ∗[1, 2] into 4N equal subintervals and
let A2 be the union of every fourth interval, i.e., A2 = 1+

⋃N
i=1[

i
N − 1

4N , i
N ]. Similarly,

for every n ∈ ∗N let An = n − 1 +
⋃N

i=1[
i
N − 1

2nN , i
N ]. Next, let Bn =

⋃n
k=1 Ak for

each n ∈ ∗N and B =
⋃

k∈∗NAk. Then m(B) = 1
2 + 1

4 + 1
8 + · · · < ∞. For each n ∈ ∗N

let hn be the characteristic function of Bn, and let h be the characteristic function of
B. Notice that ‖h − hn‖ = m(B \ Bn) = 1

2n+1 + 1
2n+2 + . . . , so that ‖ĥ − ĥn‖ → 0 as

n → 0 in N. On the other hand, hn 6 χ[0,n] for every n, so that ĥn ∈ I(E) for every
standard n. But it follows from the previous paragraph, that h is not dominated by
a standard function in L1(R), because this function would have to be greater or equal
than 1 a.e. on R. Therefore, ĥ is in the closure of I(E) but not in I(E), so that I(E)
is not closed.

Denote by iE the closure of I(E) in Ê.
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Remark 9. Since every closed ideal in a Banach lattice with order continuous norm
is a band, it follows from Theorem 5 that if c0 is not lattice finitely representable in E
then iE is a projection band.

Define a representation space Ě for E via Ě = Ê/iE. Apparently Ě is a Banach
lattice. It follows from Lemma 6 that Ě = Ẽ if and only if E is atomic with order
continuous norm. On the other hand, if E has a strong order unit, then I(E) = Ê and
Ě is trivial. It follows from E ⊆ iE ⊆ Ê that ‖x̌‖ 6 ‖x̃‖ 6 ‖x̂‖ for each x ∈ fin(∗E).

Let T : E → F be an order bounded operator between Banach lattices. Suppose
that x̂ ∈ I(E). Then |x̂| 6 û for some u ∈ E+. By Remark 4 there exists y ∈ ∗E such
that x ≈ y ∈ ∗[−u, u]. Then Tx ≈ Ty ∈ T ∗[−u, u] ⊆ ∗[−v, v] for some v ∈ F+, so that
T̂ x̂ ∈ I(F ). Thus, T̂ maps iE into iF and, therefore, x̌ 7→ (Tx)̌ induces a bounded
operator Ť from Ě to F̌ .

We claim that Ť is order bounded. Indeed, suppose that ǔ > 0 and x̌ ∈ [−ǔ, ǔ] for
some x, u ∈ fin(∗E). By Remark 4 we can assume that u ∈ ∗E+ and x ∈ [−u, u]. Then
Tx ∈ T [−u, u] ⊆ [−v, v] for some v ∈ ∗E+. Therefore, Ť [−ǔ, ǔ] ⊆ [−v̌, v̌], hence Ť is
order bounded. Notice that v can be chosen in fin(∗E) because of the following fact,
which is due to A. Wickstead: if T : E → F is order bounded then

sup
‖z‖61,z>0

inf
{‖y‖ : y ∈ E+ and T [−z, z] ⊆ [−y, y]

}
< ∞.

Indeed, otherwise for each n > 0 one could find a positive zn in BE with

inf
{‖y‖ : y ∈ E+ and T [−zn, zn] ⊆ [−y, y]

}
> n3.

Let z =
∑∞

n=1
zn
n2 , it is easy to see that T [−z, z] is not contained in any order interval

in F .
Clearly, if T is positive then Ť is positive and Ť = 0 if and only if T is semi-compact.
The following two results are analogous to Lemma 2 and Corollary 3.

Lemma 10. If A is a bounded subset of E, then ρ(A) = max
y∈∗A

‖y̌‖.

