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Abstract. An algebra of operators on a Banach space X is said to be transitive if
X has no nontrivial closed subspaces invariant under every member of the algebra.
In this paper we investigate a number of conditions which guarantee that a transitive
algebra of operators is “large” in various senses. Among these are the conditions of
algebras being localizing or sesquitransitive. An algebra is localizing if there exists a
closed ball B 63 0 such that for every sequence (xn) in B there exists a subsequence
(xnk

) and a bounded sequence (Ak) in the algebra such that (Akxnk
) converges to a

non-zero vector. An algebra is sesquitransitive if for every non-zero z ∈ X there exists
C > 0 such that for every x linearly independent of z, for every non-zero y ∈ X, and
every ε > 0 there exists A in the algebra such that ‖Ax− y‖ < ε and ‖Az‖ 6 C‖z‖.
We give an algebraic version of this definition as well, and extend Jacobson’s density
theorem to algebraically sesquitransitive rings.

1. Introduction, preliminaries and notation

Throughout this paper, X will be a real or complex Banach space, and L(X) will

denote the space of all continuous linear operators on X. If T ∈ L(X), we say that

T has an invariant subspace if there exists a closed non-zero proper subspace Y of

X such that T (Y ) ⊆ Y . We say that a subspace Y is hyperinvariant for T if Y is

invariant under every operator in {T}′. Here S ′ is the commutant of a set S ⊆ L(X),

that is, S ′ = {A ∈ L(X) | ∀S ∈ S AS = SA}. A subset S ⊆ L(X) is said to be

transitive if Sx is dense in X for every non-zero x ∈ X, where Sx = {Ax | A ∈ S}.
The symbol A will usually stand for a subalgebra of L(X). We will write BX and

BA for the closed unit balls of X and A respectively. It can be easily verified that A
is transitive iff it has no common invariant subspaces. Furthermore, A is transitive

iff AWOT
is transitive, where AWOT

stands for the closure of A in the weak operator

topology (WOT).

It was proved in [Lom73] that if T ∈ L(X) commutes with a non-zero compact op-

erator, then T has an invariant subspace. If, in addition, X is a complex Banach space

and T is not a multiple of the identity operator then T has a hyperinvariant subspace.

Hooker [Hoo81] proved that in the real case T would still have a hyperinvariant sub-

space provided that, in addition, T doesn’t satisfy a real-irreducible quadratic equation.
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However, in general there exist operators on real and complex Banach spaces with no

invariant subspaces; see [Enf76, Read84].

Note that for an operator T , its commutant {T}′ is a WOT-closed algebra, and T has

no hyperinvariant subspaces iff {T}′ is transitive. This naturally leads to the study of

transitive algebras. It follows from [Enf76, Read84] that there exist transitive algebras

of operators on Banach spaces which are not WOT-dense. However, there are several

known conditions which, together with transitivity, guarantee that the algebra is WOT-

dense. For example, every strictly transitive algebra (see Section 4 for the definition)

is WOT-dense [Yood49, Ric50]. In the finite-dimensional case, the Burnside Theorem

asserts that Mn(C) contains no proper transitive subalgebras. Also an algebraic version

of [Lom73] (see, e.g., [RR03]) asserts that if A is a transitive algebra of operators on a

complex Banach space such that A contains a compact operator then AWOT
= L(X).

In this paper we study several conditions on an operator algebra A which, although

do not necessarily imply that AWOT
= L(X), provide some information about the size

of A by ensuring that A′ is small (e.g., finite-dimensional). We also introduce several

new conditions on algebras of operators.

Definition 1.1. We will say that an algebra A of operators on a Banach space X is

localizing if there exists a closed ball B in X such that 0 /∈ B and for every sequence

(xn) in B there is a subsequence (xni) and a sequence (Si) in A such that ‖Si‖ ≤ 1

and (Sixni) converges in norm to a nonzero vector.

It is easy to see that if T is an injective compact operator, then {T}′ is localizing.

The following theorem was obtained in [Tro04] using the method of minimal vec-

tors [AE98, And03, CPS04].

Theorem 1.2. Let T be a quasinilpotent operator on a Banach space X. If {T}′ is

localizing then T has a hyperinvariant subspace.

Theorem 1.2 easily extends to algebras of operators as follows.

Theorem 1.3. Suppose that X is a Banach space and A is a transitive localizing

subalgebra of L(X). Then A′ contains no non-zero quasinilpotent operators.

Proof. Suppose T ∈ A′ is non-zero and quasinilpotent. It follows from A ⊆ {T}′

that {T}′ is localizing, so that T has a hyperinvariant subspace. This contradicts

transitivity of A. �
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In Section 2 we investigate SC-algebras, i.e., the algebras where the unit ball is

relatively compact in the strong operator topology (SOT). In particular, we show that

if {T}′ is an SC-algebra and {T ∗}′ is localizing then T ∗ has an invariant subspace.

