
INVARIANT SUBLATTICES

HEYDAR RADJAVI AND VLADIMIR G. TROITSKY

Abstract. This paper is concerned with the problem of existence of invariant sub-
lattices for a positive matrix or a positive operator on Lp(µ). Common invariant
sublattices for certain semigroups of positive operators are constructed. The paper
also provides extensions of Perron-Frobenius Theorem.

0. Preliminaries and notation

This paper investigates a special case of the Invariant Subspace Problem . Sup-

pose that X is a Banach space and T is a (bounded linear) operator on X, that

is, T ∈ L(X). A closed subspace Y of X is said to be invariant under T if

T (Y ) ⊆ Y . To make exposition simpler, whenever we mention an invariant subspace,

we will always assume that it is non-zero and proper unless we specify otherwise. It is

known [Enf76, Enf87, Rea84] that there exist operators on some infinite-dimensional

Banach spaces with no invariant closed subspaces. On the other hand, since every ma-

trix has a complex eigenvalue, it follows that if dimX < ∞ and either X is complex

or X is real with dimX > 2, then every operator on X has an invariant subspace.

In this paper the symbol X will usually stand for a real Banach lattice. Given an

operator T on X, one can investigate the existence of invariant subspaces of T satisfying

some additional conditions related to the order structure of X. In particular, one may

be concerned with the existence of ideals or sublattices of X invariant under T . Recall

that a subspace E of X is a sublattice if it is closed under the lattice operations.

That is, for any x, y ∈ E we have x ∧ y and x ∨ y belong to E. It follows that x+,

x−, and |x| are in E. A subspace E of a Banach lattice X is an ideal if x ∈ E and

|y| 6 |x| imply y ∈ E. It is easy to see that every ideal is a sublattice. In `p with

1 6 p <∞ the closed ideals are exactly the subspaces of the form [ei]i∈A where A ⊆ N

(here (ei) stands for the canonical basis of `p; throughout the paper, [xi]i∈A stands for
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the closed linear span of {xi}i∈A). In particular, this gives a complete description of

ideals in R
n.

In Section 1 we discuss characterizations of operators with no invariant ideals. We

then proceed to describe among operators with no invariant ideals those which have

invariant sublattices.

Recall that an operator T on a Banach lattice is said to be positive if Tx > 0

whenever x > 0. For matrices, this is equivalent to all the entries of the matrix being

nonnegative. This is also true for operators on `p or c0. Indeed, if T is an operator on

`p or c0, we can view it as an infinite matrix with entries tij = (Tej)i. In this case,

again, T > 0 if and only if tij > 0 for all i, j ∈ N.

Note that every positive (finite) matrix has an invariant sublattice. Indeed, suppose

that A is a positive matrix in Mn(R). If it has an invariant ideal, we are done. Other-

wise, the Perron-Frobenius Theorem (see, e.g., Corollary 5.2.3 in [RR00]) guarantees

that A has a unique positive eigenvector x, and the corresponding eigenvalue equals

the spectral radius r(A) of A. Then [x] is a one-dimensional A-invariant sublattice.

The situation is similar for a positive compact operator T on an arbitrary Banach

lattice. Indeed, if T is quasinilpotent, then it has an invariant closed ideal, see [dP86].

On the other hand, if T is not quasinilpotent, then its spectral radius is a positive

real number, and is actually an eigenvalue corresponding to a positive eigenvector,

see [KR48]. In either case, T has an invariant sublattice.

The situation is quite different if we drop either the condition that T is positive

or the condition that T is compact. In a recent paper [KW], the authors present

several examples of positive operators on Banach lattices with no invariant sublattices.

In Section 2 we present a few examples of non-positive operators with no invariant

sublattices.

In Section 3 we provide a complete characterization of matrices that have invariant

sublattices. In Section 4 we investigate the structure of semigroups of positive matrices

with no invariant ideals. In particular, Theorem 4.7 provides sufficient conditions for

such a semigroup to have an invariant sublattice. In Section 5 we present infinite

dimensional versions of the results of the preceding sections in `p, c0, and Lp(µ).

For a vector x in Rn, `p, or c0 we will write supp x for the support of x, i.e., suppx =

{i ∈ N | xi 6= 0}. We say that x is strictly positive if xn > 0 for every n. For an

element x in a Banach lattice, we write x > 0 if x > 0 but x 6= 0; we follow the same

convention for matrices and operators. Following [RR00], whenever we consider Lp(µ),

µ will stand for a σ-finite regular Borel measure on a Hausdorff-Lindelöf space, and



INVARIANT SUBLATTICES 3

1 6 p < ∞. A projection is an idempotent operator. A collection A of matrices

is said to satisfy some property up to a permutation if there exists a permutation

matrix P such that P−1AP satisfies the required property.

For convenience of the reader, in the rest of this section we collect a few known results

that we will be using throughout the paper. We give corresponding theorem numbers

in [RR00]. We should warn the reader that our notation differs considerably from the

one used in [RR00], as we use terminology commonly accepted in the literature on

Banach lattices.

Theorem 0.1 (Perron-Frobenius, 5.2.13). If A is a positive matrix in Mn(R) then its

spectral radius r(A) is an eigenvalue corresponding to a positive eigenvector. Moreover,

if A has no invariant ideals, then this eigenvector is strictly positive and unique up to

scaling.

Lemma 0.2 ([Mar99, Mar02], 5.1.5, 8.7.6). For a semigroup S of positive operators

in Mn(R) or on Lp(µ), the following statements are equivalent

(i) S has an invariant closed ideals;

(ii) ASB = {0} for some non-zero positive operators A and B;

(iii) Some semigroup ideal in S has an invariant closed ideals.

Theorem 0.3 ([Mar99, Mar02], 5.1.13, 8.7.27). Every semigroup of positive projections

of finite rank on Lp(µ) with minimal rank greater than one has a closed invariant ideal.

Theorem 0.4 ( [Zho93, Mar99, Mar02], 5.1.9, 8.7.12, 9.4.10). Let S be a semigroup of

positive projections in Mn(R) of constant rank r. Then, up to a permutation, S has a

common block form, so that all the non-zero A ∈ S are of one of the following forms:

A =

0 Y E Y EX
0 E EX
0 0 0

 , or A =

[
0 Y E
0 E

]
, or A =

[
E EX
0 0

]
, or A = E,

where X and Y are some matrices and

E =

E1

. . .
Ek

 ,
with each Ei of the form xi ⊗ yi where xi and yi are strictly positive vectors with

〈xi, yi〉 = 1. Moreover, if no row or column is zero in all the matrices in S, then we

have the case A = E.

We say that S a semigroup of positive operators on a Banach lattice is R+-closed

if S is norm closed and αA ∈ S whenever A ∈ S and α ∈ R+. If P and Q are two
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projections in S, we write P 6 Q if RangeP ⊆ RangeQ and kerP ⊇ kerQ. A non-

zero projection P in S is said to be minimal if it is minimal with respect to this order

or, equivalently, if PE = EP = E implies E = P for every non-zero projection in S.

Theorem 0.5 ([Rad99], 5.2.2, 8.7.17, 5.2.6, 8.7.20). Let S be an R
+-closed semigroup

of positive compact operators on Lp(µ) or of positive matrices in Mn(R) such that S
has no invariant closed ideals. Then

(i) (a) The minimal rank r of operators in S is finite;

(b) A projection P in S is minimal iff rankP = r;

(c) For each A ∈ S of rankA = r there exists a minimal projection P in S
such that PA = A.

