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Abstract. In this article we present a version of martingale theory in terms of Banach
lattices. A sequence of contractive positive projections (En) on a Banach lattice F is
said to be a filtration if EnEm = En∧m. A sequence (xn) in F is a martingale if
Enxm = xn whenever n 6 m. Denote by M = M

(
F, (En)

)
the Banach space of all

norm uniformly bounded martingales. It is shown that if F doesn’t contain a copy
of c0 or if every En is of finite rank then M is itself a Banach lattice. Convergence
of martingales is investigated and a generalization of Doob Convergence Theorem is
established. It is proved that under certain conditions one has isometric embeddings
F ↪→ M ↪→ F ∗∗. Finally, it is shown that every martingale difference sequence is a
monotone basic sequence.

In this paper we define a martingale in terms of Banach lattices. Rephrasing the title

of [Wil91], this paper could be entitled Martingales without probability. We start with a

brief review of classical martingale theory and Banach lattices.

1. Classical martingale theory

In the following, we fix a probability space (Ω,F , P ) and a filtration (Fn)∞n=1, i.e., an

increasing sequence of sub-sigma-algebras of F . It is often convenient to assume that

F =
∨∞
n=1Fn, as otherwise one can replace F with

∨∞
n=1Fn. We will write Lp(P ) for

Lp(Ω,F , P ).

A sequence X = (xn)∞n=1 of functions in L1(P ) is called a martingale relative to (Fn)

and P if E(xm | Fn) = xn whenever m > n, and a submartingale if E(xm | Fn) > xn

whenever m > n. A martingale X is Lp-bounded if its Lp-martingale norm , given

by ‖X‖p = supn‖xn‖p, is finite. Let the symbol Mp = Mp

(
Ω,F , (Fn), P

)
denote the

space of all Lp-bounded martingales.
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A martingale X is called uniformly integrable if for every positive ε there exists a

number K such that ∫
|xn|>K

|xn| dP < ε

for every n. Doob Convergence Theorem [Doob53] asserts that a martingale X is uni-

formly integrable if and only if converges in L1-norm to some function x ∈ L1(P ). In

this case xn = E(x | Fn) and ‖x‖1 = limn‖xn‖1 = ‖X‖. Thus, the set of all uniformly

integrable martingales is a proper subspace of M1, isometrically isomorphic to L1(P ),

the isomorphism maps X to x. For example, the so called double-or-nothing martin-

gale xn = 2nχ[0,2−n) defined on the unit interval endowed with Lebesgue measure and

dyadic filtration is L1-bounded but not uniformly integrable. However, for p > 1 every

Lp-bounded martingale is uniformly integrable, so that Mp is isometrically isomorphic to

Lp(P ). For further details on classical theory of martingales see [Wil91, Doob53, Doob94].

2. Banach lattices

A vector lattice is a vector space equipped with a lattice order relation, which is

compatible with the linear structure. A Banach lattice is a vector lattice with a

Banach norm which is monotone, i.e., 0 6 x 6 y implies ‖x‖ 6 ‖y‖, and satisfies∥∥|x|∥∥ = ‖x‖ for every two vectors x and y, where |x| = x ∨ (−x). The spaces C(K) and

Lp(µ) for 1 6 p 6 +∞ are important examples of Banach lattices. A Banach lattice

where ‖x+ y‖ = ‖x‖+ ‖y‖ holds for every two nonnegative vectors x and y is called an

abstract L1-space or AL-space . A vector lattice is said to be Dedekind complete

if every nonempty subset that is bounded above has a supremum. We say that a Banach

lattice has order continuous norm if ‖xα‖ → 0 for every decreasing net (xα) with

infα xα = 0. A Banach lattice with order continuous norm is Dedekind complete. A

Banach lattice is called a Kantorovič-Banach space or a KB-space whenever every

increasing norm bounded sequence (xn) is norm convergent. In this case norm continuity

of lattice operations implies that limn xn = supn xn. It is known that a Banach lattice

F is a KB-space iff c0 is not embeddable in F iff F is weakly sequentially complete.

In particular, reflexive Banach lattices and AL-spaces are KB-spaces. The norm in a

KB-space is order continuous. A sublattice E of a vector lattice is called an (order)

ideal if y ∈ E and |x| 6 |y| imply x ∈ E. An ideal E is called a band if x = supα xα

implies x ∈ E for every positive increasing net (xα) in E. Two elements x and y in a

vector lattice are said to be disjoint (in symbols x ⊥ y) whenever |x| ∧ |y| = 0 holds.

If A is a nonempty subset of a vector lattice, then its disjoint complement Ad is the
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set of all elements of the lattice, disjoint to every element of A. A band E in a vector

lattice F that satisfies F = E ⊕ Ed is reffered to as a projection band . Every band

in a Dedekind complete vector lattice is a projection band. An operator T on a Banach

lattice F is positive if it preserves the cone F+ of positive elements. It is easy to see

that T > 0 iff x 6 y implies Tx 6 Ty; furthermore, if T > 0 then T (x∨y) > (Tx)∨ (Ty)

and |Tx| 6 T |x| for any x, y ∈ F . See [AB85, AA02, LZ71, Zaan83, MN91] for more

details on Banach lattices. Throughout the rest of the paper F will be a fixed Banach

lattice.

3. Main definitions

We will introduce a generalization of the concept of a martingale. By a martingale

we will mean a sequence of elements in a Banach lattice satisfying certain properties.

Douglas proved in [Doug65] (see also [AAB93]) that the conditional expectations are

the only contractive projections on L1(P ) preserving constant functions. In view of this

result of Douglas it will be natural in our setting to replace conditional expectations

with positive contractive projections. This argument justifies the following notation.

A sequence of positive contractive projections (En) on a Banach lattice F is called a

filtration if EnEm = En∧m. Note that the ranges of En’s form a nested increasing

sequence. Here En’s play the role of conditional expectations.

A filtration is said to be dense if Enx→ x in norm for every x ∈ F , or, equivalently,

if
⋃∞
n=1 RangeEn is dense in F . This is analogous to the condition F =

∨∞
n=1Fn for clas-

sical filtrations. But, unlike in the case of classical filtration, generally we cannot simply

replace F with
⋃∞
n=1 RangeEn because the latter set need not be a Banach sublattice

of F .