In Section 3 we introduce quasi-localizing algebras by replacing the condition

‖Si‖ ≤ 1 in Definition 1.1 with inequalities ‖Sizni‖ < C‖zni‖ for a subsequence of

a given sequence (zn). We show that Theorem 1.3 remains valid for quasi-localizing

algebras.

Motivated by the quasi-localizing property, in Section 4 we define an algebra to

be sesquitransitive if for every non-zero z ∈ X there exists C > 0 such that for

every x linearly independent of z, for every non-zero y ∈ X, and every ε > 0 there

exists A in the algebra such that ‖Ax − y‖ < ε and ‖Az‖ 6 C‖z‖. We say that A is

uniformly sesquitransitive if C can be chosen to be independent of z. We prove

that sesquitransitive algebras have trivial commutant. We show in Section 5 that the

Burnside theorem and [Lom73] remain valid in the real case if transitivity is replaced

with sesquitransitivity.

2. SC-algebras with localizing adjoint

In this section we make use of the following fixed point theorem due to Ky Fan [Fan52].

Recall that if Ω is a topological space and C : Ω → P(Ω) is a point-to-set map from

Ω to the power set of Ω, then C is said to be upper semi-continuous if for every

x0 ∈ Ω and every open set U such that C(x0) ⊆ U there is a neighborhood V of x0

such that C(x) ⊆ U whenever x ∈ V .

Theorem 2.1 ([Fan52]). Let K be a compact convex set in a locally convex space, and

suppose that C is an upper semi-continuous point-to-set map from K to closed convex

non-empty subsets of K. Then there is x0 ∈ K with x0 ∈ C(x0).

Recall that the original proof of the main result in [Lom73] involved the following

fact.

Lemma 2.2 ([Lom73]). Let X be a real or complex Banach space, S a convex transitive

subset of L(X), and K a non-zero compact operator. Then there exists A ∈ S such

that AK has a non-zero fixed vector.

The following theorem goes along the same lines. Suppose that X is a dual Banach

space, i.e., X = Y ∗ for some Banach space Y . The weak* operator topology on

L(X) is defined as follows: a net (Aα) converges to A in W*OT if 〈(Aα −A)x, ξ〉 → 0
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for all x ∈ X and ξ ∈ Y . It is known that the norm closed unit ball BL(X) of L(X) is

W*OT-compact. It follows easily that if A is a W*OT-closed subalgebra of L(X), then

BA is also W*OT-compact. If B a is a subalgebra of L(Y ), we write
∗
B =

{
A∗ | A ∈ B

}
and call it the algebra of adjoints of B.

Following [Lom80] we say that an algebra of operators is an SC-algebra if its unit

ball is SOT-relatively compact. It is easy to see that if A is an SC-algebra then the

map A ∈ A 7→ Ax ∈ X is compact for every x ∈ X. It was shown in [Lom80] that

if T is an essentially normal operator on a Hilbert space such that neither {T}′ nor

{T ∗}′ is an SC-algebra, then T has an invariant subspace. However, in the following

theorem we use the SC condition in order to prove existence of invariant subspaces.

Theorem 2.3. Suppose that X is a dual complex Banach space, X = Y ∗, and A is

a transitive localizing W*OT-closed algebra in L(X) such that A =
∗
B for some SC-

algebra B in L(Y ). Then for every non-zero adjoint operator T in A′ there exists

A ∈ A such that AT has a non-zero fixed vector. Furthermore, T has an invariant

subspace.

Proof. Let T be a non-zero operator in A′ such that T = S∗ for some S ∈ L(Y ). Since

A is transitive and kerT and RangeT are A-invariant, T is one-to-one and has dense

range.

Let B be a ball as in Definition 1.1. We claim that there exists r > 0 such that for

every x ∈ B we have rBA(Tx)∩B 6= ∅, that is, there exists A ∈ A such that ‖A‖ 6 r

and ATx ∈ B. Indeed, if this were false, then for every n we would find xn ∈ B

such that ‖A‖ > n whenever A ∈ A and ATxn ∈ B. We can choose a subsequence

(xni) and a sequence of contractions (Si) in A such that Sixni → w 6= 0. It follows

that SiTxni = TSixni → Tw. Since A is transitive, we can find R ∈ A such that

RTw ∈ IntB. It follows that for all sufficiently large i we have RSiTxni ∈ IntB,

so that ‖RSi‖ > ni → +∞ by our choice of xni . But ‖RSi‖ 6 ‖R‖ is bounded,

contradiction.

Define a set function C : B → P(B) via x ∈ B 7→ C(x) = B ∩ rBA(Tx). By

the preceding argument C(x) is non-empty. Clearly, C(x) is convex. Observe also

that C(x) is weak* closed for every x ∈ B because BA(Tx) is weak* compact as the

image of the W*OT-compact set BA under the map A ∈ L(X) 7→ ATx ∈ X which is

W*OT-w*-continuous.

