MARTINGALES IN BANACH LATTICES, II

HAILEGEBRIEL E. GESSESSE AND VLADIMIR G. TROITSKY

ABSTRACT. This note is a follow-up to [Tro05]. We provide several sufficient conditions for the space M of bounded martingale on a Banach lattice F to be a Banach lattice itself. We also present examples in which M is not a Banach lattice. It is shown that if F is a KB-space and the filtration is dense then F is a projection band in M.

INTRODUCTION

This short note is a follow-up to [Tro05], where the second author introduced and studied spaces of bounded martingales on Banach lattices. Let us briefly recall some key definitions from [Tro05]. Throughout this paper, F is a Banach lattice. By a *filtration* on F we mean a sequence (E_n) of positive contractive projections such that $E_n E_m = E_{n \wedge m}$. A sequence (x_n) in F is said to be a *martingale* (a *submartingale*) relative to a filtration (E_n) if $E_n x_m = x_n$ $(E_n x_m \ge x_n, \text{ respectively})$ whenever $n \le m$. A (sub)martingale $X = (x_n)$ is **bounded** if it has finite **martingale norm** given by $||X|| = \sup_n ||x_n||$. We write $M = M(F, (E_n))$ for the space of all bounded martingale on F relative to filtration (E_n) . It is easy to see that M is a Banach space. Also, M can be ordered component-wise, i.e., $(x_n) \leq (y_n)$ if $x_n \leq y_n$ for every n. It is easy to see that, under this order, M is an ordered Banach space and the norm is monotone, i.e., $0 \leq X \leq Y$ implies $||X|| \leq ||Y||$. It was shown in [Tro05] that under certain conditions on F the space M is itself a Banach lattice. In Section 1 of this note, we slightly improve some of these conditions. However, the question whether M is always a Banach lattice was left unanswered in [Tro05]. In Section 2 of this note, we answer this question in the negative by providing examples in which M is not a Banach lattice.

Section 3 is concerned with the case when F is a KB-space. It was shown in [Tro05] that in this case, M is a Banach lattice. It was also claimed in [Tro05] that in this case, F can be identified with a projection band in M. However, the proof of the latter claim in [Tro05] contained a gap. In Section 3 of this note, we present a complete proof of the assertion.

Date: December 18, 2009.

²⁰⁰⁰ Mathematics Subject Classification. 60G48, 46B42.

Key words and phrases. Martingale, filtration, Banach lattice.

1. When is M a Banach lattice?

We start by extending Lemmas 5 and 6 of [Tro05] to weakly convergent sequences. The proofs are analogous.

Lemma 1. Let $X = (x_n)$ and $Y = (y_n)$ be two bounded submartingales.

- (i) For a fixed n, the sequence $(E_n(x_m \vee y_m))_{m=n}^{\infty}$ is increasing, norm bounded by ||X|| + ||Y||, and bounded below by $x_n \vee y_n$.
- (ii) If, in addition, this sequence converges weakly to some (z_n) for each n, then $Z = (z_n)$ is a bounded martingale, and it is the least martingale satisfying $X \leq Z$ and $Y \leq Z$.

Proof. (i) Let $n \leq m$, notice that $E_n(x_m \lor y_m) \geq (E_n x_m) \lor (E_n y_m) = x_n \lor y_n$. Furthermore,

$$E_n(x_{m+1} \lor y_{m+1}) = E_n E_m(x_{m+1} \lor y_{m+1}) \ge E_n(E_m x_{m+1} \lor E_m y_{m+1}) = E_n(x_m \lor y_m).$$

Finally,

$$||E_n(x_m \lor y_m)|| \le ||x_m \lor y_m|| \le |||x_m| + |y_m||| \le ||X|| + ||Y||.$$

(ii) Suppose that w-lim_m $E_n(x_m \vee y_m) = z_n$ for each n, and set $Z = (z_n)$. First, observe that Z is a martingale. Indeed, for $k \leq n$ we have

$$E_k z_n = E_k \left(\underset{m \to \infty}{\text{w-lim}} E_n(x_m \lor y_m) \right) = \underset{m \to \infty}{\text{w-lim}} E_k E_n(x_m \lor y_m) = \underset{m \to \infty}{\text{w-lim}} E_k(x_m \lor y_m) = z_k.$$