Note, however, that if a projection P is strictly positive , i.e., Px > 0 whenever

x > 0, then RangeP is a sublattice of F (see [Sch74, dJ82]). Therefore, if Em is strictly

positive for some m then
⋃∞
n=1 RangeEn is a Banach sublattice of F . Indeed, for every

x > 0 and every n > m we have Enx 6= 0 because 0 < Emx = EmEnx. It follows that En

is strictly positive for all n > m, so that RangeEn is a sublattice. Thus, when a filtration

contains a strictly positive projection, one can assume that it is dense by replacing F

with
⋃∞
n=1 RangeEn.

A sequence X = (xn) of elements of F is called a martingale relative to a filtration

(En) if Enxm = xn whenever n 6 m. It follows, in particular, that xn ∈ RangeEn for

every n. A sequence X = (xn) is called a submartingale if Enxm > xn whenever

n 6 m. A (sub)martingale is said to be bounded if its martingale norm given by
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‖X‖ = supn‖xn‖ is finite. Notice that if (xn) is a martingale or a positive submartingale,

then the sequence ‖xn‖ is increasing. Indeed, ‖xn‖ 6 ‖Enxn+1‖ 6 ‖xn+1‖. Therefore,

‖X‖ = limn‖xn‖.
Denote by M = M

(
F, (En)

)
the class of all bounded martingales. Note that M is a

closed subspace of the space
(⊕∞

n=1 F
)
∞, hence M is a Banach space.

4. Examples

In the case of classical martingales we have F = L1(P ) and En = E(· | Fn). It was

mentioned in the very beginning that one can usually assume that the filtration is dense.

Observe, that a classical filtration satisfies another important property: it preserves

norms of positive vectors , that is, ‖Enx‖ = ‖x‖ for every n and every x ∈ F+.

Next, we present several examples of filtrations and martingales related to bases in

Banach spaces. For the terminology related to bases in Banach spaces we refer the reader

to [LT77].

Example 1. Suppose that (ei) is a 1-unconditional basis in F such that
∑∞

n=1 αiei > 0

iff αi > 0 for all i > 1. For every n > 1 let En be the n-th basis projection given

by En
(∑∞

i=1 αiei
)

=
∑n

i=1 αiei, then (En) is a dense filtration. Notice that (xn) is a

martingale iff there exists a sequence of scalars (αi) such that xn =
∑n

i=1 αiei for every

n > 1. A martingale (xn) is convergent if and only there exists z =
∑∞

i=1 αiei such that

xn =
∑n

i=1 αiei, in this case xn converges to z. The basis is boundedly complete if and

only if every bounded martingale converges.

Example 2. Consider the special case of Example 1 when F = c0. Again, X = (xn) is

a martingale in c0 iff there exists a sequence of scalars (αi) such that xn =
∑n

i=1 αiei for

every n > 1. Notice that X is bounded if and only if the sequence (αi) is bounded, and

in this case ‖X‖ = supi|αi|. Thus, in this case M can be identified with `∞. Observe

that here M is non-separable even though X is separable.

Example 3. Let F = C[0, 1] and (ei) be the Schauder system in C[0, 1]. Again, let En

be the n-th basis projection. One can easily see that for f ∈ C[0, 1] its image Enf agrees

with f on a set of dyadic points and is linear between those points. In particular, every

En is a positive operator. Since the Schauder system is a monotone basis, each En is

a contraction. Hence, (En) is a dense filtration on F . Clearly, not every martingale is

convergent. For example, put xn(0) equal 0 at 0, equal 1 at all the other dyadic points

corresponding to En, and linear in between. Then (xn) is a non-convergent martingale.
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Example 4. Let F = Lp[0,+∞) (1 6 p < +∞) and put Enx = x · χ[0,n], i.e., En “cuts-

off” the tail of x after n. One can easily see that (En) is a dense filtration. A sequence (xn)

is a martingale if xn =
∑n

i=1 hi where (hi) is a sequence in F such that supphi ⊆ [i−1, i].

It can be easily verified that the map x ∈ F → (x ·χ[0,n]) is an isometry from F onto M .

5. When is M a Banach lattice?

Introduce an order on
(⊕∞

n=1 F
)
∞ as follows: if X = (xn) and Y = (yn), we say that

X 6 Y if xn 6 yn for each n. With this order M is an ordered Banach space. Clearly,

the norm is monotone: if 0 6 X 6 Y then ‖X‖ 6 ‖Y ‖.
Notice that if the filtration preserves the norms of positive vectors and X = (xn) is a

positive martingale then ‖xn‖ = ‖Enxm‖ = ‖xm‖ whenever n 6 m, so that ‖xn‖ = ‖X‖
for every n. Thus, in this case every positive martingale is bounded.

It is not immediately obvious if M is a lattice in the order we just introduced, and

how one could compute X ∨ Y , X ∧ Y , and |X| for two martingales X = (xn) and

Y = (yn) in M . The “natual guess” that X ∨ Y = (xn ∨ yn)∞n=1, X ∧ Y = (xn ∧ yn)∞n=1,

and |X| =
(
|xn|
)∞
n=1

turns out to be wrong. Even when (xn) is a martingale, (|xm|)
doesn’t have to be a martingale. For example, let (Ω,F , P ) be the unit segment endowed

with Lebesgue measure and (Fn) be the dyadic filtration. Consider an L1-bounded

martingale defined in the following way: x1 ≡ 0, xn = χ[0,1/2) − χ[1/2,1] for n > 1.

It is easy to see that (|xn|) is not a martingale. Notice, however, that if (xn) and

(yn) are two submartingales then (xn ∨ yn) is a submartingale. Indeed, if n > m then

Em(xn∨ yn) > (Emxn)∨ (Emyn) > (xm∨ ym). In particular, if (xn) is a martingale, then

(|xn|) is a submartingale.

Lemma 5. Let X = (xn) and Y = (yn) be two bounded submartingales.

(i) For a fixed n, the sequence
(
En(xm ∨ ym)

)∞
m=n

is increasing, norm bounded by

‖X‖+ ‖Y ‖, and bounded below by xn ∨ yn.

(ii) If, in addition, this sequence converges in norm to some (zn) for each n, then

Z = (zn) is a martingale, and it is the least martingale satisfying X 6 Z and

Y 6 Z.

