SESQUITRANSITIVE AND LOCALIZING OPERATOR ALGEBRAS

VICTOR I. LOMONOSOV, HEYDAR RADJAVI, AND VLADIMIR G. TROITSKY

Abstract

An algebra of operators on a Banach space X is said to be transitive if X has no nontrivial closed subspaces invariant under every member of the algebra. In this paper we investigate a number of conditions which guarantee that a transitive algebra of operators is "large" in various senses. Among these are the conditions of algebras being localizing or sesquitransitive. An algebra is localizing if there exists a closed ball $B \not \supset 0$ such that for every sequence $\left(x_{n}\right)$ in B there exists a subsequence $\left(x_{n_{k}}\right)$ and a bounded sequence $\left(A_{k}\right)$ in the algebra such that $\left(A_{k} x_{n_{k}}\right)$ converges to a non-zero vector. An algebra is sesquitransitive if for every non-zero $z \in X$ there exists $C>0$ such that for every x linearly independent of z, for every non-zero $y \in X$, and every $\varepsilon>0$ there exists A in the algebra such that $\|A x-y\|<\varepsilon$ and $\|A z\| \leqslant C\|z\|$. We give an algebraic version of this definition as well, and extend Jacobson's density theorem to algebraically sesquitransitive rings.

1. Introduction, PRELIMINARIES AND NOTATION

Throughout this paper, X will be a real or complex Banach space, and $L(X)$ will denote the space of all continuous linear operators on X. If $T \in L(X)$, we say that T has an invariant subspace if there exists a closed non-zero proper subspace Y of X such that $T(Y) \subseteq Y$. We say that a subspace Y is hyperinvariant for T if Y is invariant under every operator in $\{T\}^{\prime}$. Here \mathcal{S}^{\prime} is the commutant of a set $\mathcal{S} \subseteq L(X)$, that is, $\mathcal{S}^{\prime}=\{A \in L(X) \mid \forall S \in \mathcal{S} A S=S A\}$. A subset $\mathcal{S} \subseteq L(X)$ is said to be transitive if $\mathcal{S} x$ is dense in X for every non-zero $x \in X$, where $\mathcal{S} x=\{A x \mid A \in \mathcal{S}\}$. The symbol \mathcal{A} will usually stand for a subalgebra of $L(X)$. We will write B_{X} and $B_{\mathcal{A}}$ for the closed unit balls of X and \mathcal{A} respectively. It can be easily verified that \mathcal{A} is transitive iff it has no common invariant subspaces. Furthermore, \mathcal{A} is transitive iff $\overline{\mathcal{A}}^{\text {wot }}$ is transitive, where $\overline{\mathcal{A}}^{\text {wot }}$ stands for the closure of \mathcal{A} in the weak operator topology (WOT).

It was proved in [Lom73] that if $T \in L(X)$ commutes with a non-zero compact operator, then T has an invariant subspace. If, in addition, X is a complex Banach space and T is not a multiple of the identity operator then T has a hyperinvariant subspace. Hooker [Hoo81] proved that in the real case T would still have a hyperinvariant subspace provided that, in addition, T doesn't satisfy a real-irreducible quadratic equation.

However, in general there exist operators on real and complex Banach spaces with no invariant subspaces; see [Enf76, Read84].

Note that for an operator T, its commutant $\{T\}^{\prime}$ is a WOT-closed algebra, and T has no hyperinvariant subspaces iff $\{T\}^{\prime}$ is transitive. This naturally leads to the study of transitive algebras. It follows from [Enf76, Read84] that there exist transitive algebras of operators on Banach spaces which are not WOT-dense. However, there are several known conditions which, together with transitivity, guarantee that the algebra is WOTdense. For example, every strictly transitive algebra (see Section 4 for the definition) is WOT-dense [Yood49, Ric50]. In the finite-dimensional case, the Burnside Theorem asserts that $M_{n}(\mathbb{C})$ contains no proper transitive subalgebras. Also an algebraic version of [Lom73] (see, e.g., [RR03]) asserts that if \mathcal{A} is a transitive algebra of operators on a complex Banach space such that \mathcal{A} contains a compact operator then $\overline{\mathcal{A}}^{\mathrm{wOT}}=L(X)$.

In this paper we study several conditions on an operator algebra \mathcal{A} which, although do not necessarily imply that $\overline{\mathcal{A}}^{\text {wot }}=L(X)$, provide some information about the size of \mathcal{A} by ensuring that \mathcal{A}^{\prime} is small (e.g., finite-dimensional). We also introduce several new conditions on algebras of operators.

Definition 1.1. We will say that an algebra \mathcal{A} of operators on a Banach space X is localizing if there exists a closed ball B in X such that $0 \notin B$ and for every sequence $\left(x_{n}\right)$ in B there is a subsequence $\left(x_{n_{i}}\right)$ and a sequence $\left(S_{i}\right)$ in \mathcal{A} such that $\left\|S_{i}\right\| \leq 1$ and ($S_{i} x_{n_{i}}$) converges in norm to a nonzero vector.

It is easy to see that if T is an injective compact operator, then $\{T\}^{\prime}$ is localizing.
The following theorem was obtained in [Tro04] using the method of minimal vectors [AE98, And03, CPS04].

Theorem 1.2. Let T be a quasinilpotent operator on a Banach space X. If $\{T\}^{\prime}$ is localizing then T has a hyperinvariant subspace.

Theorem 1.2 easily extends to algebras of operators as follows.
Theorem 1.3. Suppose that X is a Banach space and \mathcal{A} is a transitive localizing subalgebra of $L(X)$. Then \mathcal{A}^{\prime} contains no non-zero quasinilpotent operators.

Proof. Suppose $T \in \mathcal{A}^{\prime}$ is non-zero and quasinilpotent. It follows from $\mathcal{A} \subseteq\{T\}^{\prime}$ that $\{T\}^{\prime}$ is localizing, so that T has a hyperinvariant subspace. This contradicts transitivity of \mathcal{A}.

In Section 2 we investigate SC-algebras, i.e., the algebras where the unit ball is relatively compact in the strong operator topology (SOT). In particular, we show that if $\{T\}^{\prime}$ is an SC-algebra and $\left\{T^{*}\right\}^{\prime}$ is localizing then T^{*} has an invariant subspace.

In Section 3 we introduce quasi-localizing algebras by replacing the condition $\left\|S_{i}\right\| \leq 1$ in Definition 1.1 with inequalities $\left\|S_{i} z_{n_{i}}\right\|<C\left\|z_{n_{i}}\right\|$ for a subsequence of a given sequence $\left(z_{n}\right)$. We show that Theorem 1.3 remains valid for quasi-localizing algebras.