Proof. Fix a standard γ > ρ(A). Then A ⊆ [−u, u] + γBE for some u ∈ E+. For each
y ∈ ∗A we have y = v + h such that v ∈ ∗[−u, u] and ‖h‖ 6 γ. It follows from v̂ ∈ iE

that ‖y̌‖ = ‖ĥ‖ 6 γ. Thus ‖y̌‖ 6 ρ(A).
On the other hand, for every standard positive γ < ρ(A) and for every u ∈ E+ there

is a point y in A which doesn’t belong to [−u, u] + γBE . By saturation there exists
y ∈ ∗A such that y /∈ ∗[−u, u] + γ∗BE for every standard positive γ < ρ(A) and for
every u ∈ E+. Then ‖y̌‖ > ρ(A). ¤

It follows, in particular (c.f. [12, Corollary 1.4]), that a bounded subset A ⊂ E is
almost order bounded if and only if Â ⊆ iE.

Corollary 11. If T : E → F is operator between Banach lattices then ρ(T ) = ‖Ť‖.

3. Applications

The following theorem follows immediately from Proposition 6 and Corollary 3.
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Theorem 12. If E and F are atomic Banach lattices with order continuous norms
then:

(i) if T is a positive operator on E then ress(T ) ∈ σess(T );
(ii) if S, T : E → E and T dominates S then ress(S) 6 ress(T );
(iii) if S, T : E → F and T dominates S then χ(S) 6 χ(T ).

Since every operator on an atomic Banach lattice is AM-compact, this result can be
viewed as a special case of Theorem 1 except that we do not require E′ to have order
continuous norm in (iii).

Next, we are going to characterize AM-compact operators. Denote by ϕE the canon-
ical epimorphism from Ẽ to Ě given by ϕE(x̃) = x̌. By the definition of Ť we have
ŤϕE = ϕF T̃ .

Theorem 13. Let T : E → F be an order bounded operator between Banach lattices.
The following statements are equivalent:

(i) T is AM-compact;
(ii) T̂ maps iE into F ;
(iii) There exists a map T̄ : Ě → F̃ such that T̃ = T̄ϕE, i.e., T̃ x̃ = T̄ x̌:

Ẽ
eT - F̃

ϕE

?́ ´
´

´
´

3́

T̄

Ě

Proof. If u ∈ E+ then T [−u, u] is compact if and only if ̂T [−u, u] ⊆ F . In view of
Remark 4 we have ̂T [−u, u] = T̂ [−û, û], so that (i)⇔(ii). To show (ii)⇔(iii) notice
that kerϕE = iE/E. If T̂ maps iE into F then iE/E ⊆ ker T̃ , so that T̄

(
ϕE(x̃)

)
= T̃ x̃

defines an operator from Ě to F̃ . Conversely, if such a T̄ exists, then for every x̂ ∈ iE

we have ϕE(x̃) = 0 so that T̃ x̃ = T̄ϕE(x̃) = 0, hence T̂ x̂ ∈ F . ¤

Remark 14. Notice that if T is AM-compact then ‖T̃‖ = ‖T̄‖ because ϕE maps the
unit ball of Ẽ onto the unit ball of Ě.

If E, F , and G are Banach lattices and S : E → F and T : F → G are order bounded
operators such that T is AM-compact, then it follows from the diagram

Ẽ
eS - F̃

eT - G̃

ϕE

?

ϕF

?́ ´
´

´
´

3́
T̄

Ě Š - F̌

that ‖T̃ S̃‖ 6 ‖ϕE‖‖Š‖‖T̄‖ = ‖Š‖‖T̃‖ (c.f. [6, Lemma 3.1].

Now we are ready to present a simple proof of Theorem 1. We replace the condition
0 6 S 6 T with the slightly weaker condition of S being dominated by T .
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Proof of Theorem 1. If T is positive and AM-compact, then by Remark 14 we have
‖T̃n‖ 6 ‖Ťn−1‖‖T̃‖, so that

r(T̃ ) = lim
n→∞

n

√
‖T̃n‖ 6 lim

n→∞
n

√
‖Ťn−1‖‖T̃‖ = lim

n→∞
n

√
‖Ťn−1‖ = r(Ť ).

On the other hand, we always have r(Ť ) 6 r(T̃ ), so that ress(T ) = r(T̃ ) = r(Ť ). Since
Ť is a positive operator on the Banach lattice Ě we have r(Ť ) ∈ σ(Ť ). Finally, Ť is a
quotient of T̃ so that σ(Ť ) ⊆ σ(T̃ ) = σess(T ). Thus, ress(T ) ∈ σess(T ).