Proof. Let X = (xn) and Y = (yn) be two bounded submartingales and n 6 m, notice

that En(xm ∨ ym) > (Enxm) ∨ (Enym) > xn ∨ yn. Furthermore,

En(xm+1 ∨ ym+1) = EnEm(xm+1 ∨ ym+1) > En(Emxm+1 ∨ Emym+1) > En(xm ∨ ym).

Finally, ∥∥En(xm ∨ ym)
∥∥ 6 ‖xm ∨ ym‖ 6 ∥∥|xm|+ |ym|∥∥ 6 ‖X‖+ ‖Y ‖.
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Suppose that limmEn(xm ∨ ym) = zn for each n, and set Z = (zn). First, observe that

Z is a martingale. Indeed, for k 6 n we have

Ekzn = Ek
(

lim
m→∞

En(xm ∨ ym)
)

= lim
m→∞

EkEn(xm ∨ ym) = lim
m→∞

Ek(xm ∨ ym) = zk.

Since En(xm ∨ ym) > xn ∨ yn whenever m > n, we have zn > xn ∨ yn for all n. Thus,

Z > X and Z > Y . On the other hand, suppose that Z̃ = (z̃n) is a martingale such that

Z̃ > X and Z̃ > Y . Then z̃m > xm ∨ ym for all m, so that z̃n = Enz̃m > En(xm ∨ ym)

for all m > n. As limmEn(xm ∨ ym) = zn, this yields z̃n > zn, so that Z̃ > Z. �

Lemma 6. Let X ∈ M such that the limit limmEn|xm| exists for each n, denote it zn.

Put Z = (zn), then Z is a martingale, Z = |X|, and ‖Z‖ = ‖X‖.

Proof. Apply Lemma 5 to X and −X, it follows that Z is indeed a bounded martingale

and Z = |X|. Notice that

‖zn‖ = lim
m→∞

∥∥En|xm|∥∥ 6 lim
m→∞

‖xm‖ = ‖X‖.

On the other hand, for n 6 m we have |xn| = |Enxm| 6 En|xm|. It follows that∥∥zn∥∥ = lim
m→∞

∥∥En|xm|∥∥ > ‖xn‖.
This yields ‖Z‖ = ‖X‖. �

Theorem 7. If F is a KB-space then M = M
(
F, (En)

)
is a Banach lattice with lattice

operations given by

(X ∨ Y )n = lim
m→∞

En(xm ∨ ym)

(X ∧ Y )n = lim
m→∞

En(xm ∧ ym)

(X+)n = lim
m→∞

En(x+
m)

(X−)n = lim
m→∞

En(x−m)

|X|n = lim
m→∞

En|xm|

(1)

Proof. Let X = (xn) and Y = (yn) be two bounded martingales in M . It follows from

Lemma 5(i) that for every n the sequence
(
En(xm∨ym)

)∞
m=n

is increasing in m and norm

bounded, hence it converges. It follows then by Lemma 5(ii) that X ∨ Y exists and is

given by (X ∨ Y )n = lim
m→∞

En(xm ∨ ym). The other formulae in (1) follow immediately.

This proves that M is a lattice. Finally,
∥∥|X|∥∥ = ‖X‖ by Lemma 6, so that M is a

Banach lattice. �

Corollary 8. If F is an AL-space and (En) is a filtration on F , then M = M
(
F, (En)

)
is an AL-space.
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Proof. Theorem 7 yeilds that M is a Banach lattice. Suppose that X, Y ∈M+, X = (xn),

and Y = (yn). Then xn, yn ∈ F+ for each n, so that ‖xn + yn‖ = ‖xn‖+ ‖yn‖. It follows

that

‖X + Y ‖ = lim
n→∞
‖xn + yn‖ = lim

n→∞

(
‖xn‖+ ‖yn‖

)
= ‖X‖+ ‖Y ‖.

�

In the case of classical martingales, it was shown by Krickeberg [Kr56] that the space

M1 of all L1-bounded martingales in L1(P ) is a Dedekind complete vector lattice. In

particular, every L1-bounded martingales can be written as a difference of two positive

martingales. Corollary 8 yields the following refinement of Krickeberg’s result.

Corollary 9. The space M1 of all L1-bounded martingales in L1(P ) is a Banach lattice

and, moreover, an AL-space.

Next, we show that if a filtration consists of finite rank operators, then the space of

bounded martingales is a Banach lattice.

Lemma 10. An increasing norm bounded sequence contained in a finite-dimensional

subspace of a Banach lattice has a supremum and converges to it in norm.

Proof. Suppose that (xn) is an increasing sequence contained in the unit ball BE of a

finite-dimensional subspace E of a Banach lattice. By the continuity of lattice operations,

xn 6 limi xni for every n > 0 and every convergent subsequence (xni). Therefore, if xmi
is another convergent subsequence then limi xmi 6 limi xni . It follows that all convergent

subsequences of (xn) have the same limit. Compactness of BE completes the proof. �

Proposition 11. If F is a Banach lattice and (En) is a filtration on F such that En is of

finite rank for each n, then M = M
(
F, (En)

)
is a Banach lattice with lattice operations

given by (1).

Proof. Let X = (xn) and Y = (yn) be two martingales in M . It follows from Lemma 5(i)

that for every n the sequence
(
En(xm ∨ ym)

)∞
m=n

is increasing in m. This sequence is

contained in the range of En, so that it converges by Lemma 5(ii), and if we denote the

limit by zn then Z = (zn) is a martingale and Z = X ∨ Y . This proves the first formula

in (1). The other formulae follow easily, so that M is a lattice. Finally, Lemma 6 yields

that M is a Banach lattice. �

Observe that the filtrations in Examples 1–3 consist of finite-rank projections. It

follows that bounded martingales in those examples form Banach lattices.
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6. Regular martingales

Given a martingale X in a Banach lattice F , we say that X is regular if there exists

a positive martingale Y such that X 6 Y . It is easy to see that a martingale is regular if

and only if it is a difference of two positive martingales. We denote by Mr = Mr

(
F, (En)

)
the set of all regular bounded martingales. Clearly, Mr is a linear subspace of M . It

follows from Theorem 7 that if F is a KB-space then for every bounded martingale X

in F we have X 6 |X|, so that X is regular, hence Mr = M .

Example 12. A non-regular martingale. Let F = L∞[0, 1]. For every n define En as

follows:

Enx(t) =

{
the average of x on [0, 2−n] when t 6 2−n;

x(t) otherwise.