We will show that C is weak* upper semi-continuous. Suppose not; then there

exists x0 ∈ B and a weak* open set U such that C(x0) ⊆ U , but for every weak*
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neighborhood α of x0 there exists xα ∈ α such that C(xα) is not contained in U . Pick

any yα ∈ C(xα) \U . Let Λ be the set of all weak* neighborhoods of x0, ordered by the

reverse inclusion. The collections (xα)α∈Λ and (yα)α∈Λ can be viewed as nets indexed

by Λ, and xα
w∗−→ x0. Since B is weak* compact, by passing to a sub-net if necessary we

can assume that yα
w∗−→ y0 for some y0 ∈ B. Also, yα /∈ U for every α implies y0 /∈ U .

Note that yα ∈ C(xα) implies that there exists Aα ∈ rBA such that yα = AαTxα. For

every α we have Aα = F ∗α for some Fα in B. Since B is an SC-algebra, we can assume

that Fα
SOT−−→ F0 for some F0 ∈ L(Y ). It follows that Aα

W ∗OT−−−−→ A0, where A0 = F ∗0 ,

so that A0 ∈ rBA. Let ξ ∈ Y . We have SFαξ → SF0ξ in norm (recall that T = S∗),

so that

〈yα, ξ〉 = 〈AαTxα, ξ〉 = 〈xα, SFαξ〉 → 〈x0, SF0ξ〉 = 〈A0Tx0, ξ〉.

It follows that y0 = A0Tx0, so that y0 ∈ C(x0) ⊆ U , contradiction.

Since the map C : B → P(B) is upper semi-continuous in the weak* topology, it has

a fixed point by Ky Fan’s Theorem, i.e., there exists x ∈ B such that x ∈ C(x). That

is, there exists A ∈ rBA such that x = ATx.

Thus, the fixed space of AT , defined by F = ker(I −AT ), is non-trivial and closed.

If T is not invertible then F is proper and we are done. If T is invertible, pick any

λ ∈ σ(T ) and put S = λI−T . Then S is not invertible, so that the preceding reasoning

yield that S has an invariant subspace. Clearly, it will be also invariant under T . �

Now we can prove a version of Theorem 1.2 for non-quasinilpotent operators.

Corollary 2.4. Suppose that T is an adjoint operator on a dual complex Banach

space. If {T}′ is localizing and is the algebra of adjoints of an SC-algebra, then T has

an invariant subspace.

Proof. If T has a hyperinvariant subspace then there is nothing to prove. Otherwise,

{T}′ is transitive, and we get the result by Theorem 2.3. �

Note that the hypotheses of Corollary 2.4 are satisfied for a one-to-one compact

operator on a reflexive Banach space.

Remark 2.5. Observe that Theorem 2.3 and Corollary 2.4 remain valid for real spaces

provided that T doesn’t satisfy an irreducible quadratic equation. Indeed, the problem

with T occurs only in the last statement in Theorem 2.3 and the last paragraph of its

proof. Suppose that λI − T is invertible for all λ ∈ R. Pick any α + βi ∈ σ(T ), and

put S = β2I+(T −αI)2. It can be easily verified that S is non-zero and not invertible.
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Hence, there exists A ∈ A such that F := ker(I − AS) is proper and non-trivial.

Clearly, F is T -invariant.

3. Minimal vectors of quasi-localizing algebras

In this section we consider another generalization of Theorem 1.3.

Definition 3.1. Let X be a Banach space, and A a subalgebra of L(X). We say that

A is quasi-localizing if there exists a ball B in X not containing the origin, such

that given two sequences (xn) in B and (zn) in X \ {0}, there exist subsequences (xni)

and (zni), a sequence (Si) in A, and a real C > 0 such that ‖Sizni‖ 6 C‖zni‖ for all i

and (Sixni) converges to a non-zero vector w.

Note that we do not require that Si’s are uniformly bounded. It is easy to see that

every localizing algebra is quasi-localizing.

Recall some notation and terminology from the method of minimal vectors that will

be needed in the proof of Theorem 3.2 (we refer the reader to [AE98] and [Tro04] for

details). Suppose that x0 ∈ X and r < ‖x0‖, so that the closed ball B = B(x0, r)

doesn’t contain the origin. Suppose that Q is a one-to-one operator with dense range,

and ε > 0. Let d = dist(0, Q−1B). Choose y ∈ Q−1B such that ‖y‖ 6 (1 + ε)d.

Such a y is called a (1 + ε)-minimal vector . Using the Hahn-Banach Theorem, find

f ∈ X∗ of norm one, such that f|B > c and f|QB(0,d) 6 c for some c > 0. We call f

a minimal functional . It is easy to see that f(x0) > r and that the hyperplane

Q∗f = c separates (non-strictly) B(0, d) and QB. It follows easily that

(1) (Q∗f)(y) > (1 + ε)−1‖Q∗f‖‖y‖.