Motivated by the quasi-localizing property, in Section 4 we define an algebra to be sesquitransitive if for every non-zero $z \in X$ there exists $C>0$ such that for every x linearly independent of z, for every non-zero $y \in X$, and every $\varepsilon>0$ there exists A in the algebra such that $\|A x-y\|<\varepsilon$ and $\|A z\| \leqslant C\|z\|$. We say that \mathcal{A} is uniformly sesquitransitive if C can be chosen to be independent of z. We prove that sesquitransitive algebras have trivial commutant. We show in Section 5 that the Burnside theorem and [Lom73] remain valid in the real case if transitivity is replaced with sesquitransitivity.

2. SC-algebras with localizing adjoint

In this section we make use of the following fixed point theorem due to Ky Fan [Fan52]. Recall that if Ω is a topological space and $C: \Omega \rightarrow \mathcal{P}(\Omega)$ is a point-to-set map from Ω to the power set of Ω, then C is said to be upper semi-continuous if for every $x_{0} \in \Omega$ and every open set U such that $C\left(x_{0}\right) \subseteq U$ there is a neighborhood V of x_{0} such that $C(x) \subseteq U$ whenever $x \in V$.

Theorem 2.1 ([Fan52]). Let K be a compact convex set in a locally convex space, and suppose that C is an upper semi-continuous point-to-set map from K to closed convex non-empty subsets of K. Then there is $x_{0} \in K$ with $x_{0} \in C\left(x_{0}\right)$.

Recall that the original proof of the main result in [Lom73] involved the following fact.

Lemma 2.2 ([Lom73]). Let X be a real or complex Banach space, \mathcal{S} a convex transitive subset of $L(X)$, and K a non-zero compact operator. Then there exists $A \in \mathcal{S}$ such that AK has a non-zero fixed vector.

The following theorem goes along the same lines. Suppose that X is a dual Banach space, i.e., $X=Y^{*}$ for some Banach space Y. The weak* operator topology on $L(X)$ is defined as follows: a net $\left(A_{\alpha}\right)$ converges to A in $\mathrm{W}^{*} \mathrm{OT}$ if $\left\langle\left(A_{\alpha}-A\right) x, \xi\right\rangle \rightarrow 0$
for all $x \in X$ and $\xi \in Y$. It is known that the norm closed unit ball $B_{L(X)}$ of $L(X)$ is W^{*} OT-compact. It follows easily that if \mathcal{A} is a W^{*} OT-closed subalgebra of $L(X)$, then $B_{\mathcal{A}}$ is also W^{*} OT-compact. If \mathcal{B} a is a subalgebra of $L(Y)$, we write $\stackrel{*}{\mathcal{B}}=\left\{A^{*} \mid A \in \mathcal{B}\right\}$ and call it the algebra of adjoints of \mathcal{B}.

Following [Lom80] we say that an algebra of operators is an $\boldsymbol{S C}$-algebra if its unit ball is SOT-relatively compact. It is easy to see that if \mathcal{A} is an SC-algebra then the map $A \in \mathcal{A} \mapsto A x \in X$ is compact for every $x \in X$. It was shown in [Lom80] that if T is an essentially normal operator on a Hilbert space such that neither $\{T\}^{\prime}$ nor $\left\{T^{*}\right\}^{\prime}$ is an SC-algebra, then T has an invariant subspace. However, in the following theorem we use the SC condition in order to prove existence of invariant subspaces.

Theorem 2.3. Suppose that X is a dual complex Banach space, $X=Y^{*}$, and \mathcal{A} is a transitive localizing $W^{*} O T$-closed algebra in $L(X)$ such that $\mathcal{A}=\stackrel{*}{\mathcal{B}}$ for some SCalgebra \mathcal{B} in $L(Y)$. Then for every non-zero adjoint operator T in \mathcal{A}^{\prime} there exists $A \in \mathcal{A}$ such that $A T$ has a non-zero fixed vector. Furthermore, T has an invariant subspace.

Proof. Let T be a non-zero operator in \mathcal{A}^{\prime} such that $T=S^{*}$ for some $S \in L(Y)$. Since \mathcal{A} is transitive and $\operatorname{ker} T$ and $\overline{\text { Range } T}$ are \mathcal{A}-invariant, T is one-to-one and has dense range.

Let B be a ball as in Definition 1.1. We claim that there exists $r>0$ such that for every $x \in B$ we have $r B_{\mathcal{A}}(T x) \cap B \neq \varnothing$, that is, there exists $A \in \mathcal{A}$ such that $\|A\| \leqslant r$ and $A T x \in B$. Indeed, if this were false, then for every n we would find $x_{n} \in B$ such that $\|A\| \geqslant n$ whenever $A \in \mathcal{A}$ and $A T x_{n} \in B$. We can choose a subsequence $\left(x_{n_{i}}\right)$ and a sequence of contractions $\left(S_{i}\right)$ in \mathcal{A} such that $S_{i} x_{n_{i}} \rightarrow w \neq 0$. It follows that $S_{i} T x_{n_{i}}=T S_{i} x_{n_{i}} \rightarrow T w$. Since \mathcal{A} is transitive, we can find $R \in \mathcal{A}$ such that $R T w \in \operatorname{Int} B$. It follows that for all sufficiently large i we have $R S_{i} T x_{n_{i}} \in \operatorname{Int} B$, so that $\left\|R S_{i}\right\| \geqslant n_{i} \rightarrow+\infty$ by our choice of $x_{n_{i}}$. But $\left\|R S_{i}\right\| \leqslant\|R\|$ is bounded, contradiction.

Define a set function $C: B \rightarrow \mathcal{P}(B)$ via $x \in B \mapsto C(x)=B \cap r B_{\mathcal{A}}(T x)$. By the preceding argument $C(x)$ is non-empty. Clearly, $C(x)$ is convex. Observe also that $C(x)$ is weak* closed for every $x \in B$ because $B_{\mathcal{A}}(T x)$ is weak* compact as the image of the W^{*} OT-compact set $B_{\mathcal{A}}$ under the map $A \in L(X) \mapsto A T x \in X$ which is W^{*} OT-w*-continuous.