It is easy to see that (En) is a filtration. PutDn = [1/2n, 1/2n−1], letAn andBn be the left

and the right halves of Dn respectively. Set xm =
∑m

k=1 2k(χAk−χBk), then X = (xm) is

an unbounded martingale. Show that there is no positive martingale that dominates X.

Indeed, suppose that Y = (yn) is a positive martingale such that X 6 Y . Then yn > x+
n

for each n. It follows that y1 = E1yn > E1x
+
n . Notice that x+

n =
∑n

k=1 2kχAk , so that

the restriction of x+
n to [0, 1/2] is

∑n
k=2 2kχAk , which has the average value of n − 1

because the length of Ak is 1/2k+1. It follows that E1x
+
n equals n− 1 on [0, 1/2], so that

‖y1‖ > ‖E1x
+
n ‖ > n− 1. It follows that y1 /∈ L∞[0, 1], contradiction.

Theorem 13. If F has order continuous norm then Mr = Mr

(
F, (En)

)
is a Banach

lattice with lattice operations given by (1).

Proof. Let X = (xn) and Y = (yn) be two martingales in Mr. Then there exist two

positive martingales X̃ = (x̃n) and Ỹ = (ỹn) such that X 6 X̃ and Y 6 Ỹ . It follows

from Lemma 5(i) that for every n the sequence
(
En(xm ∨ ym)

)∞
m=n

is increasing in m.

Moreover,

En(xm ∨ ym) 6 En(x̃m ∨ ỹm) 6 En(x̃m + ỹm) = x̃n + ỹn,

so that the sequence is order bounded. Since F has order continuous norm (and, in

particular, is Dedekind complete), the sequence has a supremum, to which it converges

in norm. Call the supremum zn, let Z = (zn). By Lemma 5(i) ‖zn‖ 6 ‖X‖ + ‖Y ‖.
It follows from Lemma 5(ii) that Z is a bounded martingale (and it is regular because

Z 6 X̃ + Ỹ ) and that Z = X ∨ Y . This proves the first formula in (1). The other

formulae follow easily. In particular, Mr is a lattice. Lemma 6 yields
∥∥|X|∥∥ = ‖X‖ for

every X ∈Mr, so that the norm on Mr is a lattice norm.
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It is left to show that Mr is a Banach space. It suffices to prove that Mr is a closed

subspace of M . Suppose that (X(n))∞n=1 is a sequence of regular martingales such that

X(n) converges in norm to some X ∈ M , show that X is regular. Without loss of

generality, ‖X(n+1)−X(n)‖ < 2−n for every n. Since X(n+1)−X(n) is regular, its modulus

exists and ∥∥|X(n+1) −X(n)|
∥∥ = ‖X(n+1) −X(n)‖ < 2−n,

so that the series
∑∞

n=1|X(n+1) −X(n)| converges in M . Put Y =
∑∞

n=1|X(n+1) −X(n)|.
Clearly, Y > 0. Now

X(m) = X(1) +
m−1∑
n=1

(X(n+1) −X(n)) 6 X(1) +
m−1∑
n=1

|X(n+1) −X(n)| 6 |X(1)|+ Y.

It follows that X 6 |X(1)|+ Y , hence X ∈Mr. �

7. Bounded below filtrations

We say that a filtration (En) is bounded below on F+ if there exists n > 1 and a

constant c > 0 such that ‖Enx‖ > c‖x‖ for every x > 0. In particular, if (En) preserves

the norms of positive vectors, then it is bounded below on F+. Observe that if (En) is

bounded below then every positive (and, therefore, every regular) martingale is bounded.

Indeed, ‖xm‖ 6 1
c
‖Enxm‖ = 1

c
‖xn‖ for every m > n, so that ‖X‖ 6 1

c
‖xn‖ < +∞.

Notice also that if (En) is bounded below then En is strictly positive for some n, so that

we can assume without loss of generality that the filtration is dense.

Proposition 14. If F is a KB-space and (En) is bounded below on F+, then M =

M
(
F, (En)

)
is again a KB-space.

Proof. It follows from Theorem 7 that M is a Banach lattice. Consider an increasing

sequence of martingales (X(k))∞k=1 with uniformly bounded norms ‖X(k)‖ 6 K. Let

X(k) = (x
(k)
n ). Then for each n the sequence (x

(k)
n )∞k=1 is increasing in k and is norm

bounded by K. Since F is a KB-space, this sequence converges to some xn and ‖xn‖ 6 K.

Let X = (xn), then for n 6 m we have

Enxm = En
(

lim
k→∞

x(k)
m

)
= lim

k→∞
Enx

(k)
m = lim

k→∞
x(k)
n = xn,

so that X ∈M . Clearly, X = supkX
(k), hence Proposition 15 implies that

∥∥X−X(k)
∥∥→

0. �

Proposition 15. If F has order continuous norm and (En) is bounded below on F+ then

the martingale norm is again order continuous.
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Proof. Suppose that
(
X(α)

)
is a decreasing net of martingales, X(α) = (x

(α)
n ), such that

infαX
(α) = 0. For a fixed n, the net (x

(α)
n )α is positive and decreasing in α, so that order

continuity of norm in F yields limα x
(α)
n exists, call it xn. It is easy to see that xn > 0

and that X = (xn) is a martingale:

Emxn = Em
(
lim
α
x(α)
n

)
= lim

α
Emx

(α)
n = lim

α
x(α)
m = xm.

Clearly, X is bounded and it follows from 0 6 X 6 X(α) for all α and infαX(α) = 0 that

X = 0. Thus, limα x
(α)
n = 0 for each n.

There exists n > 1 and a constant c > 0 such that ‖Enx‖ > c‖x‖ for every x > 0. For

every m > n we have ‖x(α)
n ‖ = ‖Enx(α)

m ‖ > c‖x(α)
m ‖, so that

∥∥X(α)
∥∥ 6 1

c
‖x(α)

n ‖ → 0. �

8. A submartingale is dominated by a martingale

We claim that every bounded submartingale in a KB-space is dominated by a unique

martingale (which justifies the term submartingale). Suppose that X = (xn) is a

bounded submartingale on a KB-space F . Applying Lemma 5(i) with Y = X we see

that for a fixed n the sequence
(
Enxm

)∞
m=n

is increasing and norm bounded by ‖X‖.
Since F is a KB-space, it converges to some zn, let Z = (zn). By Lemma 5(ii) Z is a

martingale; it is the least martingale such that X 6 Z. Notice that

‖zn‖ = lim
m→∞

‖Enxm‖ 6 lim
m→∞

‖xm‖ = ‖X‖,

so that Z is bounded and ‖Z‖ 6 ‖X‖. In general, ‖Z‖ need not equal ‖X‖. Even in

the real-valued case, let X be a submartingale of constant functions xn = − 1
n
χ[0,1], then

‖X‖ > 0 but Z = 0. Nevertheless, if (En) preserves the norms of positive vectors and

X is a positive submartingale then ‖zn‖ = limm‖Enxm‖ = limm‖xm‖ = ‖X‖ for all n,

so that ‖Z‖ = ‖X‖. Finally, notice that the condition ‖X‖ < ∞ can be replaced by

supn‖x+
n ‖ <∞.