Repeating the preceding procedure with Q replaces with Qn for every n ∈ N, we

produce yn and fn. Thus, we end up with sequences (yn) and (fn) such that yn is a

(1 + ε)-minimal vector and fn is a minimal functional for Qn and B.

Since every localizing algebra is quasi-localizing, the following theorem is a general-

ization of Theorem 1.3. The proof is similar to that of the main theorem of [Tro04].

Theorem 3.2. Suppose that X is a Banach space and A is a transitive quasi-localizing

subalgebra of L(X). Then A′ contains no non-zero quasinilpotent operators.

Proof. We present a proof for the case of a real Banach space. The complex case can be

obtained by straightforward modifications. Suppose that Q is a non-zero quasinilpotent

operator in A′. Without loss of generality, A is unital. Since A is transitive, Q is one-

to-one and has dense range. Let B = B(x0, r) be the ball as in Definition 3.1. Fix
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ε > 0. Let (yn) and (fn) be the sequences of (1 + ε)-minimal vectors and minimal

functionals for B and (Qn). Then there is a subsequence (ni) such that
‖yni−1‖
‖yni‖

→ 0.

Indeed, otherwise there would exist δ > 0 such that ‖yn−1‖
‖yn‖ > δ for all n, so that

‖y1‖ > δ‖y2‖ > . . . > δn‖yn+1‖. Since Qnyn+1 ∈ Q−1B, it follows from the definition

of y1 that ∥∥Qnyn+1

∥∥ > ‖y1‖
1 + ε

>
δn

1 + ε
‖yn+1‖.

It follows that ‖Qn‖ > δn

1+ε
, which contradicts the quasinilpotence of Q.

Since ‖fni‖ = 1 for all i, we can assume (by passing to a further subsequence) that

(fni) weak*-converges to some g ∈ X∗. Since fn(x0) > r for all n, it follows that

g(x0) > r, hence g 6= 0.

Observe that the sequence (Qni−1yni−1)∞i=1 is contained in B. Since A is quasi-

localizing, by passing to yet a further subsequence if necessary, we find a sequence (Si)

in A such that ‖Siyni−1‖ 6 C‖yni−1‖ and SiQ
ni−1yni−1 → w 6= 0. Put

Y = AQw =
{
TQw | T ∈ A

}
.

One can easily verify that Y is a linear subspace of X invariant under A. Since Q is

one-to-one, we have 0 6= Qw. Since A is transitive, Y is dense in X. On the other

hand, we will show that Y ⊆ ker g, which would lead to a contradiction.

Let T ∈ A, we will show that g(TQw) = 0. It follows from (1) that∣∣fni(QniTSiyni−1)
∣∣

fni(Q
niyni)

=

∣∣(Q∗nifni)(TSiyni−1)
∣∣

(Q∗nifni)(yni)

6
‖Q∗nifni‖‖TSiyni−1‖

(1 + ε)−1‖Q∗nifni‖‖yni‖
6
‖T‖ · C‖yni−1‖
(1 + ε)−1‖yni‖

→ 0

Since ‖fni‖ = 1 and Qniyni ∈ B, we have

fni(Q
niyni) 6 ‖Qniyni‖ 6 ‖x0‖+ r,

it follows that fni(Q
niTSiyni−1)→ 0. On the other hand,

fni
w∗−→ g and QniTSiyni−1 = TQSiQ

ni−1yni−1 → TQw,

therefore g(TQw) = 0. �

Recall that an operator S on a Banach spaceX is strictly singular if the restriction

of S to any infinite-dimensional subspace of X fails to be an isomorphism. It is easy to

see that every compact operator is strictly singular, and that strictly singular operators

form a norm closed two-sided algebraic ideal in L(X). There is an example of a strictly
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singular operator without invariant subspaces [Read99]. See [LT77] for further details

on strictly singular operators.

It is easy to see that the spectrum of a strictly singular operator consists of eigenval-

ues and zero. If it has eigenvalues, then every eigenspace is a hyperinvariant subspace.

Otherwise, it is quasinilpotent. Therefore, from Theorem 3.2 we can immediately

deduce the following result.

Corollary 3.3. If T is strictly singular and {T}′ is quasi-localizing, then T has a

hyperinvariant subspace.

Recall that a Banach space is said to be hereditarily indecomposable if no closed

subspace of it can be written as a direct sum of two infinite-dimensional closed sub-

spaces, [GM93]. Every operator on a hereditarily indecomposable Banach spaces is of

the form λI + S, where S is strictly singular.

Corollary 3.4. If A is a transitive quasi-localizing subalgebra on a hereditarily inde-

composable Banach space then A′ is trivial.