We will show that C is weak* upper semi-continuous. Suppose not; then there exists $x_{0} \in B$ and a weak* open set U such that $C\left(x_{0}\right) \subseteq U$, but for every weak*
neighborhood α of x_{0} there exists $x_{\alpha} \in \alpha$ such that $C\left(x_{\alpha}\right)$ is not contained in U. Pick any $y_{\alpha} \in C\left(x_{\alpha}\right) \backslash U$. Let Λ be the set of all weak* neighborhoods of x_{0}, ordered by the reverse inclusion. The collections $\left(x_{\alpha}\right)_{\alpha \in \Lambda}$ and $\left(y_{\alpha}\right)_{\alpha \in \Lambda}$ can be viewed as nets indexed by Λ, and $x_{\alpha} \xrightarrow{w^{*}} x_{0}$. Since B is weak* compact, by passing to a sub-net if necessary we can assume that $y_{\alpha} \xrightarrow{w^{*}} y_{0}$ for some $y_{0} \in B$. Also, $y_{\alpha} \notin U$ for every α implies $y_{0} \notin U$. Note that $y_{\alpha} \in C\left(x_{\alpha}\right)$ implies that there exists $A_{\alpha} \in r B_{\mathcal{A}}$ such that $y_{\alpha}=A_{\alpha} T x_{\alpha}$. For every α we have $A_{\alpha}=F_{\alpha}^{*}$ for some F_{α} in \mathcal{B}. Since \mathcal{B} is an SC-algebra, we can assume that $F_{\alpha} \xrightarrow{S O T} F_{0}$ for some $F_{0} \in L(Y)$. It follows that $A_{\alpha} \xrightarrow{W^{*} O T} A_{0}$, where $A_{0}=F_{0}^{*}$, so that $A_{0} \in r B_{\mathcal{A}}$. Let $\xi \in Y$. We have $S F_{\alpha} \xi \rightarrow S F_{0} \xi$ in norm (recall that $T=S^{*}$), so that

$$
\left\langle y_{\alpha}, \xi\right\rangle=\left\langle A_{\alpha} T x_{\alpha}, \xi\right\rangle=\left\langle x_{\alpha}, S F_{\alpha} \xi\right\rangle \rightarrow\left\langle x_{0}, S F_{0} \xi\right\rangle=\left\langle A_{0} T x_{0}, \xi\right\rangle .
$$

It follows that $y_{0}=A_{0} T x_{0}$, so that $y_{0} \in C\left(x_{0}\right) \subseteq U$, contradiction.
Since the map $C: B \rightarrow \mathcal{P}(B)$ is upper semi-continuous in the weak* topology, it has a fixed point by Ky Fan's Theorem, i.e., there exists $x \in B$ such that $x \in C(x)$. That is, there exists $A \in r B_{\mathcal{A}}$ such that $x=A T x$.

Thus, the fixed space of $A T$, defined by $F=\operatorname{ker}(I-A T)$, is non-trivial and closed. If T is not invertible then F is proper and we are done. If T is invertible, pick any $\lambda \in \sigma(T)$ and put $S=\lambda I-T$. Then S is not invertible, so that the preceding reasoning yield that S has an invariant subspace. Clearly, it will be also invariant under T.

Now we can prove a version of Theorem 1.2 for non-quasinilpotent operators.
Corollary 2.4. Suppose that T is an adjoint operator on a dual complex Banach space. If $\{T\}^{\prime}$ is localizing and is the algebra of adjoints of an SC-algebra, then T has an invariant subspace.

Proof. If T has a hyperinvariant subspace then there is nothing to prove. Otherwise, $\{T\}^{\prime}$ is transitive, and we get the result by Theorem 2.3.

Note that the hypotheses of Corollary 2.4 are satisfied for a one-to-one compact operator on a reflexive Banach space.

Remark 2.5. Observe that Theorem 2.3 and Corollary 2.4 remain valid for real spaces provided that T doesn't satisfy an irreducible quadratic equation. Indeed, the problem with T occurs only in the last statement in Theorem 2.3 and the last paragraph of its proof. Suppose that $\lambda I-T$ is invertible for all $\lambda \in \mathbb{R}$. Pick any $\alpha+\beta i \in \sigma(T)$, and put $S=\beta^{2} I+(T-\alpha I)^{2}$. It can be easily verified that S is non-zero and not invertible.

Hence, there exists $A \in \mathcal{A}$ such that $F:=\operatorname{ker}(I-A S)$ is proper and non-trivial. Clearly, F is T-invariant.

3. Minimal vectors of quasi-Localizing algebras

In this section we consider another generalization of Theorem 1.3.
Definition 3.1. Let X be a Banach space, and \mathcal{A} a subalgebra of $L(X)$. We say that \mathcal{A} is quasi-localizing if there exists a ball B in X not containing the origin, such that given two sequences $\left(x_{n}\right)$ in B and $\left(z_{n}\right)$ in $X \backslash\{0\}$, there exist subsequences $\left(x_{n_{i}}\right)$ and $\left(z_{n_{i}}\right)$, a sequence $\left(S_{i}\right)$ in \mathcal{A}, and a real $C>0$ such that $\left\|S_{i} z_{n_{i}}\right\| \leqslant C\left\|z_{n_{i}}\right\|$ for all i and ($S_{i} x_{n_{i}}$) converges to a non-zero vector w.

Note that we do not require that S_{i} 's are uniformly bounded. It is easy to see that every localizing algebra is quasi-localizing.

Recall some notation and terminology from the method of minimal vectors that will be needed in the proof of Theorem 3.2 (we refer the reader to [AE98] and [Tro04] for details). Suppose that $x_{0} \in X$ and $r<\left\|x_{0}\right\|$, so that the closed ball $B=B\left(x_{0}, r\right)$ doesn't contain the origin. Suppose that Q is a one-to-one operator with dense range, and $\varepsilon>0$. Let $d=\operatorname{dist}\left(0, Q^{-1} B\right)$. Choose $y \in Q^{-1} B$ such that $\|y\| \leqslant(1+\varepsilon) d$. Such a y is called a $(1+\varepsilon)$-minimal vector. Using the Hahn-Banach Theorem, find $f \in X^{*}$ of norm one, such that $f_{\mid B} \geqslant c$ and $f_{\mid Q B(0, d)} \leqslant c$ for some $c>0$. We call f a minimal functional. It is easy to see that $f\left(x_{0}\right) \geqslant r$ and that the hyperplane $Q^{*} f=c$ separates (non-strictly) $B(0, d)$ and $Q B$. It follows easily that

$$
\begin{equation*}
\left(Q^{*} f\right)(y) \geqslant(1+\varepsilon)^{-1}\left\|Q^{*} f\right\|\|y\| \tag{1}
\end{equation*}
$$

Repeating the preceding procedure with Q replaces with Q^{n} for every $n \in \mathbb{N}$, we produce y_{n} and f_{n}. Thus, we end up with sequences $\left(y_{n}\right)$ and $\left(f_{n}\right)$ such that y_{n} is a $(1+\varepsilon)$-minimal vector and f_{n} is a minimal functional for Q^{n} and B.

Since every localizing algebra is quasi-localizing, the following theorem is a generalization of Theorem 1.3. The proof is similar to that of the main theorem of [Tro04].

Theorem 3.2. Suppose that X is a Banach space and \mathcal{A} is a transitive quasi-localizing subalgebra of $L(X)$. Then \mathcal{A}^{\prime} contains no non-zero quasinilpotent operators.