(ii) For each vector x > 0 there exists a minimal projection P in S such that

Px 6= 0; for each functional φ > 0 there exists a minimal projection P ∈ S
such that φ in non-zero on RangeP . In particular, in the finite-dimensional

case, with S viewed as a subset of Mn(R), for each i there exists a minimal

projection in S whose i-th row is non-zero; same for the columns.

(iii) If all the minimal projections in S have the same range, then there exists an

almost everywhere positive vector x such that Ax = r(A)x for all A ∈ S. This

vector is unique up to scaling.

Theorem 0.5(iii) yields the following extension of Theorem 0.1.

Corollary 0.6 ([Rad99], 8.7.23). Let S be a commutative semigroup of positive com-

pact operators on Lp(µ) such that S has no invariant closed ideals. Then there exists

an almost everywhere positive vector x such that Ax = r(A)x for all A ∈ S. This

vector is unique up to scaling.

Theorem 0.7 ([Rad85], 7.4.5). Let S be an R
+-closed semigroup of compact operators

on a Banach space. If S contains a non-quasinilpotent operator, then S contains a

non-zero finite-rank operator which is either a projection or a nilpotent operator of

index 2.

Theorem 0.8 ([Tur99], 8.1.11). Every semigroup of compact quasinilpotent operators

on a Banach space has an invariant closed subspace.

Theorem 0.9 ([Drn01], 8.7.9). Every semigroup of positive compact quasinilpotent

operators on Lp(µ) has an invariant closed ideal.
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1. Invariant ideals

It is easy to construct an operator with no invariant ideals, even in the finite-

dimensional case. For example, it is trivial that every matrix A ∈ Mn(R) such that

aij > 0 for every i, j has no invariant ideals. Similarly, suppose that E is a Banach

lattice with a strong order unit u, and f is a strictly positive functional in E∗, i.e.,

f(x) > 0 whenever x > 0, then the rank one operator f ⊗ u has no invariant ideals.

The following well known fact follows immediately from the preceding description

of ideals in R
n.

Proposition 1.1. A positive matrix A has an invariant ideal if and only if, up to a

permutation, A is of the form [ B C
0 D ], where B and D are square matrices.

It is easy to see that Proposition 1.1 remains valid for positive operators on `p spaces.

Namely, such an operator has an invariant closed ideal if, after a permutation of the

basis, it can be written in the block form [ B C
0 D ] .

We proceed to another characterization of positive operators on `p spaces with no

invariant closed ideals. Let T be an operator on `p, 1 6 p < ∞ and let (tij) be the

infinite matrix of T , i.e., tij = (Tej)i. Fix two positive integers i and j. We say that

there is an arc from i to j (write i → j), if (Tei)j = tji 6= 0. We say that there is a

path of length n from i to j if there is a sequence of n arcs, going from i to j:

i = k0 → k1 → · · · → kn = j,

or, equivalently, if (T nei)j 6= 0. In other words, after applying T n times some weight

from the i-th coordinate ends up at the j-th coordinate.

Proposition 1.2. Let T be a positive operator on `p, 1 6 p < ∞ or c0. Then T has

no closed invariant ideals if and only if for every two different positive integers i and

j there is a finite path from i to j.

Proof. Suppose that there is a finite path between every two indices. Let V be a closed

T -invariant ideal, then there is a positive vector x in V . Since xi > 0 for some index i,

we have ei ∈ V . By hypothesis, there is a finite path form i to j for every index j, so

that (T nei)j > 0. But since V is T -invariant we have T nei ∈ V , and we conclude that

ej ∈ V for every index j. Thus V is the whole space.

Now, assume that there is no finite path from i to j. We would like to find an

invariant closed ideal. If Tei = 0 then [ei] is such an ideal. Suppose Tei 6= 0, then the

set of all positive integers k such that there is a path from i to k is non-empty; call



6 H. RADJAVI AND V. G. TROITSKY

this set A. Then j /∈ A, so that V = [ek]k∈A is a proper non-trivial closed ideal in `p.

Finally, show that V is T -invariant. Let k ∈ A, so that there is a finite path from i

to k. Notice that if (Tek)m 6= 0 for some m then there is an arc from k to m. It follows

that there is a finite path from i to m, and therefore m ∈ A. Therefore, Tek ∈ V ,

hence T (V ) ⊆ V . �

A review of results about the existence of closed invariant ideals for positive quasi-

nilpotent operators on Banach lattices can be found in in [AA02]. In particular, every

positive quasinilpotent operator on `p with 1 6 p <∞ has a closed invariant ideal.

2. Special classes of operators with no invariant sublattices

In this section we present a few simple examples of operators which have no invariant

subspaces containing positive vectors. It should be clear that such operators have no

invariant sublattices.

Proposition 2.1. For every n > 2 there exists a matrix A ∈ Mn(R) such that no

proper invariant subspace of A contains a positive vector.

Proof. Let N be the nilpotent forward shift operator, that is,

Nei =

{
ei+1 if i < n,

0 if i = n.

Let U be a unitary matrix such that Ue1 = (e1 + · · ·+ en)/
√
n. Clearly, such a matrix

exists. Since N and, therefore UNU−1 is nilpotent of order n, it is unicellular (that

is, the set of its invariant subspaces is totally ordered by inclusion). Therefore, all

the invariant subspaces of UNU−1 are contained in RangeUNU−1. Since U−1 is a

bijection, we have

M := RangeUNU−1 = RangeUN = U
(
RangeN

)
= U [ei]

n
i=2 = (Ue1)⊥.

It follows that M is a 1-codimensional subspace consisting exactly of the vectors whose

coordinates sum up to zero. In particular, M contains no positive vectors. �

Proposition 2.2. There exist operators in L2 and in `2 none of whose proper invariant

subspaces contain a positive vectors.

Proof. Let T be the adjoint Donahue operator on `2 given by Ten = en+1/n for all

n ∈ N. Then T is quasinilpotent, and LatT consists exactly of the subspaces of the

form [ei]
∞
i=m, for some m ∈ N; see [RR03] for details. Let M = [ei]

∞
i=2. Then M is of

co-dimension one and is the greatest proper invariant subspace of T .



INVARIANT SUBLATTICES 7

Let f be a strictly positive functional on L2 or on `2, and let N = ker f . Then N is

a subspace of co-dimension one, containing no positive vectors. There is a unitary U

from L2 to `2 or from `2 to `2 respectively such that N = U−1MU . It follows that N

is the greatest proper invariant subspace of U−1TU , so that no invariant subspace of

U−1TU contains positive vectors. �

Next, we consider signed cyclic permutation. By a signed cyclic permutation

on R
n we mean an operator A of the form Aei = ±eσ(i), where σ is a permutation of

{1, . . . , n} of order n. It is easy to see that, up to a permutation corresponding to σ,

we have Aei = ±e(i+1) modn as 1 6 i 6 n.

Proposition 2.3. Suppose that A ∈Mn is a matrix given by

Aei =

{
ei+1 if 1 6 i 6 k,

−e(i+1) modn if k < i 6 n

for some k < n. Then A has no invariant sublattices.

Proof. Note that |A| is the forward shift operator given by Sei = e(i+1) modn for all i 6 n.

Suppose that M is a non-trivial invariant sublattice for A. We claim that 1 is in M .