Proof. Let T ∈ A′, then T = µI + S for some strictly singular operator S. It follows

that S ∈ A′. Furthermore, given any scalar λ, then λI − S ∈ A′, so that ker(λI − S)

is invariant under A, hence trivial. Therefore, S has no eigenvalues. It follows that S

is quasinilpotent, and Theorem 3.2 yields S = 0. �

Suppose now that S is a collection of one-to-one operators with dense range. Again,

fix a ball B = B(x0, r) with 0 /∈ B, fix ε > 0 and for each A ∈ S choose a (1 + ε)-

minimal vector yA for A and B.

Proposition 3.5. Suppose that S, B, ε, and (yA)A∈S are as above. If there are nets

(zα) in X and (Aα) in S such that ‖zα‖
‖yAα‖

→ 0 while Aαzα converges to some w 6= 0,

then S ′ is non-transitive.

Proof. For A ∈ S let fA be a minimal functional for A and B. By passing to a sub-net

if necessary, we can assume that fAα
w∗−→ g for some g ∈ X∗. Again, g 6= 0 because

g(x0) > r.

Put Y = S ′w. Then, clearly, Y is invariant under S ′ and non-trivial as w ∈ Y . We

will show that Y ⊆ ker g, this will imply that Y is not dense in X. Let T ∈ S ′, then

it follows from (1) that∣∣fAα(AαTzα)
∣∣

fAα(AαyAα)
=

∣∣(A∗αfAα)(Tzα)
∣∣

(A∗αfAα)(yAα)
6 (1 + ε)

‖A∗αfAα‖‖Tzα‖
‖A∗αfAα‖‖yAα‖

6 (1 + ε)
‖T‖‖zα‖
‖yAα‖

→ 0.



SESQUITRANSITIVE AND LOCALIZING OPERATOR ALGEBRAS 9

Since

0 6 fAα(AαyAα) 6 ‖fAα‖‖AαyAα‖ 6 ‖x0‖+ r,

it follows that fAα(AαTzα)→ 0. On the other hand, since

fAα
w∗−→ g and AαTzα = TAαzα → Tw,

it follows that g(Tw) = 0. �

Consider the condition in Proposition 3.5. We can assume without loss of generality

(by scaling) that ‖Aα‖ = 1 for all α. Then (zα) cannot converge to zero, as this would

imply Aαzα → 0. Thus, it is necessary that ‖yAα‖ → ∞. This leads to the following

question.

Question. Under what conditions on S is the set {yA | A ∈ S, ‖A‖ = 1} unbounded?

4. Sesquitransitivity

Recall that a set S ⊆ L(X) is said to be n-transitive for n ∈ N if for every linearly

independent n-tuple x1, . . . , xn in X, for every n-tuple y1, . . . , yn in X, and for every

ε > 0 there exists A ∈ S such that ‖Axi − yi‖ < ε, i = 1, . . . , n. Motivated by the

notion of quasi-localizing algebras, we introduce sesquitransitive sets of operators.

Definition 4.1. We say that a set S in L(X) is uniformly sesquitransitive if there

exists a constant C > 0 such that for every linearly independent x and z in X, for

every y ∈ X, and for every ε > 0 there exists A ∈ S such that ‖Ax − y‖ < ε and

‖Az‖ 6 C‖z‖. We say that S is sesquitransitive if for every non-zero z ∈ X there

is a positive real C = C(z) such that for every x linearly independent of z, for every

y ∈ X, and every ε > 0 there exists A ∈ S such that ‖Ax− y‖ < ε and ‖Az‖ 6 C‖z‖.

Clearly, the following implications hold.

2-transitivity ⇒ uniform sesquitransitivity ⇒ sesquitransitivity ⇒ transitivity.

Remark 4.2. It can be easily verified that a uniformly sesquitransitive algebra is

quasi-localizing for any ball B not containing the origin and for every non-zero w in

Definition 3.1. Indeed, suppose A is uniformly sesquitransitive with constant C. Let

B be any ball centered at x0 of radius r with r > ‖x0‖, and let w be any non-zero

vector in B. We claim that A is quasi-localizing for this ball B and w with constant

C̃ = C ∧ ‖w‖+1
‖x0‖+r . Indeed, given a sequence (xn) in B, and a sequence (zn) in X \ {0}.

Fix n ∈ N. If xn and zn are linearly independent, then we can find An ∈ A such
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that ‖Anxn − w‖ < 1
n

and ‖Anzn‖ 6 C‖zn‖. On the other hand, if zn = λxn then

transitivity of A implies that there is An ∈ A such that ‖Anxn − w‖ < 1
n
, so that

‖Anzn‖ = |λ|‖Anxn‖ 6 |λ|
(
‖w‖+ 1

n

)
6 |λ|

(
‖w‖+ 1

) ‖xn‖
‖x0‖+ r

6 C̃‖zn‖.

It is known (see, e.g., [RT05]) that the commutant of a 2-transitive algebra is trivial.

The following theorem extends this fact to sesquitransitive algebras. It can be viewed

as a counterpart of Theorem 3.2.