Proof. We present a proof for the case of a real Banach space. The complex case can be obtained by straightforward modifications. Suppose that Q is a non-zero quasinilpotent operator in \mathcal{A}^{\prime}. Without loss of generality, \mathcal{A} is unital. Since \mathcal{A} is transitive, Q is one-to-one and has dense range. Let $B=B\left(x_{0}, r\right)$ be the ball as in Definition 3.1. Fix
$\varepsilon>0$. Let $\left(y_{n}\right)$ and $\left(f_{n}\right)$ be the sequences of $(1+\varepsilon)$-minimal vectors and minimal functionals for B and $\left(Q^{n}\right)$. Then there is a subsequence $\left(n_{i}\right)$ such that $\frac{\left\|y_{n_{i}-1}\right\|}{\left\|y_{n_{i}}\right\|} \rightarrow 0$. Indeed, otherwise there would exist $\delta>0$ such that $\frac{\left\|y_{n-1}\right\|}{\left\|y_{n}\right\|}>\delta$ for all n, so that $\left\|y_{1}\right\| \geqslant \delta\left\|y_{2}\right\| \geqslant \ldots \geqslant \delta^{n}\left\|y_{n+1}\right\|$. Since $Q^{n} y_{n+1} \in Q^{-1} B$, it follows from the definition of y_{1} that

$$
\left\|Q^{n} y_{n+1}\right\| \geqslant \frac{\left\|y_{1}\right\|}{1+\varepsilon} \geqslant \frac{\delta^{n}}{1+\varepsilon}\left\|y_{n+1}\right\| .
$$

It follows that $\left\|Q^{n}\right\| \geqslant \frac{\delta^{n}}{1+\varepsilon}$, which contradicts the quasinilpotence of Q.
Since $\left\|f_{n_{i}}\right\|=1$ for all i, we can assume (by passing to a further subsequence) that $\left(f_{n_{i}}\right)$ weak ${ }^{*}$-converges to some $g \in X^{*}$. Since $f_{n}\left(x_{0}\right) \geqslant r$ for all n, it follows that $g\left(x_{0}\right) \geqslant r$, hence $g \neq 0$.

Observe that the sequence $\left(Q^{n_{i}-1} y_{n_{i}-1}\right)_{i=1}^{\infty}$ is contained in B. Since \mathcal{A} is quasilocalizing, by passing to yet a further subsequence if necessary, we find a sequence $\left(S_{i}\right)$ in \mathcal{A} such that $\left\|S_{i} y_{n_{i}-1}\right\| \leqslant C\left\|y_{n_{i}-1}\right\|$ and $S_{i} Q^{n_{i}-1} y_{n_{i}-1} \rightarrow w \neq 0$. Put

$$
Y=\mathcal{A} Q w=\{T Q w \mid T \in \mathcal{A}\} .
$$

One can easily verify that Y is a linear subspace of X invariant under \mathcal{A}. Since Q is one-to-one, we have $0 \neq Q w$. Since \mathcal{A} is transitive, Y is dense in X. On the other hand, we will show that $Y \subseteq \operatorname{ker} g$, which would lead to a contradiction.

Let $T \in \mathcal{A}$, we will show that $g(T Q w)=0$. It follows from (1) that

$$
\begin{aligned}
& \frac{\left|f_{n_{i}}\left(Q^{n_{i}} T S_{i} y_{n_{i}-1}\right)\right|}{f_{n_{i}}\left(Q^{n_{i}} y_{n_{i}}\right)}=\frac{\left|\left(Q^{* n_{i}} f_{n_{i}}\right)\left(T S_{i} y_{n_{i}-1}\right)\right|}{\left(Q^{* n_{i}} f_{n_{i}}\right)\left(y_{n_{i}}\right)} \\
& \quad \leqslant \frac{\left\|Q^{* n_{i}} f_{n_{i}}\right\|\left\|T S_{i} y_{n_{i}-1}\right\|}{(1+\varepsilon)^{-1}\left\|Q^{* n_{i}} f_{n_{i} i}\right\|\left\|y_{n_{i}}\right\|} \leqslant \frac{\|T\| \cdot C\left\|y_{n_{i}-1}\right\|}{(1+\varepsilon)^{-1}\left\|y_{n_{i}}\right\|} \rightarrow 0
\end{aligned}
$$

Since $\left\|f_{n_{i}}\right\|=1$ and $Q^{n_{i}} y_{n_{i}} \in B$, we have

$$
f_{n_{i}}\left(Q^{n_{i}} y_{n_{i}}\right) \leqslant\left\|Q^{n_{i}} y_{n_{i}}\right\| \leqslant\left\|x_{0}\right\|+r,
$$

it follows that $f_{n_{i}}\left(Q^{n_{i}} T S_{i} y_{n_{i}-1}\right) \rightarrow 0$. On the other hand,

$$
f_{n_{i}} \xrightarrow{w^{*}} g \quad \text { and } \quad Q^{n_{i}} T S_{i} y_{n_{i}-1}=T Q S_{i} Q^{n_{i}-1} y_{n_{i}-1} \rightarrow T Q w,
$$

therefore $g(T Q w)=0$.
Recall that an operator S on a Banach space X is strictly singular if the restriction of S to any infinite-dimensional subspace of X fails to be an isomorphism. It is easy to see that every compact operator is strictly singular, and that strictly singular operators form a norm closed two-sided algebraic ideal in $L(X)$. There is an example of a strictly
singular operator without invariant subspaces [Read99]. See [LT77] for further details on strictly singular operators.

It is easy to see that the spectrum of a strictly singular operator consists of eigenvalues and zero. If it has eigenvalues, then every eigenspace is a hyperinvariant subspace. Otherwise, it is quasinilpotent. Therefore, from Theorem 3.2 we can immediately deduce the following result.

Corollary 3.3. If T is strictly singular and $\{T\}^{\prime}$ is quasi-localizing, then T has a hyperinvariant subspace.

Recall that a Banach space is said to be hereditarily indecomposable if no closed subspace of it can be written as a direct sum of two infinite-dimensional closed subspaces, [GM93]. Every operator on a hereditarily indecomposable Banach spaces is of the form $\lambda I+S$, where S is strictly singular.

Corollary 3.4. If \mathcal{A} is a transitive quasi-localizing subalgebra on a hereditarily indecomposable Banach space then \mathcal{A}^{\prime} is trivial.

Proof. Let $T \in \mathcal{A}^{\prime}$, then $T=\mu I+S$ for some strictly singular operator S. It follows that $S \in \mathcal{A}^{\prime}$. Furthermore, given any scalar λ, then $\lambda I-S \in \mathcal{A}^{\prime}$, so that $\operatorname{ker}(\lambda I-S)$ is invariant under \mathcal{A}, hence trivial. Therefore, S has no eigenvalues. It follows that S is quasinilpotent, and Theorem 3.2 yields $S=0$.

Suppose now that \mathcal{S} is a collection of one-to-one operators with dense range. Again, fix a ball $B=B\left(x_{0}, r\right)$ with $0 \notin B$, fix $\varepsilon>0$ and for each $A \in \mathcal{S}$ choose a $(1+\varepsilon)$ minimal vector y_{A} for A and B.