Furthermore, by properties of weak convergence, we have

$$||z_n|| \leq \liminf_{m \to \infty} ||E_n(x_m \lor y_m)|| \leq ||X|| + ||Y||$$

for every *n*, so that *Z* is bounded. Since $E_n(x_m \vee y_m) \ge x_n \vee y_n$ whenever $m \ge n$, we have $z_n \ge x_n \vee y_n$ for all *n*. Thus, $Z \ge X$ and $Z \ge Y$. On the other hand, suppose that $\widetilde{Z} = (\widetilde{z}_n)$ is a martingale such that $\widetilde{Z} \ge X$ and $\widetilde{Z} \ge Y$. Then $\widetilde{z}_m \ge x_m \vee y_m$ for all *m*, so that $\widetilde{z}_n = E_n \widetilde{z}_m \ge E_n(x_m \vee y_m)$ for all $m \ge n$. As w-lim_{*m*} $E_n(x_m \vee y_m) = z_n$, this yields $\widetilde{z}_n \ge z_n$, so that $\widetilde{Z} \ge Z$.

Corollary 2. Suppose that w-lim_m $E_n|x_m|$ exists for each n and for each martingale (x_n) in M. Then M is a Banach lattice with lattice operations given by $(X \vee Y)_n =$ w-lim $E_n(x_m \vee y_m)$, $|X|_n =$ w-lim $E_n|x_m|$, etc, for any $X, Y \in M$ with $X = (x_n)$ and $Y = (y_n)$.

Proof. Let $X, Y \in M$, put Z = X - Y, then $Z \in M$. Write $X = (x_n)$, $Y = (y_n)$, and $Z = (z_n)$. Then for $n \leq m$ we have

$$E_n(x_m \vee y_m) = E_n\left(\frac{x_m + y_m}{2} + \frac{|x_m - y_m|}{2}\right) = \frac{x_n + y_n}{2} + \frac{1}{2}E_n|z_m|,$$

which converges weakly as $m \to +\infty$ by the hypothesis. Thus, by Lemma 1, $X \lor Y$ is a bounded martingale. Hence, M is a vector lattice with lattice operation as in the statement.

It remains to show that |||X||| = ||X|| for every $X \in M$. Let Z = |X|. Write $X = (x_n)$ and $Z = (z_n)$. Then $z_n = \text{w-lim}_m E_n |x_m|$ for every n. Let $U = \{f \in F_+^* : ||f|| \leq 1\}$. Then

(1)
$$||z_n|| = \sup_{f \in U} f(z_n) = \sup_{f \in U} \lim_{m \to \infty} f\left(E_n |x_m|\right).$$

Note that for every $f \in U$ we have $f(E_n|x_m|) \leq ||f|| ||E_n|| ||x_m|| \leq ||X||$, so that $||Z|| \leq ||X||$. On the other hand, for $n \leq m$ we have $|x_n| = |E_n x_m| \leq E_n |x_m|$, so that $f(E_n|x_m|) \geq f(|x_n|)$. It follows from (1) that $||z_n|| \geq ||x_n|| = ||x_n||$, hence $||Z|| \geq ||X||$.

It was shown in [Tro05] that if F is a KB-space then M is a Banach lattice. We can now prove the following stronger result.

Corollary 3. Suppose that every increasing norm bounded sequence in F converges weakly. Then M is a Banach lattice. If $X, Y \in M$ with $X = (x_n)$ and $Y = (y_n)$ then $(X \vee Y)_n = \underset{m \to \infty}{\text{w-lim}} E_n(x_m \vee y_m)$.

Proposition 4. If E_n is a band projection for every n then M is a Banach lattice with coordinate-wise lattice operations.

Proof. Let $X = (x_n) \in M$. Then for every $m \ge n$ we have $E_n |x_m| = |E_n x_m| = |x_n|$. The conclusion now follows from Corollary 2.

Theorem 5. If F is order continuous, then the following statements are equivalent.