Indeed, M contains a positive vector, say x = (α1, . . . , αn)T . Let h =
∑n−1

i=0

∣∣Aix∣∣; then

h is in M . It follows from
∣∣Ajx∣∣ = Sjx that every coordinate of h equals α1 + · · ·+αn,

hence h is a non-zero multiple of 1, so that 1 ∈M .

Let z1 = 1. By the preceding argument we have z1 ∈M . Then

Az1 = (−1, 1, . . . , 1︸ ︷︷ ︸
k

,−1, . . . ,−1)T .

Let z2 = (Az1)+, then z2 ∈M .

Az2 = (0, 0, 1, . . . , 1︸ ︷︷ ︸
k−1

,−1, 0, . . . , 0)T .

Put z3 = (Az2)+. Proceeding like this we get zk = ek ∈ M . It follows immediately

that ei ∈M for all i, so that M = X. �

3. Matrices with no invariant sublattices

Recall that in Section 1 we described the matrices that have invariant ideals. In

this section we provide a complete characterization of matrices that have no invariant

ideals but have invariant sublattices. We start by characterizing the sublattices of Rn.

Lemma 3.1. Every sublattice of Rn has a basis consisting of positive pairwise disjoint

vectors.
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Proof. Suppose that L is a sublattice of Rn and let {z1, . . . , zm} be a set of pairwise

disjoint positive vectors in L of maximal cardinality. We will show that L = [zk]
m
k=1.

Suppose not, and take any y ∈ L \ [zk]
m
k=1. Then either y+ or y− fails to be in [zk]

m
k=1,

so that we can assume that y > 0. Notice that supp y ⊆
⋃m
k=1 supp zk, as, otherwise,(

y − λ(z1 + · · ·+ zm)
)+

is a non-zero element of L for every λ ∈ R+; but it is disjoint

from every zk for a sufficiently large λ ∈ R+, this would contradict the maximality of

{z1, . . . , zm}.
It follows from supp y ⊆

⋃m
k=1 supp zk that y = P1y + · · · + Pmy where Pk is the

standard projection onto supp zk. Then Pky is not a multiple of zk for some k 6 m.

Without loss of generality, k = m. For a sufficiently large λ ∈ R+ the support of

x =
(
y−λ(z1 + · · ·+zm−1)

)+
is contained in supp zm. Since x = Pmx = Pmy, it follows

that x is not a multiple of zm. Then we can find a real µ > 0 such that if we put

u = (x−µzm)+ then u 6= 0 and suppu ( supp zm. It follows that u ⊥ (zm−νu)+ for a

sufficiently large ν ∈ R+. Put v = (zm−νu)+; then v ⊥ u and supp v ⊂ supp zm. Then

{z1, . . . , zm−1, u, v} is a set of pairwise disjoint positive vectors in L; a contradiction. �

Note that this lemma may be viewed as a special case of [AB99, Theorem 12.11].

Suppose that L is a sublattice of Rn and z1, . . . , zm are as in Lemma 3.1. We can

find a permutation matrix P such that Pz1, . . . , P zn have consecutive supports, i.e.,

min supp z1 = 1 and 1 + max supp zk = min supp zk+1 for all k < m. Recall that a

vector v is a component of 1 if vi ∈ {0, 1} for all i. We can find a diagonal matrix

D with all diagonal entries strictly positive such that DPzk is a component of 1 for

every k = 1, . . . ,m. Thus, we have the following characterization.

Corollary 3.2. If L is a sublattice of Rn then, up to a permutation and a positive

diagonal similarity, L has a basis (zk)
m
k=1 such that zk’s are components of 1 with

successive supports.

Corollary 3.3. Every sublattice L of Rn is, up to a permutation and a positive diagonal

similarity, the range of a projection of the following form:

E = Ẽ or

[
Ẽ 0
0 0

]
, such that Ẽ =

K1

. . .
Km

 , where Kk =
1

lk


1 1 . . . 1
1 1 . . . 1
...

...
. . .

...
1 1 . . . 1

 ,
and lk is the size of Kk.

Proof. Find a basis of L as in Corollary 3.2, and take lk to be the cardinality of

supp zk �
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The following lemma is standard.

Lemma 3.4. Let X be a Banach space, P a projection on X, and A any operator

on X. Then RangeP is invariant under A iff AE = EAE.

We say that a matrix is constant-row if the entries of every row add up to same

number. We say that the matrix is zero-row if this number is zero (for all the rows).

If this number is 1 and the matrix is non-negative, we say that the matrix is row-

stochastic.

Remark 3.5. Next, we describe the general structure of a matrix with an invariant

sublattice. Suppose that A ∈Mn and L is a proper invariant sublattice. Let E, Ẽ, and

K1, . . . , Km be as in Corollary 3.3. By Lemma 3.4, we have AE = EAE. Write A in

block form A = (Ai,j) matching the block form of E given in Corollary 3.3. This block

form is m×m if E = Ẽ and (m+1)×(m+1) if E =
[ eE 0

0 0

]
. Expanding AE = EAE, we

get KiAi,jKj = Ai,jKj for all i, j 6 m. Recalling the structure of Ki and Kj, it follows

that all the rows of Ai,j have identical averages, hence Ai,j is a constant-row matrix.

Furthermore, if the block form is (m + 1) × (m + 1) then we also have Am+1,jKj = 0

for all j 6 m, hence all the rows of Am+1,j have zero sums, so that Am+1,j is zero-

row. Summarizing, after a permutation and a diagonal similarity, one can write A in

a block form such that Ai,j is constant-row for all i, j 6 m, and, if the block form

is (m + 1) × (m + 1), then all Am+1,j are zero-row for all j 6 m. Conversely, it is

easy to see that if A is a matrix with such structure then AE = EAE and, therefore,

L is invariant under A. Hence, we obtained a characterization of matrices leaving L

invariant. The trivial case when all the blocks are 1 × 1 corresponds to the situation

when L is the entire space.

Now suppose that, in addition, A is positive and have no invariant ideals. It follows

that the block form above is m×m because otherwise Am+1,j = 0 for each 1 6 j 6 m,

but then A would have an invariant ideal by Proposition 1.1. Hence, we end up with

the following simpler characterization.

Theorem 3.6. Suppose that A ∈Mn is positive and has no invariant ideals. Then A

has an invariant sublattice if and only if A can be written, up to a permutation and a

positive diagonal similarity, in a block form where each block is a constant-row matrix,

the diagonal blocks are square, and not all the blocks are 1× 1.
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Recall that a positive matrix with no invariant ideals must always have at least one

invariant sublattice; namely, the one dimensional sublattice spanned by the positive

eigenvector, whose existence is guaranteed by Theorem 0.1.

Theorem 3.7. Suppose A is a positive matrix with no invariant ideals. Then A has

a one-dimensional invariant sublattice which is contained in every invariant sublat-

tice. Furthermore, if the spectral radius of A is 1, then the block form of A given by

Theorem 3.6 can be chosen to be row-stochastic.

Proof. Theorem 0.1 guarantees that A has a strictly positive eigenvector h, correspond-

ing to r(A), unique up to scaling. Hence h spans a one-dimensional invariant sublattice.

We will show next that this sublattice is contained in every invariant sublattice. In-

deed, let L be an invariant sublattice for A. Find a basis (zk)
m
k=1 as in Corollary 3.2

(after a permutation and a positive diagonal similarity). Then
∨m
k=1 zk = 1 as, oth-

erwise, the ideal generated by L would be proper and invariant under A. As in the

proof of Theorem 3.6 we conclude that the blocks of A corresponding to the supports

of z1, . . . , zm are constant-row.