9. Convergent martingales

Let F be a Banach lattice and (En) a filtration on F , denote M = M
(
F, (En)

)
. One

can easily verify that for every x ∈ F the sequence X = (Enx)∞n=1 is a martingale.

Martingales of this form will be called fixed . Note that ‖X‖ 6 ‖x‖, so that the map

x 7→ (Enx) is a linear contraction from F into M .

Observe that every convergent martingale is fixed (on its limit). Indeed, if limm xm = x

then limmEnxm = Enx, but Enxm = xn when m > n, so that Enx = xn.

Suppose that, in addition, the filtration is dense, that is, Enx → x for every x ∈
F . Then a martingale is fixed iff it is convergent. In this case ‖X‖ = limn‖xn‖ =
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limn‖Enx‖ = ‖x‖, hence the map x 7→ (Enx) is an isometry. Thus, F isometrically

embeds in M . With a slight abuse of notation, we will consider F as a subspace of M .

Furthermore, suppose that F is a KB-space. Let (xn) be an increasing sequence in

F+, order bounded in M . Then it is norm bounded and, since F is a KB-space, it has a

supremum in F . Since M is a KB-space, hence Dedekind complete, it follows that F is

a projection band in M :

Proposition 16. If F is a KB-space and (En) is dense then F is a projection band in

M
(
F, (En)

)
.

In the case of classical martingales this yields that uniformly integrable martingales

form a projection band in M1. It would be interesting to describe the disjoint complement

of L1(P ) in M1, and, more generally, the describe the disjoint complement of F in M

under the hypotheses of Proposition 16.

On the other hand, Example 2 shows that if F is not KB, then it doesn’t even have

to be complemented in M .

10. Uniform integrability

Dunford-Pettis Theorem [DP40] asserts that a subset of L1(P ) is uniformly integrable

if and only if it is relatively weakly compact. From this point of view, the following

theorem is a generalization of Doob Convergence Theorem to martingales in Banach

lattices.

Theorem 17. A relatively weakly compact martingale in a Banach lattice is fixed.

Proof. Suppose that (xn) is a relatively weakly compact martingale in a Banach lat-

tice F . By Eberlein-Šmulian Theorem it has a subsequence (xnk) weakly convergent to

some x ∈ F . Since Em is bounded and hence weakly continuous for every m, we have

w-limk Emxnk = Emx, but Emxnk = xm for all sufficiently large values of k, so that

xm = Emx. �

Corollary 18. If F is reflexive then every bounded martingale is fixed. In particular, if

F is reflexive and (En) is dense then M = F .

A subset A in a Banach lattice F is said to be order bounded if A ⊆ [−x, x] for

some x ∈ F+, and almost order bounded if for every ε > 0 there exists x ∈ F+ such

that A ⊆ [−x, x] + εBF , where BF stands for the unit ball of F . One can easily see that

a subset of L1(P ) is uniformly integrable if and only if it is almost order bounded. If F

is a Banach lattice with an order continuous norm then it follows from Theorems 10.17
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and 12.9 of [AB85] that every almost order bounded set in F is relatively weakly compact.

This provides us with yet another generalization of Doob Convergence Theorem.

Corollary 19. Every almost order bounded martingale in a Banach lattice with order

continuous norm is fixed.

Proposition 20. A weakly convergent martingale is fixed.

Proof. Suppose that (xn) is a martingale such that xn
w−→ x. Then w-limnEmxn = Emx

for all m, but Emxn = xm when n > m, so that xm = Emx. �

11. Dual filtration

Suppose that (En) is a filtration on a Banach lattice F . It is easy to see that the

sequence of the adjoint operators (E∗n) is a filtration on the dual Banach lattice F ∗.

Indeed, E∗n is contractive and positive for every n, and E∗nE
∗
m = (EmEn)∗ = E∗n∧m for all

n and m. In particular, E∗n is a projection.

Proposition 21. If (En) is dense then E∗nf
w∗−→ f and ‖E∗nf‖ → ‖f‖ for every f ∈ F ∗.

In particular, the map f 7→ (E∗nf) is an isometric embedding of F ∗ into M
(
F ∗, (E∗n)

)
.

Proof. Suppose that (En) is dense. Then Enx → x for each x ∈ X so that (E∗nf)(x) =

f(Enx) → f(x) for every f ∈ F ∗, hence E∗nf
w−→ f . Show that ‖E∗nf‖ → ‖f‖. Without

loss of generality, ‖f‖ = 1. Clearly, ‖E∗nf‖ 6 1 for all n. There exists x ∈ F such that

f(x) > 1 − ε. Since Enx → x, there exists n such that ‖Enx − x‖ < ε. It follows that∣∣f(Enx)− f(x)
∣∣ < ε so that∣∣E∗nf(x)− 1

∣∣ 6 ∣∣f(Enx)− f(x)
∣∣+
∣∣f(x)− 1

∣∣ < 2ε,

so that ‖E∗nf‖ > 1− 2ε. It follows that ‖E∗nf‖ → 1. �

We also have a dual version of this result.

Proposition 22. If (E∗n) is dense then Enx
w−→ x and ‖Enx‖ → ‖x‖ for every x ∈ F .

In particular, the map x 7→ (Enx) is an isometric embedding of F into M
(
F, (En)

)
.

Proof. Suppose that (E∗n) is dense. Then E∗nf → f for every f ∈ F ∗, so that f(Enx) =

(E∗nf)(x) → f(x), for every x ∈ F , so that Enx
w−→ x. Fix x ∈ F and consider it as an

element of F ∗∗, then it follows from Proposition 21 that ‖Enx‖ = ‖E∗∗n x‖ → ‖x‖. �

The following result is the dual version of Proposition 20.