- (i) M is a Banach lattice.
- (ii) For each n, $(E_n|x_m|)_m$ converges weakly for each $(x_n) \in M$.
- (iii) For each n, $(E_n|x_m|)_m$ converges in norm for each $(x_n) \in M$.

Proof. (i) \Rightarrow (ii) Suppose M is a Banach lattice and let $X = (x_n) \in M$. Then |X| exists in M, say, $|X| = (y_n) \in M$. It follows from $|x_m| \leq y_m$ that $0 \leq E_n |x_m| \leq E_n y_m = y_n$ whenever $n \leq m$. Thus, the sequence $(E_n |x_m|)_{m=n}^{\infty}$ is increasing and bounded above. Since F is order continuous, order interval in F are weakly compact, see, e.g. [AB85, Theorem 12.9]. Hence $(E_n |x_m|)$ has a weakly convergent subsequence. It follows from Lemma 1(i) that $(E_n |x_m|)$ is increasing, hence the entire sequence converges weakly.

(ii) \Rightarrow (iii) By Lemma 1(i), $(E_n|x_m|)_m$ is increasing, and every increasing weakly convergent sequence is norm convergent (see, e.g., Proposition 1.4.1 of [MN91].

 $(iii) \Rightarrow (i)$ This is just a special case of Corollary 2.

2. Examples when M is not a Banach lattice

Example 6. In this example we construct a filtration (E_n) on c_0 such that $M(c_0, (E_n))$ is not a Banach lattice.

As usually, an operator $T \in L(c_0)$ can be represented by an infinite matrix where the *j*-column is Te_j . For n = 0, 1, 2, ..., put

$$E_n = \begin{bmatrix} 1 & & & & \\ & \ddots & & & \\ & & 1/2 & 1/2 & & \\ & & & 1/2 & 1/2 & & \\ & & & & & 1/2 & 1/2 & \\ & & & & & & & 1/2 & 1/2 & \\ & & & & & & & & \ddots \end{bmatrix}$$

with 2n ones in the upper-left corner. In other words,

 $E_n e_i = e_i$ if $i \leq 2n$, and $E_n e_{2k-1} = E_n e_{2k} = \frac{1}{2}(e_{2k-1} + e_{2k})$ when n < k. Note that E_0 has no 1's at all. It is easy to see that (E_n) is a dense filtration. Furthermore, for $n = 0, 1, 2, \ldots$, put

$$x_n = (\underbrace{-1, 1, \dots, -1, 1}_{2n}, 0, \dots).$$

It is easy to see that (x_n) is a bounded martingale relative to (E_n) . On the other hand,

$$E_0|x_n| = (\underbrace{1, 1, \dots, 1, 1}_{2n}, 0, \dots).$$

Clearly, $E_0|x_n|$ diverges, so that M is not a Banach lattice by Theorem 5.

Example 7. This is another example where M is not a Banach lattice. For the definition and properties of vector-valued L_p -spaces we refer the reader to [DU77]. Suppose that Xis a Banach space, and let a sequence $(a_n)_{n=0}^{\infty}$ in X be a tree, that is, $a_n = \frac{1}{2}(a_{2n+1}+a_{2n+2})$ for every n. Now define a sequence (x_n) in $L_1([0,1], X)$ via

$$\begin{aligned} x_0 &= a_0 \chi_{[0,1]}, \\ x_1 &= a_1 \chi_{[0,\frac{1}{2})} + a_2 \chi_{[\frac{1}{2},1]}, \\ x_2 &= a_3 \chi_{[0,\frac{1}{4})} + a_4 \chi_{[\frac{1}{4},\frac{2}{4})} + a_5 \chi_{[\frac{2}{4},\frac{3}{4})} + a_6 \chi_{[\frac{3}{4},1]}, \\ &\text{etc.} \end{aligned}$$

Then (x_n) is a martingale in the sense of [DU77] relative to the dyadic filtration of [0, 1].