Let A0 be the matrix of the restriction of A to L with respect to (zk)
m
k=1; then

A0 > 0. Note that the restriction has no invariant ideals in L as such an ideal would

generate an A-invariant ideal in the entire space. Again, Theorem 0.1 yields that A0

and, therefore, A have a strictly positive eigenvector in L. Since h is the unique (up to

scaling) strictly positive eigenvector of A, it follows that h ∈ L. Thus, h is contained

in every A-invariant sublattice.

It also follows that h =
∑m

i=1 γizi for some positive γ1, . . . , γm. Let

D =


γ1I1

γ2I2

. . .
γmIm

 ,
where Ik is the identity matrix of dimension #(supp zk) for k = 1, . . . ,m. Then

D1 = h. If the spectral radius of A is one, then Ah = h, so that D−1AD1 = 1, hence

D−1AD is row-stochastic. It should be clear that the block structure of D−1AD is the

same as that of A, and the blocks of D−1AD are still constant-row. �

Theorem 3.8. There is a positive matrix with no invariant ideals and exactly one

invariant sublattice.
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Proof. Let 0 < r1 < · · · < rn <
1
2
. For i = 1, . . . , n choose Ri > 0 so that the matrix

A =


R1 r1 r2

1 . . . rn−1
1

R2 r2 r2
2 . . . rn−1

2
...

...
Rn rn r2

n . . . rn−1
n


is row stochastic. Clearly, A has no invariant ideals and 1 is the Perron-Frobenius

positive eigenvector of A. We will use Theorems 3.6 and 3.7 to show that the span of 1

is the only invariant sublattice of A. Indeed, suppose that L is an invariant sublattice.

Theorem 3.7 yields 1 ∈ L. It follows that there is a basis of L consisting of components

of 1, so that we can write A in a constant-row block form as in Theorems 3.6 and 3.7

using only a permutation, without a diagonal similarity. If there is only one n × n

block then we are done. Suppose that there is a proper constant-row block made up

of the entries in rows i1 < · · · < im and columns j1 < · · · < jk of the original matrix.

Without loss of generality we can assume that m > 1 and j1 6= 1; otherwise consider

another block in the same row of blocks. Then the sums of the first two rows of this

block satisfy

rj1−1
i1

+ · · ·+ rjk−1
i1

< rj1−1
i2

+ · · ·+ rjk−1
i2

,

which contradicts the block being constant-row. �

Next, we will present another corollary of Remark 3.5. An n×n matrix A is a signed

permutation matrix if Aei = ±eσ(i), where σ is a permutation of {1, . . . , n}.

Corollary 3.9. Suppose that A is a signed permutation matrix with no invariant ideals.

Then A has an invariant sublattice if and only if A is of the following block form up

to a permutation

(1) A =


0 0 . . . 0 ±S
±I 0 . . . 0 0

0 ±I . . .
...

...
. . .

...
0 ±I 0

 , where S =


0 . . . 0 1

1
. . . 0
. . . . . .

...
1 0


where all the blocks are square and are of the same size greater than one.

Proof. Suppose that Aei = ±eσ(i), where σ is a permutation of {1, . . . , n}. Since A has

no invariant ideals, σ is of order n, so that A is a signed cyclic permutation. Suppose

that A has an invariant sublattice; then we can apply Remark 3.5. Since, even after a

permutation and a positive diagonal similarity, A will still have exactly one non-zero

entry in every row, the block form in Remark 3.5 has to be m×m. Furthermore, only
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one block in every row of blocks is non-zero. For the same reason there cannot be any

block with its vertical dimension exceeding its horizontal dimension. But this implies

that all the blocks are square. It follows, furthermore, that all the blocks must have

the same dimension, say k, and k > 1. Then n has to be divisible by k; let m = n
k
.

Thus, the pattern of non-zero blocks in A follows an m × m permutation matrix P .

Again, since A has no invariant ideals, P must be given by a permutation of order m.

In other words, up to another permutation, we may assume that P = S, the forward

shift matrix, so that

A =


0 0 . . . 0 A1,m

A2,1 0
... 0

0 A3,2
. . .

...
...

...
. . . 0

...
0 . . . . . . . . . Am,m−1 0

 .
It is clear that the positive diagonal similarity involved in the beginning of the proof

could have been chosen to be the identity, so that each non-zero block of A is either

a permutation matrix or the negation of a permutation matrix. Therefore, up to yet

another permutation, A is of the form (1) with block size greater than one.

On the other hand, if after a permutation A can be written as in (1) then A has an

invariant sublattice by Remark 3.5. �

It follows that under the hypotheses of Corollary 3.9 if A has an invariant sublattice

then the number m of minus signs in A has a common divisor with n. This observation

leads to the following question: is the condition gcd(m,n) > 1 sufficient for A having

an invariant sublattice?

4. Semigroups of positive matrices

We start by extending Theorem 0.3 to semigroups in Mn(R) containing zero.

Lemma 4.1. Let S be a semigroup of positive projections in Mn. If PQ = 0 for some

non-zero P,Q ∈ S then S has a closed invariant ideal.

Proof. Assume that there exist non-zero P,Q ∈ S such that PQ = 0. For every A ∈ S
we have (QAP )2 = 0, so QAP is a nilpotent projection, hence QAP = 0. Thus,

QSP = 0, so that S has an invariant ideal by Lemma 0.2. �

Remark 4.2. In a similar fashion one can show that the preceding lemma remains

valid for a semigroup of positive projection on Lp(µ).
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Lemma 4.3. Let S be a semigroup of positive projection in Mn such that the minimal

rank of non-zero members of S is greater than one. Then S has an invariant ideal.

Proof. If PQ = 0 for some non-zero P,Q ∈ S then S has an invariant ideal by

Lemma 4.1. Otherwise, the result follows from Theorem 0.3 applied to S \ {0}. �

Remark 4.4. Suppose that P is a projection in Mn written in a block upper-triangular

form, then rankP = traceP implies that rankP is the sum of the ranks of the diagonal

blocks.

We now extend Theorem 0.4 to semigroups containing zero.

Theorem 4.5. Let S be a semigroup of positive projections in Mn(R) such that for

any P and Q in S either PQ = 0 or P and Q have the same rank r. Then there exists

s such that, up to a permutation of the basis, S has a common block form, so that all

the non-zero A ∈ S are of one of the following forms:

A =

0 Y E Y EX
0 E EX
0 0 0

 , or A =

[
0 Y E
0 E

]
, or A =

[
E EX
0 0

]
, or A = E,

where X and Y are some matrices and E has the following description.

E =

E1

. . .
Ers

 ,
and there exists 0 6 t < s such that Etr+1, . . . , E(t+1)r are of rank one and are the only

non-zero blocks of E. Moreover, if no row or column is zero in all the matrices in S,

then we have the case A = E.

Proof. Take a maximal chain of invariant ideals of S, and consider the block upper-

triangular form of S corresponding to this chain. Let J be the difference between two

consecutive ideals in the chain. For P ∈ S write PJ for the compression of P to J ,

i.e., for the diagonal block of P corresponding to J . Let SJ = {PJ | P ∈ S}. Then

SJ can be viewed as a semigroup of positive projections on J with no invariant ideals.

Since every projection in S is in block upper-triangular form relative to the chain then

(PQ)J = PJQJ for every P,Q ∈ S. Lemma 4.1 yields that

(2) ∀P,Q ∈ S if PJ 6= 0 and QJ 6= 0 then (PQ)J 6= 0.