Proposition 3.5. Suppose that $\mathcal{S}, B, \varepsilon$, and $\left(y_{A}\right)_{A \in \mathcal{S}}$ are as above. If there are nets $\left(z_{\alpha}\right)$ in X and $\left(A_{\alpha}\right)$ in \mathcal{S} such that $\frac{\left\|z_{\alpha}\right\|}{\left\|y_{A_{\alpha}}\right\|} \rightarrow 0$ while $A_{\alpha} z_{\alpha}$ converges to some $w \neq 0$, then \mathcal{S}^{\prime} is non-transitive.

Proof. For $A \in \mathcal{S}$ let f_{A} be a minimal functional for A and B. By passing to a sub-net if necessary, we can assume that $f_{A_{\alpha}} \xrightarrow{w^{*}} g$ for some $g \in X^{*}$. Again, $g \neq 0$ because $g\left(x_{0}\right) \geqslant r$.

Put $Y=\mathcal{S}^{\prime} w$. Then, clearly, Y is invariant under \mathcal{S}^{\prime} and non-trivial as $w \in Y$. We will show that $Y \subseteq \operatorname{ker} g$, this will imply that Y is not dense in X. Let $T \in \mathcal{S}^{\prime}$, then it follows from (1) that

$$
\frac{\left|f_{A_{\alpha}}\left(A_{\alpha} T z_{\alpha}\right)\right|}{f_{A_{\alpha}}\left(A_{\alpha} y_{A_{\alpha}}\right)}=\frac{\left|\left(A_{\alpha}^{*} f_{A_{\alpha}}\right)\left(T z_{\alpha}\right)\right|}{\left(A_{\alpha}^{*} f_{A_{\alpha}}\right)\left(y_{A_{\alpha}}\right)} \leqslant(1+\varepsilon) \frac{\left\|A_{\alpha}^{*} f_{A_{\alpha}}\right\|\left\|T z_{\alpha}\right\|}{\left\|A_{\alpha}^{*} f_{A_{\alpha}}\right\|\left\|y_{A_{\alpha}}\right\|} \leqslant(1+\varepsilon) \frac{\|T\|\left\|z_{\alpha}\right\|}{\left\|y_{A_{\alpha}}\right\|} \rightarrow 0 .
$$

Since

$$
0 \leqslant f_{A_{\alpha}}\left(A_{\alpha} y_{A_{\alpha}}\right) \leqslant\left\|f_{A_{\alpha}}\right\|\left\|A_{\alpha} y_{A_{\alpha}}\right\| \leqslant\left\|x_{0}\right\|+r
$$

it follows that $f_{A_{\alpha}}\left(A_{\alpha} T z_{\alpha}\right) \rightarrow 0$. On the other hand, since

$$
f_{A_{\alpha}} \xrightarrow{w^{*}} g \quad \text { and } \quad A_{\alpha} T z_{\alpha}=T A_{\alpha} z_{\alpha} \rightarrow T w,
$$

it follows that $g(T w)=0$.
Consider the condition in Proposition 3.5. We can assume without loss of generality (by scaling) that $\left\|A_{\alpha}\right\|=1$ for all α. Then $\left(z_{\alpha}\right)$ cannot converge to zero, as this would imply $A_{\alpha} z_{\alpha} \rightarrow 0$. Thus, it is necessary that $\left\|y_{A_{\alpha}}\right\| \rightarrow \infty$. This leads to the following question.

Question. Under what conditions on \mathcal{S} is the set $\left\{y_{A} \mid A \in \mathcal{S},\|A\|=1\right\}$ unbounded?

4. Sesquitransitivity

Recall that a set $\mathcal{S} \subseteq L(X)$ is said to be n-transitive for $n \in \mathbb{N}$ if for every linearly independent n-tuple x_{1}, \ldots, x_{n} in X, for every n-tuple y_{1}, \ldots, y_{n} in X, and for every $\varepsilon>0$ there exists $A \in \mathcal{S}$ such that $\left\|A x_{i}-y_{i}\right\|<\varepsilon, i=1, \ldots, n$. Motivated by the notion of quasi-localizing algebras, we introduce sesquitransitive sets of operators.

Definition 4.1. We say that a set \mathcal{S} in $L(X)$ is uniformly sesquitransitive if there exists a constant $C>0$ such that for every linearly independent x and z in X, for every $y \in X$, and for every $\varepsilon>0$ there exists $A \in \mathcal{S}$ such that $\|A x-y\|<\varepsilon$ and $\|A z\| \leqslant C\|z\|$. We say that \mathcal{S} is sesquitransitive if for every non-zero $z \in X$ there is a positive real $C=C(z)$ such that for every x linearly independent of z, for every $y \in X$, and every $\varepsilon>0$ there exists $A \in \mathcal{S}$ such that $\|A x-y\|<\varepsilon$ and $\|A z\| \leqslant C\|z\|$.

Clearly, the following implications hold.
2-transitivity \Rightarrow uniform sesquitransitivity \Rightarrow sesquitransitivity \Rightarrow transitivity.
Remark 4.2. It can be easily verified that a uniformly sesquitransitive algebra is quasi-localizing for any ball B not containing the origin and for every non-zero w in Definition 3.1. Indeed, suppose \mathcal{A} is uniformly sesquitransitive with constant C. Let B be any ball centered at x_{0} of radius r with $r>\left\|x_{0}\right\|$, and let w be any non-zero vector in B. We claim that \mathcal{A} is quasi-localizing for this ball B and w with constant $\widetilde{C}=C \wedge \frac{\|w\|+1}{\left\|x_{0}\right\|+r}$. Indeed, given a sequence $\left(x_{n}\right)$ in B, and a sequence $\left(z_{n}\right)$ in $X \backslash\{0\}$. Fix $n \in \mathbb{N}$. If x_{n} and z_{n} are linearly independent, then we can find $A_{n} \in \mathcal{A}$ such
that $\left\|A_{n} x_{n}-w\right\|<\frac{1}{n}$ and $\left\|A_{n} z_{n}\right\| \leqslant C\left\|z_{n}\right\|$. On the other hand, if $z_{n}=\lambda x_{n}$ then transitivity of \mathcal{A} implies that there is $A_{n} \in \mathcal{A}$ such that $\left\|A_{n} x_{n}-w\right\|<\frac{1}{n}$, so that

$$
\left\|A_{n} z_{n}\right\|=|\lambda|\left\|A_{n} x_{n}\right\| \leqslant|\lambda|\left(\|w\|+\frac{1}{n}\right) \leqslant|\lambda|(\|w\|+1) \frac{\left\|x_{n}\right\|}{\left\|x_{0}\right\|+r} \leqslant \widetilde{C}\left\|z_{n}\right\|
$$

It is known (see, e.g., [RT05]) that the commutant of a 2-transitive algebra is trivial. The following theorem extends this fact to sesquitransitive algebras. It can be viewed as a counterpart of Theorem 3.2.