Next, if T dominates S and S is AM-compact then by Remark 14 we have ‖S̃n‖ 6
‖Šn−1‖‖S̃‖ 6 ‖Ťn−1‖‖S̃‖. This yields

ress(S) = r(S̃) = lim
n→∞

n

√
‖S̃n‖ 6 lim

n→∞
n

√
‖Ťn−1‖ = r(Ť ) 6 r(T̃ ) = ress(T ).

If in addition E′ and F have order continuous norms, then χ(S) = ρ(S) = ‖Š‖ and
‖Ť‖ = ρ(T ) 6 χ(T ), but since Ě is a Banach lattice and Ť dominates Š we conclude
that ‖Š‖ 6 ‖Ť‖ so that χ(S) 6 χ(T ). ¤

The following theorem is an analog of [2, Theorem 1.5] for T̃ and Ť .

Theorem 15. Let E be a Banach lattice and T : E → E an AM-compact operator.
Then

(i) σp(Ť ) \ {0} = σp(T̃ ) \ {0};
(ii) If λ 6= 0 then λI − Ť is onto if and only if λI − T̃ is onto;
(iii) σ(Ť ) \ {0} = σ(T̃ ) \ {0} = σess(T ) \ {0}.

Proof. (i) Suppose that λ 6= 0. If Ť x̌ = λx̌, x̌ 6= 0 then (λI − T̂ )x̂ ∈ iE so that
T̂ (λI − T̂ )x̂ ∈ E hence (λI − T̃ )(T̃ x̃) = 0. Notice that T̃ x̃ 6= 0 because Ť x̌ = λx̌ 6= 0.
This yields λ ∈ σp(T̃ ). Conversely, if T̃ x̃ = λx̃, x̃ 6= 0 then Ť x̌ = λx̌. Notice that x̌ 6= 0
because otherwise we would have x̂ ∈ iE which would imply T̂ x̂ ∈ E and T̃ x̃ = 0.

(ii) If λI − T̃ is onto, then λI − Ť is also onto as a quotient of λI − T̃ . To show
the converse, take ŷ ∈ Ê, then there exists x̂ ∈ Ê, such that (λI − Ť )x̌ = y̌. Then
(λI−T̂ )x̂− ŷ ∈ iE so that T̂

(
(λI−T̂ )x̂− ŷ

) ∈ E. This yields (λI−T̃ )(T̃ x̃+ ỹ)−λỹ = 0.
Hence (λI − T̃ )( 1

λ)(T̃ x̃ + ỹ) = ỹ and, therefore, λI − T̃ is onto.
Finally, (iii) follows immediately from (i) and (ii). ¤

4. d-topologies

Definition 16. We say that a net (xα) in a Banach lattice E d-converges to x ∈ E
if |xα − x| ∧ y converges to zero in norm for every y ∈ E+. The topology generated by
this convergence will be referred to as the d-topology of E.

Let µd(0) denotes the monad of zero for the d-topology, while Ed stands for the
disjoint complement of E in Ê.

Lemma 17. For a point x ∈ ∗E the following are equivalent:
(i) x ∈ µd(0);
(ii) x̂ ∈ Ed;
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(iii) x is nearly disjoint with every y ∈ E+, i.e., |x| ∧ y ≈ 0.

Proof. To see that (ii)⇔(iii) observe that x̂ ∈ Ed if and only if for every y ∈ E+ we
have |x̂| ∧ ŷ = 0 or, equivalently, |x| ∧ y ≈ 0. On the other hand, (xα) d-converges to
zero in E if and only if |xα| ∧ y converges to zero in norm for every y ∈ E+, which is
equivalent to |xα| ∧ y ≈ 0 for every infinite α, so that (i)⇔(iii). ¤

Notice that the embedding of Ed into Ě given by x̂ 7→ x̌ is an isometry (we will see
in Example 21 that it need not be onto). Indeed, if x̂ ∈ Ed then clearly ‖x̌‖ 6 ‖x̂‖.
On the other hand, x̂ ⊥ ŷ for each ŷ ∈ iE, so that ‖x̂ + ŷ‖ > ‖x̂‖, whence ‖x̌‖ = ‖x̃‖.
It is easy to see that ‖x̌‖ = ‖x̃‖ for every x̂ ∈ E ⊕Ed. It follows then from Lemmas 2
and 10 that if A is a bounded set in A then χ(A) = ρ(A) whenever Â ⊆ E ⊕ Ed. By
Lemma 17 x̂ ∈ E ⊕ Ed means that x is nearstandard relative to the d-topology, so
that Â ⊆ E ⊕Ed if and only if A is relatively d-compact (i.e., relatively compact with
respect to the d-topology). Thus, we arrive to the following result.