Proposition 23. Every weak∗-convergent martingale in F ∗ relative to (E∗n) is fixed.
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Proof. Suppose that (fn) is a martingale in F ∗ relative to (E∗n) such that fn
w∗−→ f . Since

E∗m is adjoint, hence weak∗-continuous for each m, then E∗mfn
w∗−→ E∗mf . But E∗mfn = fm

when n > m, so that fm = E∗mf for each m. �

Theorem 24. Given a Banach lattice F with filtration (En), denote M = M
(
F, (En)

)
and Y =

⋃∞
n=1 RangeE∗n. Then

(i) The sequence (f(xm)) stabilizes for every martingale (xm) and every f ∈ Y .

Namely, if f ∈ RangeE∗n then f(xm) = f(xn) for all m > n;

(ii) Every martingale in F is σ(F, Y )-Cauchy;

(iii) M embeds isometrically into Y ∗ via X = (xn) 7→ θX ∈ Y ∗ where θX(f) = f(xn)

for f ∈ RangeE∗n;

(iv) If X ∈M then X is fixed as a martingale in F ∗∗.

Proof. To prove (i), consider a martingale X = (xm). Let f ∈ RangeE∗n for some n.

Then E∗nf = f , and for every m > n we have f(xm) = (E∗nf)(xm) = f(Enxm) = f(xn).

It follows also that limm f(xm) exists and equals f(xn). Thus, f(xm) converges for every

f ∈ Y , this proves (ii).

Fix a bounded martingale X = (xn), for every f ∈ RangeE∗n define θX(f) = f(xn) =

limm f(xm). Then θX is defined for every f ∈ Y . Clearly, θX is linear. Since |f(xm)| 6
‖f‖‖xm‖ 6 ‖f‖‖X‖ for all m, it follows that ‖θX‖ 6 ‖X‖, so that θX ∈ Y ∗. Show that

θX = ‖X‖, this will show that the map X 7→ θX is an isometry and prove (iii). Fix n,

By Hahn-Banach Theorem there exists f ∈ F ∗ such that ‖f‖ = 1 and f(xn) = ‖xn‖.
Since E∗nf ∈ RangeE∗n we have

θX(E∗nf) = E∗nf(xn) = f(Enxn) = f(xn) = ‖xn‖ > ‖E∗nf‖‖xn‖

because ‖E∗nf‖ 6 1. Thus, ‖θX‖ > ‖xn‖ for each n. It follows that ‖θX‖ = ‖X‖.
To prove (iv), extend θX to an element x∗∗ of F ∗∗ by Hahn-Banach. Then for every

f ∈ F ∗ and every n we have

〈E∗∗n x∗∗, f〉 = 〈x∗∗, E∗nf〉 = θX(E∗nf) = E∗nf(xn) = f(Enxn) = 〈f, xn〉,

so that E∗∗n x
∗∗ = xn for every n. �

Corollary 25. If (E∗n) is dense then M = M
(
F, (En)

)
embeds isometrically into F ∗∗.

Namely, every martingale X = (xn) in M is w∗-convergent and the map Φ: X 7→
w*-limn xn is an isometry from M into F ∗∗. Also, X 6 Y ⇔ Φ(X) 6 Φ(Y )

Proof. If (E∗n) is dense than Y is dense in F ∗, so that Y ∗ = F ∗∗ and the first statement

follows immediately from Theorem 24(iii). Given a bounded martingale X = (xn) in
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F , let θX ∈ Y ∗ be as in Theorem 24(iii). Since Y is dense in F ∗, we extend θX by

continuity to all of F ∗, so that we can write θX ∈ F ∗∗. Show that xn
w∗−→ θX . Given

f ∈ F ∗, it follows from Theorem 24(i) that θX(E∗mf) = (E∗mf)(xm) = f(Emxm) = f(xm).

Therefore,

∣∣〈xm, f〉 − 〈θX , f〉∣∣ =
∣∣〈θX , E∗mf〉 − 〈θX , f〉∣∣ 6 ‖θX‖‖E∗mf − f‖ → 0.

�

Example 26. If (En) is a filtration given by a 1-unconditional basis as in Example 1,

then (ei) is shrinking iff (E∗n) is dense, in this case M
(
F, (En)

)
embeds isometrically

in F ∗∗. Notice that in Example 2 we actually have M = F ∗∗.

The following can be viewd as a complement to Proposition 16.

Corollary 27. If F is a KB-space and (E∗n) is dense, then M
(
F, (En)

)
is lattice isometric

to F .

Proof. Let Φ be as in Corollary 25. Since F is weakly sequentially complete, then

Φ(X) = w*-limn xn belongs to F for every bounded martingale X = (xn). �

12. Martingales of martingales

Given a Banach lattice F and a filtration (En), let M = M
(
F, (En)

)
. One can view

M as an enlargement or a completion of F . This enlargement operation is idempotent

in the following sense. For every k 6 1 consider the map Ek on M given as follows: if

X = (xn) is an element of M then EkX = Y , where

yn =

{
xn n 6 k,

xk n > k.

Clearly, Y ∈M and ‖Y ‖ 6 ‖X‖, so that Ek is a positive contractive projection. One can

easily check that EkEm = Ek∧m. Therefore, (Ek) is a filtration on M . Notice that if (En)

preserves the norms of positive vectors, then so does (Ek). Indeed, if X = (xn) ∈ M+

then ‖X‖ = ‖xn‖ for all n. Let Y = EkX, then Y = (yn) is again a positive martingale,

and ‖Y ‖ = ‖y1‖ = ‖x1‖ = ‖X‖.
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We claim that M
(
M, (Ek)

)
= M up to the canonical isometry. Indeed, let

(
X(k)

)
be

a martingale in M
(
M, (Ek)

)
. It is easy to see that it has to be of the form

X(1) = (x1, x1, x1, x1, . . . )

X(2) = (x1, x2, x2, x2, . . . )

X(3) = (x1, x2, x3, x3, . . . )
...

for some sequence X = (xn). Then for m 6 n we have Emxn = EmX
(n)
n = X

(n)
m = xm,

so that X is a martingale. Furthermore,

‖X‖ = sup
n
‖xn‖ = sup

k
‖X(k)‖ =

∥∥(X(k)
)∥∥ < +∞,

so that X ∈ M . Finally, EkX = X(k), so that the martingale
(
X(k)

)
is fixed on X,

and, clearly, X is the only element of M with this property. It follows that the map

X ∈M 7→ (EkX) is a surjective isometry between M and M
(
M, (Ek)

)
.