Proposition 4.3. If X is a Banach space and \mathcal{A} is a sesquitransitive subalgebra of $L(X)$, then \mathcal{A}^{\prime} is trivial.

Proof. Suppose that \mathcal{A} is sesquitransitive, but there exists $S \in \mathcal{A}^{\prime}$ such that S is not a multiple of the identity. Then we can find a non-zero $z \in X$ such that $S z$ is not a multiple of z. Put $x=S z$. Let $C=C(z)$ in the definition of sesquitransitivity. Choose $y \notin$ Range S such that $\|y\|>C\|S\|\| \| z \|$. Then sesquitransitivity of \mathcal{A} implies that for every $n \in \mathbb{N}$ there exists $A_{n} \in \mathcal{A}$ such that $\left\|A_{n} x-y\right\| \leqslant \frac{1}{n}$ and $\left\|A_{n} z\right\| \leqslant C\|z\|$. It follows that $A_{n} x \rightarrow y$, so that $\left\|A_{n} x\right\| \rightarrow\|y\|$. However,

$$
\left\|A_{n} x\right\|=\left\|A_{n} S z\right\|=\left\|S A_{n} z\right\| \leqslant\|S\| \cdot C\|z\|,
$$

so that $\|y\| \leqslant C\|S\|\|z\|$; a contradiction.
Next, we consider the algebraic version of sesquitransitivity. Recall that a set \mathcal{S} of linear maps on a vector space is called strictly transitive if for every two non-zero vectors x and y there exists $A \in \mathcal{S}$ such that $A x=y$. One says that \mathcal{S} is strictly n-transitive for $n \in \mathbb{N}$ if for every n linearly independent vectors x_{1}, \ldots, x_{n}, for n vectors y_{1}, \ldots, y_{n} there exists $A \in \mathcal{S}$ such that $A x_{i}=y_{i}, i=1, \ldots, n$.

Definition 4.4. We will say that \mathcal{S} is algebraically sesquitransitive if for any two non-zero linearly independent vectors x_{1} and x_{2} there exists a non-zero vector z such that for every non-zero y there exists $A \in \mathcal{S}$ such that $A x_{1}=y$ and $A x_{2} \neq z$.

It should be immediately clear that

$$
\text { strict 2-transitivity } \Rightarrow \text { algebraic sesquitransitivity } \Rightarrow \text { strict transitivity. }
$$

Algebraic sesquitransitivity is similar to sesquitransitivity in the sense that we can send x_{1} to any prescribed destination, while keeping some control over the image of x_{2}. At the first glance it might seem that algebraic sesquitransitivity is just slightly stronger than strict transitivity. However, we will see that for rings it actually implies strict 2 -transitivity (hence, we, in fact, have complete control over x_{2}).

Recall that a set \mathcal{S} of operators is strictly dense if it is strictly n-transitive for every $n \in \mathbb{N}$. Jacobson's Density Theorem asserts that every strictly 2-transitive ring of linear maps on a vector space over any field is strictly dense. The following is a generalization of Jacobson's Density Theorem.

Theorem 4.5. Suppose that X is a vector space over an arbitrary field, and \mathcal{R} is a sub-ring of $L(X)$. If \mathcal{R} is algebraically sesquitransitive then it is strictly dense in $L(X)$.

Proof. It suffices to show that \mathcal{R} is strictly 2-transitive, then the result would follows from Jacobson's Density Theorem. Suppose that \mathcal{R} is not strictly 2-transitive.

Using a standard argument we will show that there exist linearly independent vectors $x_{1}, x_{2} \in X$ such that if $A x_{1}=0$ for some $A \in \mathcal{R}$, then $A x_{2}=0$. Indeed, otherwise, for every two linearly independent vectors x_{1} and x_{2} we would find operators $A, B \in \mathcal{R}$ such that $A x_{1}=0$ and $A x_{2} \neq 0$, and $B x_{1} \neq 0$ and $B x_{2}=0$. Furthermore, since \mathcal{R} is strictly transitive, for every y_{1} and y_{2} in X we would find $C, D \in \mathcal{R}$ such that $C\left(A x_{2}\right)=y_{2}$ and $D\left(B x_{1}\right)=y_{1}$. Let $S=C A+D B \in \mathcal{R}$, then $S x_{1}=y_{1}$ and $S x_{2}=y_{2}$, so that \mathcal{R} is strictly 2 -transitive, contradiction.

By Definition 4.4 there exists $z \in X$ such that for every non-zero y there exists $A \in \mathcal{R}$ such that $A x_{1}=y$ and $A x_{2} \neq z$.

Define a linear operator $T \in L(X)$ by $T\left(A x_{1}\right)=A x_{2}$ for every $A \in \mathcal{R}$. It can be easily verified that T is well defined and commutes with every operator in \mathcal{R}. Together with strict transitivity of \mathcal{R} this yields that T is a bijection. Therefore, one can find a non-zero $y \in X$ such that $T y=z$. Then there exists $A \in \mathcal{R}$ such that $A x_{1}=y$ and $A x_{2} \neq z$. However, $A x_{2}=T A x_{1}=T y=z$, contradiction.

We would like to mention that strict n-semitransitivity introduced in $[R T]$ is another generalization of strict n-transitivity. In a result similar to Theorem $4.5,[\mathrm{RT}]$ shows that every strictly 2 -semitransitive ring is strictly dense.

5. Transitive and sesquitransitive algebras in real spaces

It is easy to see that if $\operatorname{dim} X<\infty$ then a subalgebra of $L(X)$ is transitive iff it is strictly transitive. Recall that a classical theorem of Burnside asserts that $M_{n}(\mathbb{C})$ has no proper transitive subalgebras (see, e.g., [RR00]). Clearly, this is false in the real case: the algebra generated by the rotation through $\pi / 2$ in $L\left(\mathbb{R}^{2}\right)$ is transitive but proper. In this section we establish several analogues of the Burnside Theorem as well as of [Lom73] for algebras on real Banach spaces.

Recall that a unital algebra is a division algebra if every non-zero element in it is invertible. It was proved by Rickart [Ric60, Theorem 1.7.6.] that every real normed division algebra is algebraically isomorphic to either \mathbb{R}, \mathbb{C}, or \mathbb{H}. Here \mathbb{H} stands for the quaternion algebra.

Suppose that \mathcal{A} is a transitive subalgebra of $M_{n}(\mathbb{R})$. It follows from Schur's Lemma and from Wedderburn-Artin Theorem that \mathcal{A}^{\prime} is algebraically isomorphic to either \mathbb{R}, \mathbb{C}, or \mathbb{H}. Furthermore, $\mathcal{A}^{\prime \prime}=\mathcal{A}$, and \mathcal{A} is (algebraically isomorphic to) $M_{n}(\mathbb{R}), M_{\frac{n}{2}}(\mathbb{C})$, or $M_{\frac{n}{4}}(\mathbb{H})$, respectively.