Proposition 4.3. If X is a Banach space and A is a sesquitransitive subalgebra of

L(X), then A′ is trivial.

Proof. Suppose that A is sesquitransitive, but there exists S ∈ A′ such that S is not

a multiple of the identity. Then we can find a non-zero z ∈ X such that Sz is not a

multiple of z. Put x = Sz. Let C = C(z) in the definition of sesquitransitivity. Choose

y /∈ RangeS such that ‖y‖ > C‖S‖‖z‖. Then sesquitransitivity of A implies that for

every n ∈ N there exists An ∈ A such that ‖Anx − y‖ 6 1
n

and ‖Anz‖ 6 C‖z‖. It

follows that Anx→ y, so that ‖Anx‖ → ‖y‖. However,

‖Anx‖ = ‖AnSz‖ = ‖SAnz‖ 6 ‖S‖ · C‖z‖,

so that ‖y‖ 6 C‖S‖‖z‖; a contradiction. �

Next, we consider the algebraic version of sesquitransitivity. Recall that a set S of

linear maps on a vector space is called strictly transitive if for every two non-zero

vectors x and y there exists A ∈ S such that Ax = y. One says that S is strictly

n-transitive for n ∈ N if for every n linearly independent vectors x1, . . . , xn, for n

vectors y1, . . . , yn there exists A ∈ S such that Axi = yi, i = 1, . . . , n.

Definition 4.4. We will say that S is algebraically sesquitransitive if for any two

non-zero linearly independent vectors x1 and x2 there exists a non-zero vector z such

that for every non-zero y there exists A ∈ S such that Ax1 = y and Ax2 6= z.

It should be immediately clear that

strict 2-transitivity ⇒ algebraic sesquitransitivity ⇒ strict transitivity.

Algebraic sesquitransitivity is similar to sesquitransitivity in the sense that we can send

x1 to any prescribed destination, while keeping some control over the image of x2. At

the first glance it might seem that algebraic sesquitransitivity is just slightly stronger

than strict transitivity. However, we will see that for rings it actually implies strict

2-transitivity (hence, we, in fact, have complete control over x2).
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Recall that a set S of operators is strictly dense if it is strictly n-transitive for

every n ∈ N. Jacobson’s Density Theorem asserts that every strictly 2-transitive ring

of linear maps on a vector space over any field is strictly dense. The following is a

generalization of Jacobson’s Density Theorem.

Theorem 4.5. Suppose that X is a vector space over an arbitrary field, and R is

a sub-ring of L(X). If R is algebraically sesquitransitive then it is strictly dense in

L(X).

Proof. It suffices to show that R is strictly 2-transitive, then the result would follows

from Jacobson’s Density Theorem. Suppose that R is not strictly 2-transitive.

Using a standard argument we will show that there exist linearly independent vectors

x1, x2 ∈ X such that if Ax1 = 0 for some A ∈ R, then Ax2 = 0. Indeed, otherwise, for

every two linearly independent vectors x1 and x2 we would find operators A,B ∈ R
such that Ax1 = 0 and Ax2 6= 0, and Bx1 6= 0 and Bx2 = 0. Furthermore, since

R is strictly transitive, for every y1 and y2 in X we would find C,D ∈ R such that

C(Ax2) = y2 and D(Bx1) = y1. Let S = CA+DB ∈ R, then Sx1 = y1 and Sx2 = y2,

so that R is strictly 2-transitive, contradiction.

By Definition 4.4 there exists z ∈ X such that for every non-zero y there exists

A ∈ R such that Ax1 = y and Ax2 6= z.

Define a linear operator T ∈ L(X) by T (Ax1) = Ax2 for every A ∈ R. It can be

easily verified that T is well defined and commutes with every operator in R. Together

with strict transitivity of R this yields that T is a bijection. Therefore, one can find a

non-zero y ∈ X such that Ty = z. Then there exists A ∈ R such that Ax1 = y and

Ax2 6= z. However, Ax2 = TAx1 = Ty = z, contradiction. �

We would like to mention that strict n-semitransitivity introduced in [RT] is another

generalization of strict n-transitivity. In a result similar to Theorem 4.5, [RT] shows

that every strictly 2-semitransitive ring is strictly dense.

5. Transitive and sesquitransitive algebras in real spaces

It is easy to see that if dimX < ∞ then a subalgebra of L(X) is transitive iff it

is strictly transitive. Recall that a classical theorem of Burnside asserts that Mn(C)

has no proper transitive subalgebras (see, e.g., [RR00]). Clearly, this is false in the

real case: the algebra generated by the rotation through π/2 in L(R2) is transitive but

proper. In this section we establish several analogues of the Burnside Theorem as well

as of [Lom73] for algebras on real Banach spaces.
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Recall that a unital algebra is a division algebra if every non-zero element in it is

invertible. It was proved by Rickart [Ric60, Theorem 1.7.6.] that every real normed

division algebra is algebraically isomorphic to either R, C, or H. Here H stands for

the quaternion algebra.