Now, suppose that X is a Banach lattice. Then $L_1([0,1],X)$ also is a Banach lattice. Next, we define a sequence of projections on $L_1([0,1],X)$ as follows. For $f \in L_1([0,1],X)$, we put

$$E_{0}f = \left(\int_{0}^{1} f\right)\chi_{[0,1]},$$

$$E_{1}f = 2\left[\left(\int_{0}^{1/2} f\right)\chi_{[0,\frac{1}{2})} + \left(\int_{1/2}^{1} f\right)\chi_{[\frac{1}{2},1]}\right],$$

$$E_{2}f = 4\left[\left(\int_{0}^{1/4} f\right)\chi_{[0,\frac{1}{4})} + \left(\int_{1/4}^{2/4} f\right)\chi_{[\frac{1}{4},\frac{2}{4})} + \left(\int_{2/4}^{3/4} f\right)\chi_{[\frac{2}{4},\frac{3}{4})} + \left(\int_{3/4}^{1} f\right)\chi_{[\frac{3}{4},1]}\right],$$
etc.

It is easy to see that (E_n) is a filtration on $L_1([0,1], X)$, and (x_n) is a martingale in $L_1([0,1], X)$ relative to this filtration.

Now put $X = c_0$ and let $F = L_1([0, 1], c_0)$. Let (x_k) be defined as above with

$$a_0 = (0, \dots),$$

$$a_1 = (1, 0, \dots), \qquad a_2 = (-1, 0, \dots),$$

$$a_3 = (1, 1, 0, \dots), \qquad a_4 = (1, -1, 0, \dots), \qquad a_5 = (-1, 1, 0, \dots), \qquad a_6 = (-1, -1, 0, \dots),$$

etc. In other words, $x_n = (r_1, \ldots, r_n, 0, \ldots)$, where r_k is the k-th Rademacher function. Then $||x_n|| = 1$ for every n. However,

$$E_0|x_n| = (\underbrace{\mathbb{1}, \dots, \mathbb{1}}_{n \text{ times}}, 0 \dots).$$

Again, $E_0|x_n|$ diverges, so that M is not a Banach lattice by Theorem 5.

3. How does F sit in M?

Again, throughout this section we assume that F is a Banach lattice, (E_n) is a filtration on F, and $M = M(F, (E_n))$. Moreover, we will assume that (E_n) is **dense**, i.e., $E_n x \to x$ for every $x \in F$. It was observed in Section 8 of [Tro05] that in this case a bounded martingale (x_n) converges iff it is **fixed**, i.e., there exists $x \in F$ such that $x_n = E_n x$ for every n. Clearly, in this case we have $x_n \to x$.

Define $\varphi \colon F \to M$ via $\varphi(x) = (E_n x)_{n=1}^{\infty}$. It is clear that φ is an isometry. We claim that φ is a lattice homomorphism, so that F is lattice isometric to a closed subspace of M.

Indeed, take any $x, y \in F$ and put $x_n = E_n x$ and $y_n = E_n y$ for all n. Since the lattice operations are continuous, we have $x_n \vee y_n \to x \vee y$. Hence, for every n we have

$$\lim_{m \to \infty} E_n(x_m \lor y_m) = E_n\left(\lim_{m \to \infty} x_m \lor y_m\right) = E_n(x \lor y)$$

It follows from Lemma 1 that $\varphi(x) \lor \varphi(y) = \varphi(x \lor y)$. Finally,

$$\varphi(x \wedge y) = -\varphi\big((-x) \vee (-y)\big) = -\big(\varphi(-x) \vee \varphi(-y)\big) = \varphi(x) \wedge \varphi(y).$$

Lemma 8. Suppose that F is order continuous and M is a Banach lattice. Then M is order complete. If, in addition, (E_n) is dense, then $\varphi(F)$ is an ideal in M.

Proof. First, show that M is order complete. Suppose that $0 \leq X^{(\alpha)} \uparrow \leq X$ in M. Put $X = (x_n)$ and $X^{(\alpha)} = (x_n^{(\alpha)})$. Then $0 \leq x_n^{(\alpha)} \uparrow \leq x_n$ for every n. Since F is order continuous, for every n there exists y_n such that we have $x_n^{(\alpha)} \to y_n$. Put $Y = (y_n)$. It is easy to see that Y is a martingale. It follows from $0 \leq Y \leq X$ that Y is bounded, hence $Y \in M$.