It follows from Lemma 4.3 that there exists P ∈ S such that rankPJ = 1. In fact,

the rank of every non-zero element of SJ is one. Indeed, suppose that Q ∈ S and

rankQJ > 1. It follows from (2) that PQ 6= 0, hence rankPQ = r. But Remark 4.4
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yields that the sum of the ranks of the remaining diagonal blocks of Q and, hence, of

PQ, is less than r − 1. Since rank(PQ)J 6 rankPJ = 1 it follows that the total rank

of PQ would be less than r; a contradiction. It follows that the diagonal blocks are

of rank zero or one. Remark 4.4 yields that every non-zero matrix in S has exactly r

non-zero diagonal blocks.

Let P,Q ∈ S \ {0}. It follows from (2) that their sets of non-zero diagonal blocks

must either be the same or disjoint, as, otherwise, 0 6= rankPQ < r. Therefore, we

have s pair-wise disjoint groupings A1, . . . , As of r diagonal blocks in each, such that

for each projection P in S its set of non-zero diagonal blocks is exactly one of the Ak’s.

In this case we will write P ∈ Sk.
Now let T be the set of all expressions of the form P1 + · · ·+ Ps such that Pk ∈ Sk

for each 1 6 k 6 s. Note that if k 6= m then PkPm has zero diagonal blocks, hence

nilpotent, but PkPm ∈ S is a projection, so that PkPm = 0. It follows that every

element of T is a projection of rank rs, and that T is a semigroup. Now the result

follows from Theorem 0.4. Note that if no row or column is zero in all the matrices

in S, then the same is true for T , so that we have A = E for each A ∈ S as in the last

clause of Theorem 0.4. �

The following result extends Theorem 3.7 to semigroups of operators in the same

way as Theorem 0.5(iii) extends Theorem 0.1.

Theorem 4.6. Let S ⊆ Mn(R) and x ∈ R
n be as in Theorem 0.5(iii). Then x is

contained in every S-invariant sublattice, hence spanx is the unique minimal invariant

sublattice of S.

Proof. Let L be an S-invariant sublattice of x ∈ R
n. By Lemma 3.1 it has a basis

(zk)
m
k=1 consisting of positive pairwise disjoint vectors. Since S has no invariant ideals,

Lemma 0.2 implies that for every i, j 6 n there exists a matrix A(i,j) ∈ S such that its

(i, j)-th entry is non-zero. Let A =
∑n

i,j=1 A
(i,j), then all the entries of A are positive,

hence A has no invariant ideals. It follows from Theorem 0.1 that x is the unique (up

to scaling) positive eigenvector of A. On the other hand, L is invariant under A, and

the matrix of A|L in the basis (zk)
m
k=1 is positive, hence Theorem 0.1 yields that A has

a positive eigenvector in L. It follows that x ∈ L. �

Theorem 0.5(iii) asserts that under certain conditions a semigroup S of positive

operators has a common positive eigenvector, hence a one-dimensional invariant sub-

lattice. We will show that under certain weaker conditions we can still guarantee that

S has an invariant sublattice, though not necessarily one-dimensional.
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Theorem 4.7. Let S be an R
+-closed semigroup of positive matrices in Mn such that

S has no invariant ideals. Let S0 be the set of all minimal projection in S. Suppose

that for every P,Q ∈ S0 either PQ = 0 or RangeP = RangeQ. Then

(i) RangeP is a sublattice of X for every P ∈ S0.

(ii) The linear span of the ranges of all members of S0 is an S-invariant (not

necessarily proper) sublattice of Rn.

(iii) There is a maximal set (Pk)
s
k=1 of projections in S with pairwise disjoint

ranges, and vectors xk ∈ RangePk such that G = span
16k6s

xk is an S-invariant

(not necessarily proper) sublattice of Rn.

(iv) G is a minimal S-invariant sublattice, i.e., it is contained in every S-invariant

sublattice.

(v) G is proper unless S contains all the rank one tensors ei ⊗ e∗j .

Proof. (i) Let r be the rank of the minimal projections in S. By Theorem 0.5(ii) we

know that S0 is non-trivial. For every P,Q ∈ S0 we either have PQ = 0 or PQ = Q,

hence S0 ∪ {0} is a semigroup. It follows that, after a permutation of basis, S0 can be

written in a block form as in Theorem 4.5. Furthermore, since S has no invariant ideals,

Theorem 0.5(ii) asserts that out of the four cases described in Theorem 4.5 we can only

have A = E. That is, the block form of every E ∈ S0 is diagonal with diagonal blocks

E1, . . . , Ers of rank zero or one, such that the only non-zero blocks are Erk+1, . . . , Er(k+1)

for some 0 6 k < s. Again, in this case we will write E ∈ Sk. Since Ei is of rank one

when rk + 1 6 i < r(k + 1) we deduce that Yi := RangeEi is spanned by a positive

vector yi. By the assumption of the theorem, Yi does not depend on the particular

choice of E ∈ Sk. It follows that RangeE = Lk where Lk = span{yrk+1, . . . , yr(k+1)}.
Since all the yi’s have disjoint supports, Lk is a sublattice of Rn for each k = 1, . . . , s.

(ii) The vectors y1, . . . , yrs are pairwise disjoint and have consecutive supports. Let

L = span{y1, . . . , yrs}. Then L is a sublattice of Rn. Clearly, L is exactly the span of

the ranges of all members of S0. We will show that L is invariant under S. Let A ∈ S.

Case 1. Suppose first that rankA = r. Then Theorem 0.5(i) implies that there is

P ∈ S0 such that PA = A. Then P ∈ Sk for some k. It follows that for each x ∈ L we

have

Ax = PAx ∈ RangeP = span{yrk+1, . . . , yr(t+1)} ⊆ L.

Case 2. Now consider the general case. Again, let x ∈ L. Pick Ek ∈ Sk for each 1 6

k < s. Then we can write x = α1z1 + · · ·+ αszs where zk ∈ span{yrk+1, . . . , yr(t+1)} =

RangeEk as k = 1, . . . , s. Note that rankAEk 6 r so that AEkx ∈ L by Case 1 for
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every k. It follows that

Ax = α1AE1x+ · · ·+ αsAEsx ∈ L.

(iii) Fix k 6 s and let E ∈ Sk. We claim that the restriction of the semigroup

ESE to Lk has no invariant ideals in Lk. Indeed, if there were such an ideal then

Lemma 0.2 would guarantee the existence of A,B > 0 such that AESEB = {0}, but

this would yield that S has an invariant ideal, a contradiction. It follows now from

Theorem 0.5(iii) that there exists a strictly positive vector xk ∈ Lk such that xk is a

unique (up to scaling) positive eigenvector of ESE. If P is another projection in Sk
and A ∈ S is arbitrary then PAPxk = EPAPExk is a multiple of xk, hence xk does

not depend on the choice of E ∈ Sk:
We will show that

(3) if P ∈ Sk, Q ∈ Sm, and A ∈ S then QAPxk is a multiple of xm.

Put y := QAPxα ∈ Lm and suppose that y 6= 0. Since PSQ 6= {0} by Lemma 0.2,

there exists B ∈ S such that PBQ 6= 0. Then rankPBQ = r, so that PBQ is injective

as a map from Lm to Lk. It follows that

(4) (PBQ)y = P (BQA)Pxk = λxk for some λ > 0.