Proposition 18. If A ⊆ E is d-compact, then χ(A) = ρ(A).

We say that an operator between Banach lattices is d-compact if it maps bounded
sets into relatively d-compact sets. Observe that if T is order bounded and d-compact
then it is AM-compact. Indeed, if y ∈ E+ then T [−y, y] is relatively d-compact and
order bounded, but the d-topology agrees with the norm topology on order bounded
sets, so that T [−y, y] is relatively compact. It follows, in particular, that Theorem 1
applies to d-compact operators. We claim that in the case of d-compact operators the
order continuity condition in Theorem 1(iii) can be removed. Indeed, the following
result follows immediately from Proposition 18.

Proposition 19. If S, T : E → F are two operators between Banach lattices such that
T dominates S and S is d-compact then χ(S) 6 χ(T ).

Next, we are going to present several examples of d-topologies. First, notice that if
E has a strong order unit then the d-topology coincides with the norm topology of E.

Example 20. E = C0(Ω) where Ω is a normal topological space. The d-convergence in
E is exactly the ucc topology, i.e., the topology of uniform convergence on compacta.
Indeed, let (xα) be a net in E such that xα

ucc−−→ 0, and y ∈ E+. Fix ε > 0. Then one
can find a compact set K ⊆ Ω such that y(t) 6 ε whenever t /∈ K. There exists an
index α0 such that |xα(t)| 6 ε whenever t ∈ K and α > α0. Then |xα(t)| ∧ y(t) 6 ε
for every t ∈ Ω, so that (xα) is d-null.

Conversely, suppose that (xα) is d-null in E and K is a compact subset of Ω. Let
y ∈ E such that 0 6 y 6 1 and y(t) = 1 whenever t ∈ K. Since |xα| ∧ y → 0, it follows
that for every ε > 0 there exists an index α0 such that |xα(t)| ∧ y(t) 6 ε whenever
α > α0. This implies |xα(t)| 6 ε whenever t ∈ K and α > α0.

Notice that if x ∈ ∗E then x̂ ∈ Ed if and only if x(t) ≈ 0 whenever t ∈ ∗K for some
compact K ⊆ Ω, or, equivalently, if x(t) ≈ 0 for every nearstandard t ∈ ∗Ω.

Example 21. E = c0. We will show that Ê 6= iE ⊕ Ed. It follows from the previous
example that the d-convergence on c0 is exactly coordinate-wise convergence. Let
N ∈ ∗N \ N and x =

∑N
k=1 ek. Assume that x̂ = ŷ + ẑ for some y, z ∈ ∗E such that
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ŷ ∈ iE and ẑ ∈ Ed. Then ‖ŷ− v̂‖ < 1
4 for some v̂ ∈ I(E). Set D =

{
i ∈ ∗N : |zi| < 1

2

}
.

Then N ⊆ D because zi ≈ 0 for each standard i. By the Overspill Principle there
exists n ∈ D such that n /∈ N and n 6 N . Then yn ≈ xn − zn > 1

2 and, therefore,
vn > 1

4 . But vn must be infinitesimal because v is dominated by a standard sequence, a
contradiction. Thus, x̂ /∈ iE⊕Ed so that iE⊕Ed is a proper subset of Ê. It also follows
that the embedding of Ed into Ě given be x̂ 7→ x̌ is not onto, because otherwise we
would have x̌ = ž for some ẑ ∈ Ed, and this would imply x̂ = ŷ + ẑ for ŷ = x̂− ẑ ∈ iE.

Furthermore, if A = {ek}k∈N, it can be easily verified that A is d-compact in c0.
On the other hand, if we consider its convex hull coA then clearly x ∈ ∗co A, so that
co A is not relatively d-compact. Thus the convex hull of a d-compact set need not be
d-compact, and the d-topology need not be locally convex.