Now suppose that (E_n) is dense. Put $M_0 = \varphi(F)$. Then F is lattice isometric to M_0 . Show that M_0 is an ideal in M. Suppose that $0 \leq X \leq Y$ for some $X \in M$ and $Y \in M_0$. Put $X = (x_n)$ and $Y = (y_n)$. Then $0 \leq x_n \leq y_n$ for every n and there exists $y \in F$ such that $y_n = E_n y$ for all n. Fix $\varepsilon > 0$. It follows from $y_n \to y$ that there exists n_0 such that $||y_n - y|| < \varepsilon$ whenever $n \ge n_0$. It follows that

$$|x_n - x_n \wedge y| = |x_n \wedge y_n - x_n \wedge y| \leq |y_n - y|,$$

so that $||x_n - x_n \wedge y|| < \varepsilon$. If follows from $x_n \wedge y \in [0, y]$ that $x_n \in [0, y] + B_{\varepsilon}$ for all $n \ge n_0$. Therefore, (x_n) is almost order bounded. Hence, it converges by Corollary 19 of [Tro05]. Hence, $X \in M_0$. Now suppose that $Y \in M_0$ and $X \in M$ such that $|X| \le Y$. Then $0 \le X^+, X^- \le Y$, so that $X^+, X^- \in M_0$ and, therefore, $X \in M_0$. Thus, M_0 is an ideal.

Now we are ready to present a new proof of Proposition 16 of [Tro05].

Theorem 9. If F is a KB-space and (E_n) is dense then $\varphi(F)$ is a projection band in M.

Proof. By Theorems 7 of [Tro05] and Lemma 8, M is an order complete Banach lattice. Again, denote $M_0 = \varphi(F)$. By Lemma 8, M_0 is an ideal in M. It is left to show that M_0 is a band because every band in an order complete lattice is a projection band by Theorems 3.8 of [AB85].

To show that M_0 is a band, suppose that $0 \leq X^{(\alpha)} \uparrow X$ for some net $(X^{(\alpha)})$ in M_0 and some $X \in M$. Put $X = (x_n)$ and $X^{(\alpha)} = (x_n^{\alpha})$. Let $X^{(\alpha)} = \varphi(x^{(\alpha)})$ for some $x^{(\alpha)} \in F$. Clearly, $||x^{(\alpha)}|| = ||X^{(\alpha)}|| \leq ||X||$ for every α , hence the net $(x^{(\alpha)})$ is norm bounded. Since F is a KB-space, this net converges in norm to some $y \in F$, see [AB85, p. 225]. It follows also that $x^{(\alpha)} \uparrow y$ in F. Put $Y = \varphi(y)$, $Y = (y_n)$. For every α we have $x^{(\alpha)} \leq y$, so that $X^{(\alpha)} \leq Y$, hence $X \leq Y$. On the other hand, $x^{(\alpha)} \to y$ implies $\lim_{\alpha} x_n^{(\alpha)} = y_n$ for every *n*. Together with $x_n^{(\alpha)} \leq x_n$ this implies $y_n \leq x_n$, so that $Y \leq X$. Thus, X = Y, so that $X \in M_0$.

References

- [AB85] C. D. Aliprantis and O. Burkinshaw, Positive operators. Academic Press Inc., Orlando, Fla., 1985.
- [CL07] S. F. Cullender and C. C. A Labuschagne, Unconditional Schauder decompositions and stopping times in the Lebesgue-Bochner spaces. J. Math. Anal. Appl., 336 (2007), no. 2, 849–864.
- [DU77] J. Diestel and J. J. Uhl, Jr., Vector measures. American Mathematical Society, Providence, R.I., 1977. Mathematical Surveys, No. 15.
- [MN91] P. Meyer-Nieberg, Banach lattices. Springer-Verlag, Berlin, 1991.
- [Tro05] V.G. Troitsky, Martingales in Banach lattices, *Positivity*, no. 9(3), 2005, 437–456.

DEPARTMENT OF MATHEMATICAL AND STATISTICAL SCIENCES, UNIVERSITY OF ALBERTA, ED-MONTON, AB, T6G 2G1. CANADA.

E-mail address: vtroitsky@math.ualberta.ca, hgessesse@math.ualberta.ca