Let C ∈ S, then

(5) (PBQ)(QCQ)y = P (BQCQA)Pxk = µxk for some µ.

Since PBQ is injective on Lk, (4) and (5) imply that (QCQ)y is a multiple of y. Thus,

y is a positive eigenvector of QSQ, hence y is a multiple of xm. This proves (3).

Let A ∈ S and k 6 s. Pick any P ∈ Sk, then AP ∈ S1, hence there exists Q ∈ S0

such that AP = QAP . Then Q ∈ Sm for some m 6 s. Therefore, Axk = APxk =

QAPxk is a multiple of xm by (3). It follows that G defined by G = span
16k6s

xk is invariant

under S. Since all the xk’s have pairwise disjoint supports, G is a sublattice of Rn.

(iv) Let M be an S-invariant sublattice of X. Pick any non-zero x ∈M . Then there

exists P ∈ S0 such that Px 6= 0. Since RangeP = Lk for some k 6 s, we conclude

that that M ∩Lk 6= ∅. Hence, M ∩Lk is a non-zero (not necessarily proper) sublattice

of Lk invariant under PSP . As in the proof of (iii), the restriction of PSP to Lk

has no invariant ideals, and xk is a positive eigenvector for PSP|Lk
. It follows from

Theorem 4.6 that xk ∈M .

We will show that xm ∈ M for every m 6 s, hence G ⊆ M . Take any m 6 s and

Q ∈ Sm. Since QSP 6= {0} by Lemma 0.2, there exists A ∈ S such that QAP 6= 0.
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It follows from (3) that QAPxk is a multiple of xm, and, clearly, QAPxk ∈ M . It

remains to show that QAPxk 6= 0.

Recall that {yrk+1, . . . , yr(k+1)} is a basis of Lk consisting of positive vectors with

consecutive supports. Since xk is strictly positive, its expansion with respect to this

basis has strictly positive coefficients. Since QAP 6= 0, there exists a non-zero x ∈ Lk
such that QAPx 6= 0. By replacing x with x+ or x− we may assume that x > 0.

In particular, the expansion of x with respect to the basis {yrk+1, . . . , yr(k+1)} has

non-negative coefficients. It follows that 0 < x 6 λxk for some λ ∈ R+, so that

QAPxk > QAPx > 0.

(v) Finally, suppose that G = X. It follows, in particular, that G = L, hence r = 1.

Then X is the closed span of pairwise disjoint one-dimensional ranges of the minimal

projections in S. This implies that S0 contains all the rank-one tensors ei ⊗ e∗j . �

Example 4.8. Let S be the R+-closed semigroup of Mn generated by the following block

matrices 
0 0 0 . . . 0
K 0 0 . . . 0
0 K 0 . . . 0
...

. . .
...

0 . . . K 0

 and


0 K 0 . . . 0
0 0 K . . . 0
...

. . .
...

0 K
0 . . . 0

 ,
where K is an m×m block of ones for some m. Then S has no invariant ideals and no

common eigenvectors. However, S has an invariant sublattice L = span{x1, . . . , xk}
where k = n

m
and

xi = (0, . . . , 0, 1, . . . , 1︸ ︷︷ ︸
mi+1,...,m(i+1)

, 0, . . . , 0).

5. Operators on infinite-dimensional spaces.

In this section we extend some of the preceding results to `p, c0, and Lp(µ).

We start by characterizing the closed sublattices of `p with 1 6 p <∞ or c0. Namely,

we will show that every such sublattice is the closed span of a finite or infinite sequence

of pair-wise disjoint positive vectors. This fact can be deduced from Ando’s Theorem

(see [LT79, Theorem 1.b.8]) combined with [LT77, Theorem 2.a.4]. We present a short

direct proof of this fact here.

If E ⊆ N and x is a vector in `p or c0, let Ex be the vector defined as follows:

(Ex)i = xi if i ∈ E and (Ex)i = 0 otherwise.

Lemma 5.1. Let L be a closed sublattice in `p with 1 6 p <∞ or c0, and let x, y ∈ L+.

Then Ex ∈ L where E = (supp y)C.
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Proof. Let ε > 0. Choose n ∈ N such that ‖Qx‖ < ε where Q = {n + 1, . . . }. Put

P = {1, . . . , n}. Since P is finite, we can find λ > 0 such that (x − λy)+ vanishes

on P ∩ supp y. Let h = (x − λy)+, then h ∈ L and EPx = Ph. Therefore, Ex =

E(Px+Qx) = Ph+ EQx. It follows from 0 6 h 6 x that

‖Ex− h‖ 6 ‖Ex− Ph‖+ ‖Qh‖ 6 ‖EQx‖+ ‖Qx‖ < 2ε.

Therefore, Ex ∈ L. �

Theorem 5.2. Every closed sublattice of `p with 1 6 p < ∞ or c0 is the closed span

of a finite or infinite sequence of disjoint positive vectors.

Proof. Let X be `p with 1 6 p < ∞ or c0, and let L be a closed sublattice of X. We

will show that we can assume that there exists x ∈ L+ with supp x = N. Indeed, we

can assume that the ideal generated by L in X is all of X as, otherwise, we can replace

X with this ideal. Thus, for every i ∈ N there exists xi ∈ L+ such that i ∈ suppxi.

Put x =
∑∞

i=1
xi

2i‖xi‖ , then x ∈ L+ and suppx = N.

For i, j ∈ N we write i ≈ j if yi

xi
=

yj

xj
for every y ∈ L. Clearly, this is an equivalence

relation on N. Let E1, E2, . . . be the equivalence classes of this relation. Note that

there may be finitely or countably many such classes, and each Ek may be finite or

infinite. Let nk = minEk. Without loss of generality, n1 < n2 < . . . .

Since n1 6≈ n2, there exists y ∈ L such that
yn1

xn1
6= yn2

xn2
. Put z =

∣∣y − yn1

xn1
x
∣∣. Then

z ∈ L+, zn1 = 0, and zn2 6= 0. It follows that z vanishes on E1 and E2 ⊆ supp z.

Repeating the same argument as above with 2 replaced with any k > 1 we obtain

z(k) ∈ L+ which vanishes on E1 and Ek ⊆ supp z(k). Let Fk = (supp z(k))C , then

E1 ⊆ Fk and Ek ⊥ Fk.

Given any u ∈ L+, put h(1) = u and h(k) = Fkh
(k−1) for k > 1. Then h(k) ∈ L

by Lemma 5.1. It follows from E1 ⊆ Fk that E1u 6 h(k) for every k. Also, note

that h(k) is decreasing; it follows that h = limk h
(k) = infk h

(k) exists, so that h ∈ L.

Since E1u 6 h(k) for every k, we have E1u 6 h. On the other hand, suppose that

i /∈ E1. Then i ∈ Ek for some k > 1, so that h
(k)
i = 0. It follows that hi = 0, so that

supph ⊆ E1. Therefore E1u = h ∈ L. Thus, E1u ∈ L for every u ∈ L+ and, therefore,

for every u ∈ L. A similar argument shows that Eku ∈ L for every k ∈ N and every

u ∈ L.

Let ak = Ekx. Then (ak) is a (finite or infinite) sequence of disjoint positive vectors

in L. Let y ∈ L. Then y =
∑

k Eky. For each k ∈ N we have Eky ∈ L and

suppEky ⊆ Ek. By our definition of Ek, it follows that Eky is a scalar multiple of ak.