13. Martingale difference sequences

Given a filtration (En), if m < n, then it is can be easily verified that En − Em is

a projection. Define the sequence (Pn) of difference projections via P1 = E1 and

Pn = En − En−1 for n > 1. Then En =
∑n

k=1 Pk for each n. Observe that PnPm = 0

whenever n 6= m. Indeed,

PnPm = (En − En−1)(Em − Em−1) = EnEm − EnEm−1 − En−1Em + En−1Em−1

so that PnPm = En − En − En−1 + En−1 = 0 when n < m and PnPm = Em − Em−1 −
Em +Em−1 = 0 when m < n. A sequence (dn) in F is called a martingale difference

sequence if dn ∈ RangePn for each n. Note that Pndk equals dk if n = k and zero

otherwise. If we put xn =
∑n

k=1 dk then one can easily verify that (xn) is a martingale.

Conversely, if (xn) is a martingale, then the sequence (dn) defined by d1 = x1 and

dn = xn − xn−1 for n > 1 is a martingale difference sequence. Observe also that if (En)

is dense then for every x ∈ F we have
∑n

k=1 Pkx = Enx → x, so that x =
∑∞

k=1 Pkx,

hence F = ⊕∞k=1 RangePk. Notice that if the ranges of Pk form a finite dimensional

decomposition of F , then Proposition 11 guarantees that M
(
F, (En)

)
is a Banach lattice.

Suppose that (dk) is a martingale difference sequence. Fix a sequence of scalars (αk),

and put xn =
∑n

k=1 αkdk. Clearly, X = (xk) is a martingale, so that∥∥∥ n∑
k=1

αkdk

∥∥∥ = ‖xn‖ 6 ‖xn+1‖ =
∥∥∥n+1∑
k=1

αkdk

∥∥∥.
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It follows that every martingale difference sequence is a monotone basic sequence in F .

14. Operators on martingales

Let F be a Banach lattice, and (En) a filtration on F . Let T ∈ L(F ), a bounded linear

operator from F to F , such that the norm limit

(2) lim
n→∞

EmTxn

exists for every bounded martingale X = (xn) and every m > 1. Denote this limit by

ym and put Y = (ym). Then Y is a martingale: if k 6 m then

Ekym = lim
n→∞

EkEmTxn = lim
n→∞

EkTxn = yk.

Notice that ‖ym‖ 6 ‖T‖‖X‖ for every m, so that Y is bounded and ‖Y ‖ 6 ‖T‖‖X‖. It

follows that T induces an operator in L(M), denote it by T̂ . Clearly, ‖T̂‖ 6 T .

If, in addition, (En) is dense, then we know that F can be identified with the subspace

of M consisting of the convergent martingales of the form (Enx). In this case, T̂|F = T ,

so that ‖T̂‖ = T

Before we discuss for which operators in L(F ) the limit in (2) exists and, therefore, T̂ is

defined, observe that an extension of an opeator from L(F ) to L(M) need not be unique.

Indeed, when F is a KB-space and (En) is dense then M = F ⊕ F d by Proposition 16.

If F d is non-trivial, one can define the extension arbitrarily on F d.

Proposition 28. If T commutes with En for all n then T̂ exists.

Proof. Let X = (xn) be a bounded martingale. If m 6 n, then EmTxn = TEmxn =

Txm, so that (Txn) is a martingale. Put yn = Txn and Y = (yn), then, in particular,

ym = limnEmTxn for every m, so that Y = T̂X. �

Proposition 29. If F is a KB-space and either

(i) TEn > EnT for all n, or

(ii) TEn 6 EnT for all n,

then T̂ exists.

Proof. Let X = (xn) be a bounded martingale in F . It suffices to show that the limit

in (2) exists for all m. By Theorem 7, X is regular, so that we can assume without loss

of generality that X > 0. Notice also that ‖EmTxn‖ 6 ‖T‖‖X‖, so that the sequence

(EmTxn)∞n=1 is norm bounded. If m 6 n then in case (i) we have

EmTxn = EmTEnxn+1 > EmEnTxn+1 = EmTxn+1,
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while in case (ii) we have

EmTxn = EmTEnxn+1 6 EmEnTxn+1 = EmTxn+1,

In either case the sequence (EmTxn)∞n=1 is monotone. Since F is a KB-space, the sequence

converges. �

15. Notes, remarks, and questions

The results of the present paper can be applied to vector-valued martingales based

on vector measures. A beautiful exposition of vector-valued martingales can be found

in [DU77]. In particular, there are deep results characterizing certain properties of a

Banach space X via properties of X-valued martingales in Lp(Ω;X). Notice, that if

F is a Banach lattice, then Lp(Ω;F ) is again a Banach lattice, so that an F -valued

martingale in the sense of [DU77] can be viewed as a martingale in Lp(Ω;F ) in the sense

of the present paper. Note that Lp(Ω;F ) inherits many Banach lattice properties of

F . In particular, one can easily verify that Lp(Ω;F ) has order continuous norm iff F

has order continuous norm, and Lp(Ω;F ) is a KB-space iff F is a KB-space. It should

be noted, however, that a vector-valued martingale which is uniformly integrable with

respect to a vector measure in the sense of [DU77] need not be relatively weakly compact,

so that Theorem 17 might not apply. Many interesting results about spaces Lp(Ω;F ) of

Banach lattice valued martingales can be found in [SW76, Szul78, Szul79].

R. DeMarr in [DeM66] introduced a martingale in a vector lattice F as double se-

quences (xn, En) where xn is an element of F , En is a positive linear projection, EnEm =

En∧m and Enxm = xn whenever n 6 m. DeMarr then generalized the almost everywhere

part of Doob’s Convergence Theorem. Namely, he proved that under certain special

conditions, a martingale in a vector lattice is order convergent.

Dor and Odell in [DO75] studied sequences of projections on Lp(µ) satisfying EnEm =

En∧m and showed that such a sequence can often be reduced to a classical filtration.

The theory of non-commutative martingales is currently an active and promising sub-

ject, see [Um54, PX97, Jun02, Ran02].