Next, we consider some consequences of these facts for infinite dimensional real Banach spaces. In particular, we consider a version of [Lom73] for algebras of operators. Namely, it follows from [Lom73] that if X is a complex Banach space then every transitive subalgebra of $L(X)$ containing a compact operator is WOT-dense in $L(X)$, see [RR03, Theorem 8.23]. This statement fails in real Banach spaces. We will prove a version of this statement for transitive algebras in real Banach spaces.

Proposition 5.1. Suppose that \mathcal{A} is a transitive algebra of operators on a real Banach space X, and \mathcal{A}^{\prime} has a finite-dimensional invariant subspace. Then \mathcal{A}^{\prime} is algebraically isomorphic to \mathbb{R}, \mathbb{C}, or \mathbb{H}.

Proof. Suppose that M is a finite-dimensional subspace invariant under \mathcal{A}^{\prime}. Consider the restriction map $\Phi: \mathcal{A}^{\prime} \rightarrow L(M)$ given by $\Phi(T)=T_{\mid M}$. For every non-zero $T \in \mathcal{A}^{\prime}$, transitivity of \mathcal{A} implies that $\operatorname{ker} T$ and, therefore, $\operatorname{ker} T_{\mid M}$ are trivial. It follows that Φ is one-to-one. Moreover, $\Phi(T)$ is invertible. Hence, $\Phi\left(\mathcal{A}^{\prime}\right)$ is a division algebra. Now Rickart's Theorem implies that $\Phi\left(\mathcal{A}^{\prime}\right)$ and, therefore, \mathcal{A}^{\prime} is isomorphic to \mathbb{R}, \mathbb{C}, or \mathbb{H}.

Theorem 5.2. Suppose that X is a real Banach space and \mathcal{A} is a transitive subalgebra of $L(X)$ containing a compact operator. Then \mathcal{A}^{\prime} is algebraically isomorphic to either \mathbb{R}, \mathbb{C}, or \mathbb{H}.

Proof. By Lemma 2.2, \mathcal{A} contains a compact operator K with eigenvalue 1 . Then the corresponding eigenspace $M:=\operatorname{ker}(K-I)$ is a finite-dimensional subspace invariant under \mathcal{A}^{\prime}. Now the conclusion follows from Proposition 5.1.

Proposition 5.3. Suppose that V is a finite-dimensional vector space over \mathbb{R}, \mathcal{A} is a transitive subalgebra of $L(V)$, and $T \in \mathcal{A}^{\prime}$ such that T is not a multiple of the identity. Then $\{T\}^{\prime}$ is least possible, that is, $\{T\}^{\prime}$ is the algebra generated by T and \mathcal{A}.

Proof. We reduce the real case to the complex case as in [Sir05]. It follows from Proposition 5.1 that by replacing T with $\lambda I+\mu T$ for some $\mu, \lambda \in \mathbb{R}$ we can assume that $T^{2}=-I$. Define a complex structure on V by putting $i x=T x$ for $x \in V$. One can easily check that with this complex scalar multiplication V becomes a vector space over \mathbb{C}; denote it by $V_{\mathbb{C}}$. Observe that V and $V_{\mathbb{C}}$ coincide as sets. Note that an operator $S \in L(V)$ belongs to $L\left(V_{\mathbb{C}}\right)$ iff it is complex-linear, or, equivalently, if $S T=T S$. Hence, $L\left(V_{\mathbb{C}}\right)=\{T\}^{\prime}$. It follows from $T \in \mathcal{A}^{\prime}$ that we can view \mathcal{A} as a subset of $L\left(V_{\mathbb{C}}\right)$. Note that \mathcal{A} is still transitive (as the definition of transitivity doesn't involve scalar multiplication). However, \mathcal{A} need not be closed under complex multiplication in $L\left(V_{\mathbb{C}}\right)$. Let $\widetilde{\mathcal{A}}=\{A+i B \mid A, B \in \mathcal{A}\}$ in $L\left(V_{\mathbb{C}}\right)$. Then $\widetilde{\mathcal{A}}$ is a transitive subalgebra of $L\left(V_{\mathbb{C}}\right)$. Hence, by the Burnside Theorem, \mathcal{A} is all of $L\left(V_{\mathbb{C}}\right)$, so that $\{T\}^{\prime}=\widetilde{\mathcal{A}}=\{A+T B \mid A, B \in \mathcal{A}\}$.

Finally, we will prove that the Burnside Theorem and the algebraic version of [Lom73] remain valid over real scalars if transitivity is replaced with sesquitransitivity.

Proposition 5.4. Suppose that \mathcal{A} is a subalgebra of $M_{n}(\mathbb{R})$. If \mathcal{A} is sesquitransitive or algebraically sesquitransitive then $\mathcal{A}=M_{n}(\mathbb{R})$.

Proof. If \mathcal{A} is algebraically sesquitransitive then it is strictly n-transitive by Theorem 4.5, hence $\mathcal{A}=M_{n}(\mathbb{R})$. Now, if \mathcal{A} is sesquitransitive then \mathcal{A}^{\prime} is trivial by Proposition 4.3, so that $\mathcal{A}=\mathcal{A}^{\prime \prime}=M_{n}(\mathbb{R})$.

The following is well known for complex Banach spaces.
Lemma 5.5. Suppose that K is a compact operator on a real Banach space X such that K has a non-zero fixed vector. Then the uniformly closed subalgebra of $L(X)$ generated by K contains an idempotent of finite rank.

Proof. It follows immediately from the hypotheses that 1 is an eigenvalue of K. Since K is compact, so is its complexification K_{c} on X_{c}. Let Z be the spectral subspace of K corresponding to $\{1\}$. It follows from $\sigma\left(K_{c \mid Z}\right)=\{1\}$ that $K_{c \mid Z}$ is invertible. Since $K_{c \mid Z}$ is compact, it follows that Z is finite-dimensional. Using the usual Functional Calculus, we can find the canonical spectral projection onto Z. Recall that we can write this projection as $f(K)$, where f is the characteristic function of an open subset U of \mathbb{C} such that $U \cap \sigma(K)=\{1\}$.

Let \mathcal{A} be the uniformly closed algebra generated by K_{c} in $L\left(X_{c}\right)$. It follows from Theorem 5.4(a) of [Con90] that $\sigma_{\mathcal{A}}(K)=\sigma(K)$, so that $f(K) \in \mathcal{A}$. It is left to show that $f(K)$ is actually a real operator, that is, that $f(K)$ leaves X invariant.