It follows that y ∈ [ak]. �
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Corollary 5.3. Every infinite dimensional closed sublattice of `p with 1 6 p < ∞ or

c0 is order isometric to `p or c0 respectively. Every finite dimensional sublattice of `p

or c0 is order isometric to `np or `n∞ respectively.

Example 5.4. The following example shows that Theorem 5.2 fails for `∞. Let x(n) be

the sequence in `∞ given by

x
(n)
i =

{
1 if i is a multiple of 2n,

0 otherwise.

Let L = [x(n)]. It is easy to see that span{x(n)} is a lattice, hence its closure L is a

lattice. However, L has no atoms.

Remark 5.5. The following observation is an infinite-dimensional analogue of Corol-

lary 3.3. Theorem 1.b.8 of [LT79] implies that every sublattice of `p is the range of

a positive contractive projection. Using Theorem 5.2 we can now construct such a

projection explicitly. Suppose that L is a closed sublattice of `p with 1 6 p <∞ or c0.

Then Theorem 5.2 says that L = [xi], where (xi) is a disjoint sequence of positive

vectors. We can assume that ‖xi‖ = 1. Choose a sequence of positive functionals (x∗i )

such that supp x∗i ⊆ suppxi and ‖x∗i ‖ = x∗i (xi) = 1 for every i, and let P =
∑

i xi⊗x∗i .
Then P is a positive contractive projection with RangeP = L.

Remark 5.6. It is easy to see that Theorem 5.2 also provide infinite-dimensional

analogues of Remark 3.5 and Theorem 3.6. That is, suppose that T is an operator on

`p with 1 6 p < ∞ or c0 which has no invariant closed ideals, but has an invariant

closed sublattice L. Let (xi) be the sequence given by Theorem 5.2. Then T can be

written in the block form (Tij) corresponding to the supports of xi’s. Of course, now it

makes no sense to talk about stochastic or constant-row blocks. However, we still have

that Tijxj must be a multiple of xi for any i and j. In particular, xi is an eigenvector

of Tii.

Next, we present an infinite dimensional version of Theorem 3.7. Suppose that T is

a positive compact operator on a Banach lattice. If T is quasinilpotent, then [dP86]

guarantees that T has an invariant closed ideal. On the other hand, if T is not quasinil-

potent, then it was shown in [KR48] that its spectral radius is a positive real number,

and is actually an eigenvalue corresponding to a positive eigenvector. Furthermore, if

T is a positive compact operator on a Banach lattice and T has no invariant closed

ideals, then the Jentzsch-Perron Theorem (see, e.g., Corollary 4.2.14 in [MN91]) asserts

that the positive eigenvector corresponding to r(T ) is unique up to scaling
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Theorem 5.7. Let X be `p with 1 6 p < ∞ or c0, and let T be a compact positive

operator on X such that T has no invariant closed ideals. Then T has a unique (up

to scaling) positive eigenvector, and this eigenvector is contained in every T -invariant

closed sublattice.

Proof. By the preceding comments, T is not quasinilpotent and there is a unique (up

to scaling) positive vector h of T corresponding to r(T ). Without loss of generality,

r(T ) = 1. Suppose that L is a closed sublattice invariant under T . Theorem 5.2

implies that L = [xi] where (xi) is a finite or infinite sequence of pairwise disjoint

positive vectors in X. We can assume that ‖xi‖ = 1 for all i. Suppose first that (xi) is

an infinite sequence. Define an operator U : X → L by Uei = xi. It is easy to see that

U is a surjective positive isometry. Then U−1TU : X → X is again a compact positive

operator. Since r(U−1TU) = r(T ) = 1, there exists a positive vector z ∈ X such that

U−1TUx = x. It follows that T (Uz) = Uz, so that Uz = h. It follows that h ∈ L.

If the sequence (xi) is of finite length n then we can use a similar argument with U

defined on `np or `n∞ instead of `p or c0, respectively.

Now suppose that x is another positive eigenvector of T (even corresponding to a

possibly different eigenvalue), then span{x} is an invariant closed sublattice, so that x

is a multiple of h. �

Next, we extend Theorem 3.8 to the infinite-dimensional case.

Theorem 5.8. There is a positive compact operator on `p with 1 < p < ∞ with no

invariant closed ideals and exactly one closed invariant sublattice.

Proof. Let 1
2
> ri ↓ 0. For each i > 1 chose Ri so that Ri + ri + r2

i + r3
i + · · · = 1.

Define an operator K via ki1 = 1
i
Ri and kij = j

i
rj−1
i if j > 1.

It is easy to see that K can be chosen to be compact as an operator from `p to

`p. Indeed, for every n ∈ N let Kn be defined as follows: Knej = Kej if j 6 n and

Knej = 0 otherwise. Then Kn is of finite rank. Estimating the `q-norms of the rows

of K − Kn we observe that provided that (ri) is decreasing sufficiently rapidly, the

nuclear norm of K −Kn tends to zero as n → ∞. It follows that ‖K −Kn‖ → 0, so

that K is compact as the limit of a sequence of finite-rank operators.

Let x = (1, 1
2
, 1

3
, . . . ). It is easy to check that Kx = x. Hence x is the unique

positive eigenvector of K. Suppose that L is a closed invariant sublattice of K such

that L 6= span x. Since x ∈ L, it follows that dimL > 1. We know that L is spanned

by a finite or infinite positive disjoint sequence (xi). For every i > 1 let Pi be the
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coordinate projection on suppxi. It follows from x ∈ L that Pix is a multiple of xi.

Without loss of generality, we can assume that Pix = xi.

Fix i and j so that 1 /∈ suppxj and suppxi has cardinality greater than one. Let

suppxj = {nk} and 1 < n1 < n2 < . . . . Then xj =
∑

k
1
nk
enk

. Since L is invariant

under K, it follows that PiKxj = λxi for some λ > 0. Let m ∈ N. Now

(Kxj)m = n1

m
rn1−1
m · 1

n1
+ n2

m
rn2−1
m · 1

n2
+ n3

m
rn3−1
m · 1

n3
+ · · · = 1

m
αm,

where αm = rn1−1
m +rn2−1

m + . . . . It follows from PiKxj = λxi that λ 1
m

= 1
m
αm for every

m ∈ suppxi, so that αm is constant on supp xi. But this is a contradiction because

(αm) is a strictly decreasing function of m. �

Several examples of positive operators on Banach lattices with no invariant closed

sublattices were presented in [KW]. We will show that one of these example can be

easily verified using Theorem 5.2.

Proposition 5.9. Suppose that Q is an operator on `p, 1 6 p < ∞ or c0 of the

following form:

Q =


0 ∗ 0 0 0 . . .
∗ 0 ∗ 0 0
0 ∗ 0 ∗ 0
0 0 ∗ 0 ∗
...

. . . . . .

 ,
where the stars correspond to positive reals. Then Q has no invariant closed infinite-

dimensional sublattices.

Proof. Note that Q has no invariant closed ideals by Proposition 1.2. Suppose that

Q has an invariant closed infinite-dimensional sublattice L. Theorem 5.2 implies that

L = [xn]∞n=1 where (xn) is a disjoint sequence of positive vectors. The union of the

supports of xn’s is all of N, as, otherwise, the closed ideal generated by L would be

proper and invariant under Q. Let (qij) be the matrix of Q, and let (Amn) be the

block form of Q with respect to the supports of xn’s as n ∈ N. Note that generally

the blocks might be of infinite size. Note also that if an Amn has a zero row then Amn

must be entirely zero as Amnxn is a multiple of xm. By the symmetrical structure of

the matrix, the same is true for columns: if Amn has a zero column then Amn = 0.