We proved in this present paper that in several important special cases M
(
F, (En)

)
and Mr

(
F, (En)

)
are Banach lattices. However, we don’t have an example of a bounded

non-regular martingale. Neither do we know an example where M
(
F, (En)

)
is not a

Banach lattice.

Let F be a Banach lattice with order continuous norm and a weak order unit. It is

known (see, e.g., [LT79, Theorem 1.b.14]) that F is order isometric to a norm dense ideal
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of L1(P ) for some probability space (Ω,F , P ). It would be interesting to know if this

representation could be chosen in such a way that a sequence in F is a martingale if and

only if its image in L1(P ) is a martingale in the classical sense?

In the classical case, given a martingale X = (xn) in L1(P ), one can recover a filtration

with respect to which X is a martingale. Namely, one can take Fn to be the smallest

σ-algebra that makes x1, . . . , xn measurable. In this approach a martingale is a primary

object, while the filtration is recovered from the martingale. It is interesting if there is a

similar procedure in the Banach lattice case. That is, given a sequence (xn) of elements

of a Banach lattice is a martingale, when can one find a filtration (En) with respect to

which (xn) is a martingale?

There are several important martingale inequalities in the classical martingale theory

involving maximal function, martingale transform, subordinate martingales, and escape

numbers, see [BDG72, Bur81, Bur84, Bur01]. It would be interesting to find analogues

of these inequalities in Banach lattice setting.

In the present paper we considered spaces of martingales relative to a fixed filtration. It

would seem natural to consider the set of all martingales corresponding to all filtrations on

a given Banach lattice and to try to establish some order structure on this set. However,

there are certain difficulties on the way, even in the classical setting. For example, let

X = (xn) be the double-or-nothing martingale on the unit interval, and let Y = (yn)

where yn = xn+1, so that Y is just a “shift” of X. Then X and Y are not only distinct,

but even non-comparable in M1. We don’t see any reasonable way to define the X ∨ Y .

In this paper we only dealt with discrete martingales, ordered by positive integers.

Most of the results can be easily generalized to continuous martingales.

The author would like to thank D. Burkholder, E. Emel’yanov, and R. Vershynin for

their interest in the work and numerous suggestions. Thanks are also due to the referee

for helpful remarks. The author is grateful to the University of Alberta for hospitality

and support. This paper would not have existed without inspiring discussions with Yuri

Abramovich, my friend and advisor.

References

[AA02] Y. A. Abramovich and C. D. Aliprantis. An invitation to operator theory, volume 50 of Grad-
uate Studies in Mathematics. American Mathematical Society, Providence, RI, 2002.

[AAB93] Y. A. Abramovich, C. D. Aliprantis, and O. Burkinshaw. An elementary proof of Douglas’
theorem on contractive projections on L1-spaces. J. Math. Anal. Appl., 177(2):641–644, 1993.

[AB85] C. D. Aliprantis and O. Burkinshaw. Positive operators. Academic Press Inc., Orlando, Fla.,
1985.



MARTINGALES IN BANACH LATTICES 19

[BDG72] D. L. Burkholder, B. J. Davis, and R. F. Gundy. Integral inequalities for convex functions of
operators on martingales. In Proceedings of the Sixth Berkeley Symposium on Mathematical
Statistics and Probability (Univ. California, Berkeley, Calif., 1970/1971), Vol. II: Probability
theory, pages 223–240, Berkeley, Calif., 1972. Univ. California Press.

[Bur81] D. L. Burkholder. A geometrical characterization of Banach spaces in which martingale dif-
ference sequences are unconditional. Ann. Probab., 9(6):997–1011, 1981.

[Bur84] D. L. Burkholder. Boundary value problems and sharp inequalities for martingale transforms.
Ann. Probab., 12(3):647–702, 1984.

[Bur01] D. L. Burkholder. Martingales and singular integrals in Banach spaces. In Handbook of the
geometry of Banach spaces, Vol. I, pages 233–269. North-Holland, Amsterdam, 2001.

[DeM66] R. DeMarr. A martingale convergence theorem in vector lattices. Canad. J. Math., 18:424–432,
1966.

[dJ82] E. de Jonge. Bands, Riesz subspaces and projections. Indag. Math., 44(2):201–214, 1982.
[DO75] L. E. Dor and E. Odell. Monotone bases in Lp. Pacific J. Math., 60(2):51–61, 1975.
[Doob53] J. L. Doob. Stochastic processes. John Wiley & Sons Inc., New York, 1953.
[Doob94] J. L. Doob. Measure theory. Springer-Verlag, New York, 1994.
[Doug65] R. G. Douglas. Contractive projections on an L1 space. Pacific J. Math., 15:443–462, 1965.
[DP40] N. Dunford and B. J. Pettis. Linear operations on summable functions. Trans. Amer. Math.

Soc., 47:323–392, 1940.
[DU77] J. Diestel and J. J. Uhl, Jr. Vector measures. American Mathematical Society, Providence,

R.I., 1977. Mathematical Surveys, No. 15.
[Jun02] M. Junge. Doob’s inequality for non-commutative martingales. J. Reine Angew. Math.,

549:149–190, 2002.
[Kr56] K. Krickeberg. Convergence of martingales with a directed index set. Trans. Amer. Math.

Soc., 83:313–337, 1956.
[LT77] J. Lindenstrauss and L. Tzafriri. Classical Banach spaces. I. Springer-Verlag, Berlin, 1977.

Ergebnisse der Mathematik und ihrer Grenzgebiete, Vol. 92.
[LT79] J. Lindenstrauss and L. Tzafriri. Classical Banach spaces. II. Springer-Verlag, Berlin, 1979.
[LZ71] W. A. J. Luxemburg and A. C. Zaanen. Riesz spaces. Vol. I. North-Holland Publishing Co.,

Amsterdam-London, 1971.
[MN91] P. Meyer-Nieberg. Banach lattices. Springer-Verlag, Berlin, 1991.
[PX97] G. Pisier and Q. Xu. Non-commutative martingale inequalities. Comm. Math. Phys.,

189(3):667–698, 1997.
[Ran02] N. Randrianantoanina. Non-commutative martingale transforms. J. Funct. Anal., 194(1):181–

212, 2002.
[Sch74] H. H. Schaefer. Banach lattices and positive operators. Springer-Verlag, New York, 1974. Die

Grundlehren der mathematischen Wissenschaften, Band 215.
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