Again, by Function Calculus we can write $f(K)=\frac{1}{2 \pi i} \int_{\Gamma} R(\lambda ; K) d \lambda$, where $R(\lambda ; K)$ is the resolvent of K at λ and the integration is done over a circle centered at 1 and contained in U. Observe that for $x \in X$ we have the following relation for the complex conjugates in $X_{c}: R(\bar{\lambda} ; K) x=\overline{R(\lambda ; K) x}$. Indeed, direct verification shows that if $x=(\lambda-K)(y+i z)$ then $x=(\bar{\lambda}-K)(y-i z)$ for $y, z \in X$. It follows that $f(K) x=\frac{1}{2 \pi i} \int_{\Gamma} R(\lambda ; K) x d \lambda$ belongs to X.

Theorem 5.6. If X is a real Banach space then every sesquitransitive subalgebra \mathcal{A} of $L(X)$ containing a compact operator is WOT-dense in $L(X)$.

Proof. Without loss of generality we assume that \mathcal{A} is uniformly closed. Lemma 2.2 yields that there is a compact operator K in \mathcal{A} such that K has a non-zero fixed vector. It follows from Lemma 5.5 that \mathcal{A} contains an idempotent operator P of finite rank. Let $Y=$ Range P, then $\operatorname{dim} Y<\infty$.

We will show that the restriction algebra $P \mathcal{A} P$ is still sesquitransitive on Y. Indeed, let $z \in Y$, then there exists C such that for all x, y in X such that x and z are linearly independent and for every $\varepsilon>0$ there is $A \in \mathcal{A}$ such that $\|A x-y\|<\varepsilon$ and $\|A z\| \leqslant C\|z\|$. In particular, when $x, y \in Y$ we have

$$
\|P A P x-y\|=\|P(A x-y)\| \leqslant\|P\| \varepsilon
$$

and $\|P A P z\| \leqslant\|P\| \cdot C\|z\|$.
Proposition 5.4 implies that the restriction of $P \mathcal{A} P$ is all of $L(Y)$. It follows that $P \mathcal{A} P$ and, therefore, \mathcal{A} contains an operator of rank one. Now a standard argument (see, e.g., the proof of Lemma 7.4.5 in [RR00]) shows that \mathcal{A} contains all operators of finite rank, hence is WOT-dense in $L(X)$.

References

[AE98] Shamim Ansari and Per Enflo, Extremal vectors and invariant subspaces, Trans. Amer. Math. Soc. 350 (1998), no. 2, 539-558. MR 98d:47019
[And03] George Androulakis, A note on the method of minimal vectors, Trends in Banach spaces and operator theory (Memphis, TN, 2001), Contemp. Math., vol. 321, Amer. Math. Soc., Providence, RI, 2003, pp. 29-36. MR 1978805
[Con90] John B. Conway, A course in functional analysis, second ed., Springer-Verlag, New York, 1990. MR 91e:46001
[CPS04] Isabelle Chalendar, Jonathan R. Partington, and Martin Smith, Approximation in reflexive Banach spaces and applications to the invariant subspace problem, Proc. Amer. Math. Soc. 132 (2004), no. 4, 1133-1142 (electronic). MR 2045430
[DMR] K. Davidson, L. Marcoux, and H. Radjavi, Transitive spaces of operators, preprint.
[Enf76] P. Enflo, On the invariant subspace problem in Banach spaces, Séminaire Maurey-Schwartz (1975-1976) Espaces L^{p}, applications radonifiantes et géométrie des espaces de Banach, Exp. Nos. 14-15, Centre Math., École Polytech., Palaiseau, 1976, pp. 1-7. MR 57:13530
[Fan52] Ky. Fan, Fixed-point and minimax theorems in locally convex topological linear spaces, Proc. Nat. Acad. Sci. U. S. A. 38 (1952), 121-126. MR MR0047317 (13,858d)
[GM93] W. T. Gowers and B. Maurey, The unconditional basic sequence problem, J. Amer. Math. Soc. 6 (1993), no. 4, 851-874. MR 94k:46021
[Hoo81] N. D. Hooker, Lomonosov's hyperinvariant subspace theorem for real spaces, Math. Proc. Cambridge Philos. Soc. 89 (1981), no. 1, 129-133. MR 84a:47009
[Lom73] V. I. Lomonosov, Invariant subspaces of the family of operators that commute with a completely continuous operator, Funkcional. Anal. i Priložen. 7 (1973), no. 3, 55-56. MR 54:8319
[Lom80] , A construction of an intertwining operator, Funktsional. Anal. i Prilozhen. 14 (1980), no. 1, 67-68. MR MR565106 (81k:47032)
[LT77] Joram Lindenstrauss and Lior Tzafriri, Classical Banach spaces. I, Springer-Verlag, Berlin, 1977, Sequence spaces, Ergebnisse der Mathematik und ihrer Grenzgebiete, Vol. 92. MR 58 17766
[Read84] C. J. Read, A solution to the invariant subspace problem, Bull. London Math. Soc. 16 (1984), no. 4, 337-401. MR 86f:47005
[Read99] , Strictly singular operators and the invariant subspace problem, Studia Math. 132 (1999), no. 3, 203-226. MR MR1669678 (2000e:47012)
[Ric50] C. E. Rickart, The uniqueness of norm problem in Banach algebras, Ann. of Math. (2) 51 (1950), 615-628. MR 11,670d
[Ric60] Charles E. Rickart, General theory of Banach algebras, The University Series in Higher Mathematics, D. van Nostrand Co., Inc., Princeton, N.J.-Toronto-London-New York, 1960. MR MR0115101 (22 \#5903)
[RR00] Heydar Radjavi and Peter Rosenthal, Simultaneous triangularization, Universitext, Springer-Verlag, New York, 2000. MR 2001e:47001
[RR03] , Invariant subspaces, second ed., Dover Publications Inc., Mineola, NY, 2003. MR 2004e:47010
[RT] Heydar Radjavi and Vladimir G. Troitsky, Semitransitive spaces of operators, Linear and Multilinear Algebra, to appear.
[RT05] H. P. Rosenthal and V. G. Troitsky, Strictly semi-transitive operator algebras, J. Operator Theory 53 (2005), no. 2, 315-329. MR MR2153151
[Sir05] Gleb Sirotkin, A version of the Lomonosov invariant subspace theorem for real Banach spaces, Indiana Univ. Math. J. 54 (2005), no. 1, 257-262. MR MR2126724
[Tro04] Vladimir G. Troitsky, Minimal vectors in arbitrary Banach spaces, Proc. Amer. Math. Soc. 132 (2004), no. 4, 1177-1180. MR 2045435
[Yood49] Bertram Yood, Additive groups and linear manifolds of transformations between Banach spaces, Amer. J. Math. 71 (1949), 663-677. MR 11,114h

Department of Mathematical Sciences, Kent State University, Kent, OH, 44242. USA.

E-mail address: lomonoso@math.kent.edu
Department of Pure Mathematics, University of Waterloo, Waterloo, On, N2L 3G1. Canada.

E-mail address: hradjavi@math.uwaterloo.ca
Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, AB, T6G 2G1. Canada.

E-mail address: vtroitsky@math.ualberta.ca