Remark 22. It follows from Remark 9 that if E is a Banach lattice such that c0 is
not lattice finitely representable in E, then Ê = iE ⊕ Ed. In this case the map x̂ 7→ x̌
is an isometry between Ed and Ě. If, in addition, E is atomic with order continuous
norm (e.g., E = `p, 1 6 p < ∞) then iE = E, so that Ê = E ⊕ Ed. It follows that
every bounded set in E is relatively d-compact, and every E-valued bounded operator
is d-compact.

Example 23. E = Lp(µ) where 1 6 p < ∞ and µ is a finite measure. The d-
convergence in E is exactly the convergence in measure. To show this, let xα

µ−→ 0 in
E. Clearly |xα| ∧ 1 converges to zero in Lp-norm. Similarly, |xα| ∧ s → 0 for every
simple function s ∈ E. Let y ∈ E+. For each positive ε there exists a simple function
s ∈ E such that ‖s− y‖ 6 ε. Then:

∥∥|xα| ∧ y
∥∥ 6

∥∥|xα| ∧ s
∥∥ +

∥∥|xα| ∧ s− |xα| ∧ y
∥∥

6
∥∥|xα| ∧ s

∥∥ + ‖s− y‖ 6
∥∥|xα| ∧ s

∥∥ + ε.

This yields |xα| ∧ y → 0, so that xα d-converges to zero.
Conversely, suppose (xα) d-converges to zero in E. Fix ε > 0. Then |xα| ∧ ε1 → 0,

so that we can find α0 such that
∥∥|xα| ∧ ε1

∥∥ 6 ε
p+1

p whenever α > α0. This yields:

µ
({|xα| > ε

})
=

1
εp

∫

|xα|>ε

εp dµ =
1
εp

∫

|xα|>ε

(|xα| ∧ ε)p dµ

6 1
εp

∫ (|xα| ∧ ε
)p

dµ 6 ε

whenever α > α0.
For x ∈ ∗E the following lemma guarantees that x̂ ∈ Ed if and only if |x| ∧ 1 ≈ 0.

Lemma 24. If e is a quasi-interior point in a Banach lattice E, then for x ∈ ∗E we
have x̂ ∈ Ed if and only if |x| ∧ e ≈ 0.

Proof. Without loss of generality we assume x > 0. It follows from Lemma 17 that
x̂ ∈ Ed implies x ∧ e ≈ 0. Conversely, assume that x is nearly disjoint with e and let
y ∈ E+. By [1, Theorem 15.13] we have ‖y − y ∧ ne‖ → 0. Fix ε > 0. Then there
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exists n ∈ N such that ‖y − y ∧ ne‖ 6 ε. Therefore:

‖x ∧ y‖ 6 ‖x ∧ y − x ∧ y ∧ ne‖+ ‖x ∧ y ∧ ne‖
6 ‖y − y ∧ ne‖+ ‖x ∧ ne‖ 6 ε + n‖x ∧ e‖ 6 2ε.

It follows that x is nearly disjoint with y, so that by Lemma 17 we conclude that
x̂ ∈ Ed. ¤

The following interesting observation was communicated to the author by W.B. John-
son: if 0 < q < p < ∞ then a bounded sequence in Lp(µ) converges to zero in measure
if and only if it converges to zero in ‖·‖q. Indeed, it is well known that convergence
in ‖·‖q implies convergence in measure. On the other hand, suppose that (xn) is a
norm-bounded d-null sequence in Lp(µ) and 0 < q < p, then:

∫

|xn|<1
|xn|q 6

(∫

|xn|<1
|xn|p

) q
p
(∫

|xn|<1
1
) p−q

p

6
(∫

|xn|<1
|xn|p ∧ 1

) q
p

‖µ‖ p−q
p =

∥∥|xn| ∧ 1
∥∥q

p
· ‖µ‖ p−q

p → 0

and
∫

|xn|>1
|xn|q 6

(∫

|xn|>1
|xn|p

) q
p
(∫

|xn|>1
1
) p−q

p

6 ‖xn‖q
p · µ

(|xn| > 1
) p−q

p → 0,

so that ‖xn‖q → 0. It follows that a bounded subset A in Lp(µ) is (relatively) d-
compact if and only if it is (relatively) norm compact in Lq(µ).

Example 25. A positive d-compact operator which is not compact. Consider the
sequence of intervals An =

(
1
2n , 1

2n−1

]
. Let fn = 2

n
2 χAn . Then ‖fn‖2 = 1 for each n.