Suppose that A is a transitive subalgebra of Mn(R). It follows from Schur’s Lemma

and from Wedderburn-Artin Theorem that A′ is algebraically isomorphic to either R,

C, or H. Furthermore, A′′ = A, and A is (algebraically isomorphic to) Mn(R), Mn
2
(C),

or Mn
4
(H), respectively.

Next, we consider some consequences of these facts for infinite dimensional real

Banach spaces. In particular, we consider a version of [Lom73] for algebras of operators.

Namely, it follows from [Lom73] that if X is a complex Banach space then every

transitive subalgebra of L(X) containing a compact operator is WOT-dense in L(X),

see [RR03, Theorem 8.23]. This statement fails in real Banach spaces. We will prove

a version of this statement for transitive algebras in real Banach spaces.

Proposition 5.1. Suppose that A is a transitive algebra of operators on a real Banach

space X, and A′ has a finite-dimensional invariant subspace. Then A′ is algebraically

isomorphic to R, C, or H.

Proof. Suppose that M is a finite-dimensional subspace invariant under A′. Consider

the restriction map Φ: A′ → L(M) given by Φ(T ) = T|M . For every non-zero T ∈ A′,
transitivity of A implies that kerT and, therefore, kerT|M are trivial. It follows that

Φ is one-to-one. Moreover, Φ(T ) is invertible. Hence, Φ(A′) is a division algebra.

Now Rickart’s Theorem implies that Φ(A′) and, therefore, A′ is isomorphic to R, C,

or H. �

Theorem 5.2. Suppose that X is a real Banach space and A is a transitive subalgebra

of L(X) containing a compact operator. Then A′ is algebraically isomorphic to either

R, C, or H.

Proof. By Lemma 2.2, A contains a compact operator K with eigenvalue 1. Then the

corresponding eigenspace M := ker(K − I) is a finite-dimensional subspace invariant

under A′. Now the conclusion follows from Proposition 5.1. �

Proposition 5.3. Suppose that V is a finite-dimensional vector space over R, A is a

transitive subalgebra of L(V ), and T ∈ A′ such that T is not a multiple of the identity.

Then {T}′ is least possible, that is, {T}′ is the algebra generated by T and A.
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Proof. We reduce the real case to the complex case as in [Sir05]. It follows from

Proposition 5.1 that by replacing T with λI + µT for some µ, λ ∈ R we can assume

that T 2 = −I. Define a complex structure on V by putting ix = Tx for x ∈ V .

One can easily check that with this complex scalar multiplication V becomes a vector

space over C; denote it by VC. Observe that V and VC coincide as sets. Note that

an operator S ∈ L(V ) belongs to L(VC) iff it is complex-linear, or, equivalently, if

ST = TS. Hence, L(VC) = {T}′. It follows from T ∈ A′ that we can view A as

a subset of L(VC). Note that A is still transitive (as the definition of transitivity

doesn’t involve scalar multiplication). However, A need not be closed under complex

multiplication in L(VC). Let Ã = {A + iB | A,B ∈ A} in L(VC). Then Ã is a

transitive subalgebra of L(VC). Hence, by the Burnside Theorem, A is all of L(VC), so

that {T}′ = Ã =
{
A+ TB | A,B ∈ A

}
. �

Finally, we will prove that the Burnside Theorem and the algebraic version of

[Lom73] remain valid over real scalars if transitivity is replaced with sesquitransitivity.

Proposition 5.4. Suppose that A is a subalgebra of Mn(R). If A is sesquitransitive

or algebraically sesquitransitive then A = Mn(R).

Proof. If A is algebraically sesquitransitive then it is strictly n-transitive by Theo-

rem 4.5, hence A = Mn(R). Now, if A is sesquitransitive then A′ is trivial by Propo-

sition 4.3, so that A = A′′ = Mn(R). �

The following is well known for complex Banach spaces.

Lemma 5.5. Suppose that K is a compact operator on a real Banach space X such

that K has a non-zero fixed vector. Then the uniformly closed subalgebra of L(X)

generated by K contains an idempotent of finite rank.

Proof. It follows immediately from the hypotheses that 1 is an eigenvalue of K. Since

K is compact, so is its complexification Kc on Xc. Let Z be the spectral subspace of

K corresponding to {1}. It follows from σ(Kc|Z) = {1} that Kc|Z is invertible. Since

Kc|Z is compact, it follows that Z is finite-dimensional. Using the usual Functional

Calculus, we can find the canonical spectral projection onto Z. Recall that we can

write this projection as f(K), where f is the characteristic function of an open subset

U of C such that U ∩ σ(K) = {1}.
Let A be the uniformly closed algebra generated by Kc in L(Xc). It follows from

Theorem 5.4(a) of [Con90] that σA(K) = σ(K), so that f(K) ∈ A. It is left to show

that f(K) is actually a real operator, that is, that f(K) leaves X invariant.
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Again, by Function Calculus we can write f(K) = 1
2πi

∫
Γ
R(λ;K) dλ, where R(λ;K)

is the resolvent of K at λ and the integration is done over a circle centered at 1

and contained in U . Observe that for x ∈ X we have the following relation for the

complex conjugates in Xc: R(λ;K)x = R(λ;K)x. Indeed, direct verification shows

that if x = (λ − K)(y + iz) then x = (λ − K)(y − iz) for y, z ∈ X. It follows that

f(K)x = 1
2πi

∫
Γ
R(λ;K)x dλ belongs to X. �

Theorem 5.6. If X is a real Banach space then every sesquitransitive subalgebra A
of L(X) containing a compact operator is WOT-dense in L(X).

Proof. Without loss of generality we assume that A is uniformly closed. Lemma 2.2

yields that there is a compact operator K in A such that K has a non-zero fixed vector.

It follows from Lemma 5.5 that A contains an idempotent operator P of finite rank.

Let Y = RangeP , then dimY <∞.

We will show that the restriction algebra PAP is still sesquitransitive on Y . Indeed,

let z ∈ Y , then there exists C such that for all x, y in X such that x and z are

linearly independent and for every ε > 0 there is A ∈ A such that ‖Ax − y‖ < ε and

‖Az‖ 6 C‖z‖. In particular, when x, y ∈ Y we have

‖PAPx− y‖ = ‖P (Ax− y)‖ 6 ‖P‖ε

and ‖PAPz‖ 6 ‖P‖ · C‖z‖.
Proposition 5.4 implies that the restriction of PAP is all of L(Y ). It follows that

PAP and, therefore, A contains an operator of rank one. Now a standard argument

(see, e.g., the proof of Lemma 7.4.5 in [RR00]) shows that A contains all operators of

finite rank, hence is WOT-dense in L(X). �
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[Lom80] , A construction of an intertwining operator, Funktsional. Anal. i Prilozhen. 14
(1980), no. 1, 67–68. MR MR565106 (81k:47032)

[LT77] Joram Lindenstrauss and Lior Tzafriri, Classical Banach spaces. I, Springer-Verlag, Berlin,
1977, Sequence spaces, Ergebnisse der Mathematik und ihrer Grenzgebiete, Vol. 92. MR 58
17766

[Read84] C. J. Read, A solution to the invariant subspace problem, Bull. London Math. Soc. 16
(1984), no. 4, 337–401. MR 86f:47005

[Read99] , Strictly singular operators and the invariant subspace problem, Studia Math. 132
(1999), no. 3, 203–226. MR MR1669678 (2000e:47012)

[Ric50] C. E. Rickart, The uniqueness of norm problem in Banach algebras, Ann. of Math. (2) 51
(1950), 615–628. MR 11,670d

[Ric60] Charles E. Rickart, General theory of Banach algebras, The University Series in Higher
Mathematics, D. van Nostrand Co., Inc., Princeton, N.J.-Toronto-London-New York, 1960.
MR MR0115101 (22 #5903)

[RR00] Heydar Radjavi and Peter Rosenthal, Simultaneous triangularization, Universitext,
Springer-Verlag, New York, 2000. MR 2001e:47001

[RR03] , Invariant subspaces, second ed., Dover Publications Inc., Mineola, NY, 2003.
MR 2004e:47010

[RT] Heydar Radjavi and Vladimir G. Troitsky, Semitransitive spaces of operators, Linear and
Multilinear Algebra, to appear.

[RT05] H. P. Rosenthal and V. G. Troitsky, Strictly semi-transitive operator algebras, J. Operator
Theory 53 (2005), no. 2, 315–329. MR MR2153151

[Sir05] Gleb Sirotkin, A version of the Lomonosov invariant subspace theorem for real Banach
spaces, Indiana Univ. Math. J. 54 (2005), no. 1, 257–262. MR MR2126724

[Tro04] Vladimir G. Troitsky, Minimal vectors in arbitrary Banach spaces, Proc. Amer. Math. Soc.
132 (2004), no. 4, 1177–1180. MR 2 045 435

[Yood49] Bertram Yood, Additive groups and linear manifolds of transformations between Banach
spaces, Amer. J. Math. 71 (1949), 663–677. MR 11,114h

Department of Mathematical Sciences, Kent State University, Kent, OH, 44242.
USA.

E-mail address: lomonoso@math.kent.edu

Department of Pure Mathematics, University of Waterloo, Waterloo, ON, N2L 3G1.
Canada.

E-mail address: hradjavi@math.uwaterloo.ca

Department of Mathematical and Statistical Sciences, University of Alberta, Ed-
monton, AB, T6G2G1. Canada.

E-mail address: vtroitsky@math.ualberta.ca