It is easy to see that the operator T : `2 → L2[0, 1] given by Ten = fn is an isometric
embedding, hence not compact. However, T is d-compact because it is compact as
an operator from `2 to L1[0, 1]. Indeed, T =

∑∞
n=1 e′n ⊗ fn, but

∑∞
n=1‖e′n‖`′2‖fn‖1 =∑∞

n=1 2−
n
2 < +∞, so that T considered as an operator from `2 to L1[0, 1] is nuclear,

and hence compact.

We have mentioned that every order bounded d-compact operator is AM-compact.
The following example was pointed out to the author by W.B. Johnson.

Example 26. A d-compact operator which is not AM-compact. Define T : L2[0, 1] → `2

via Tx =
(∫

xrn

)∞
n=0

, where rn is the n-th Rademacher function. It follows from
Remark 22 that T is d-compact. On the other hand, Trn = en, so that T is not
AM-compact.

Recall that a set A in a Banach lattice E is said to be PL-compact if it is relatively
compact with respect to the seminorm f

(|·|) for every f ∈ E′
+. It was shown in [6,

Proposition 2.1] that ρ(A) = χ(A) for every PL-compact set A in a Banach lattice
with order continuous norm. Furthermore, if E′ and F have order continuous norm
then [17, Theorem 125.3] guarantees that an order bounded operator T : E → F is
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AM-compact if and only if TBE is PL-compact. In particular, if T is d-compact then
TBE is PL-compact.

Example 27. A set which is d-compact but not PL-compact. Consider the set A =
{ek}∞k=1 in `1. It can be easily seen that A is d-compact. Nevertheless A is not PL-
compact because if we take f(x) =

∑∞
i=1 xi then f(|·|) coincides with the norm on E,

while A is not relatively norm compact.

Finally we would like to mention that it is crucial to describe the sets that satisfy
χ(A) = ρ(A), because if χ(TBE) = ρ(TBE) then χ(T ) = ρ(T ) and, therefore we can
answer the questions stated in the beginning of the paper in the affirmative. Indeed,
it follows from (*) and Corollary 11 that ress(S) = r(Š) ∈ σ(Š) ⊆ σ(S̃) = σess(S)
because Ě is a Banach lattice. Furthermore, if T dominates S then χ(S) = ρ(S) =
‖Š‖ 6 ‖Ť‖ = ρ(T ) 6 χ(T ). Along with (*) this yields ress(S) 6 ress(T ).

We have ρ(A) 6 χ(A) for every bounded set A. It was already mentioned that
ρ(A) = χ(A) for every PL-compact set A in a Banach lattice with order continuous
norm and for every d-compact set in any Banach lattice. Recall that

ρ(A) = max
ŷ∈ bA

‖y̌‖ and χ(A) = max
ŷ∈ bA

‖ỹ‖,

and denote by Aχ the set of all the points of Â where the latter maximum is attained.
Clearly, if ‖x̌‖ = ‖x̃‖ for some x̂ ∈ Aχ then χ(A) = ρ(A). In particular, A is d-compact
then the entire Â is contained in E ⊕ Ed and ‖x̌‖ = ‖x̃‖ for every x̂ ∈ E ⊕ Ed. But
clearly d-compactness is a way too strong condition. It would suffice for just Aχ and
E ⊕ Ed to have nonempty intersection. Expressed in standard terms, this idea gives
rise to the following proposition.

Proposition 28. Suppose that A is a bounded set in a Banach lattice E. If there exists
a d-convergent sequence (xn)∞n=1 in A such that χ(A) = χ

({xn}∞n=1

)
then χ(A) = ρ(A).

Proof. Suppose that (xn)∞n=1 d-converges to some x ∈ E. Since χ(A) = max
n
‖x̃n‖ there

exists n0 ∈ ∗N such that χ(A) = ‖x̃n0‖. If n0 ∈ N then xn0 ∈ E. If n0 ∈ ∗N \ N then
Lemma 17 implies x̂n0 − x̂ ∈ Ed. In either case x̂n0 ∈ E ⊕ Ed so that ‖x̃n0‖ = ‖x̌n0‖,
and, therefore, χ(A) 6 ρ(A). ¤
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