Without loss of generality (up to a permutation of xn’s) we have 1 ∈ suppx1. We

claim that 2 /∈ suppx1. Indeed, suppose that 2 ∈ suppx1. Then q21 is in A11. Since

q21 is the only non-zero entry in the first column of Q, it follows that for every m > 1
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the first column of Am1 is zero, hence Am1 = 0. But then the ideal generated by the

support of x1 is invariant; a contradiction.

So, without loss of generality, 2 ∈ suppx2. We will show inductively that we can

assume that n ∈ suppxn for every n. This would imply that suppxn = {n}, hence L

is the whole space.

Suppose that we already have k ∈ suppxk for all 1 6 k 6 n. It suffices to show

that n + 1 /∈
⋃n
k=1 suppxk; then by renumbering xk’s for k > n we can assume that

n + 1 ∈ suppxn+1. Suppose that n + 1 ∈ suppxr for some r 6 n. Let 1 6 k < n.

Recall that the only non-zero entries of the k-th column of Q are qk−1,k and qk+1,k. It

follows that they are located in Ak−1,k and Ak+1,k respectively. Therefore, for every

m > k + 1, the column of Amk corresponding to the k-th column in Q is zero, hence

Amk = 0. In particular, Amk = 0 whenever m > n and k < n. Also, the only non-zero

entries of the n-th column of Q are qn−1,k and qn+1,k, and they are located in An−1,k

and Ar,k respectively. As before, this yields Amn = 0 whenever m > n. It follows that

the closed ideal generated by
⋃n
k=1 suppxk is invariant; a contradiction. �

The following result was proved in [KW] for `p. We can now deduce it from Propo-

sition 5.9.

Corollary 5.10. The operator

Q =


0 1 0 0 0 . . .
1 0 1 0 0
0 1 0 1 0
0 0 1 0 1
...

. . . . . .


on `p (1 6 p <∞) or c0 has no invariant closed sublattices.

Proof. By Proposition 5.9 it suffices to show that Q has no finite-dimensional invariant

sublattices. Suppose that L is such a sublattice. Then L+iL is an invariant closed finite

dimensional subspace of the complexification of Q, so that Q viewed as an operator

on the complex `p or c0 has an eigenvector. Suppose that a non-zero complex vector

x = (x1, x2, . . . ) satisfies Qx = λx for some λ ∈ C. It follows that xn+1 = λxn−xn−1 for

each n > 1 (assuming x0 = 0). If x1 = 0 then x = 0; a contradiction. So we can assume

without loss of generality that x1 = 1. It can be easily verified that xn =
µn

1−µn
2

µ1−µ2
where

µ1 and µ2 are the roots of the quadratic z2 − λz + 1 = 0. It follows that µ1µ2 = 1. If

either |µ1| > 1 or |µ2| > 1 then (xn) diverges; a contradiction. Hence, |µ1| = |µ2| = 1.

It is easy to see now that (xn) contains a subsequence that does not converge to zero;

a contradiction. �
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Remark 5.11. Recall that an operator on a Banach lattice is said to be strictly

positive if Tx > 0 whenever x > 0. We would also like to mention here that the range

of a strictly positive projection is a sublattice. Indeed, suppose that E is a strictly

positive projection. Clearly, RangeE is invariant under E. We claim that RangeE is

a sublattice and E(x∨ y) = x∨ y for all x, y ∈ RangeE. Suppose that x, y ∈ RangeE;

we will show that x ∨ y ∈ RangeE. Notice that E(x ∨ y) > (Ex) ∨ (Ey) = x ∨ y. If

E(x∨y) = x∨y, we are done. Suppose that E(x∨y) > x∨y, put z = E(x∨y)−x∨y,

then z > 0 and Ez = E(x ∨ y) − E(x ∨ y) = 0, but this contradicts strict positivity

of E. Further details on this subject can be found in [dJ82]. It follows, in particular,

from Lemma 3.4 that if PAP = AP for some operator A, then RangeP is an invariant

sublattice of A.

Finally, we present the infinite dimensional analogue of Theorem 4.7.

Theorem 5.12. Let X = Lp(µ) for 1 6 p < ∞; suppose that S is an R
+-closed

semigroup of positive operators on X, and let S0 be the set of minimal projections

in S. Suppose that S has no closed invariant ideals and contains a non-zero compact

operator. Suppose also that for every P,Q ∈ S0 either PQ = 0 or RangeP = RangeQ.

Then

(i) S0 ∪ {0} is a non-trivial semigroup; all the projections in S0 have the same

finite rank.

(ii) RangeP is a sublattice of X for every P ∈ S0.

(iii) For every P,Q ∈ S0 either RangeP = RangeQ or RangeP ⊥ RangeQ.

(iv) The closed linear span of the ranges of all members of S0 is an S-invariant

(not necessarily proper) sublattice of X.

(v) There is a maximal set (Pα) ⊆ S0 with pairwise disjoint ranges, and vectors

(xα) with xα ∈ RangePα such that G = [xα] is a (not necessarily proper)

S-invariant sublattice.

(vi) G is a minimal S-invariant sublattice, i.e., it is contained in every closed S-

invariant sublattice.

(vii) Furthermore, G is proper unless µ is discrete and S contains all the rank one

tensors eγ ⊗ e∗δ, where eγ and eδ are discrete elements of Lp(µ).

Proof. (i) Suppose that K ∈ S is a non-zero compact operator. Let S1 be the norm

closure (or, equivalently, the R+-closure) of SKS. Then S1 is a semigroup ideal in S. It

follows from Lemma 0.2 that S1 has no invariant closed ideals. Applying Theorem 0.5(i)

to S1 we conclude that S1 and, therefore, S contains non-zero finite rank operators.
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Therefore, we can assume that K is of finite rank and, moreover, that K is an operator

of the minimal non-zero rank in S; say, rankK = r. Since the set of all operators of

rank at most r is closed then every non-zero operator in S1 is of rank r.

Claim: S0 ⊆ S1. Suppose that P ∈ S0. Then PS1P is a subsemigroup of S1. We

will show that PS1P is closed, hence R+-closed. Indeed, suppose that PAnP → B for

some sequence (An) in S1. Since PAnP ∈ S1, we have B ∈ S1. On the other hand,

B = PBP , so that B ∈ PS1P . Therefore, PS1P is R+-closed. Also, PS1P 6= {0} by

Lemma 0.2 and all non-zero operators in PS1P are of rank r.

We will show that PS1P contains a non-nilpotent operator. Indeed, suppose that

every operator in PS1P is nilpotent. Then for every A,B ∈ S1 we have

r(APB) = r(BAP ) = r(BAP 2) = r(PBAP ) = 0,

so that S1PS1 consists of nilpotent operators. Theorem 0.9 yields that S1PS1 has a

closed invariant ideal. On the other hand, S1PS1 is a semigroup ideal in S1, hence it

has no closed invariant ideals by Lemma 0.2; a contradiction.

Thus, there exists a non-nilpotent operator A in PS1P . Now Theorem 0.7 yields

that there exists a non-zero operator E in the R+-closed semigroup generated by A such

that E is either a projection or nilpotent. We will show that E cannot be nilpotent.

Indeed, suppose that Em 6= 0 but Em+1 = 0 for some m. Replacing E with Em if

necessary, we can assume that m = 1. Let Y = RangeA. Observe that dimY = r.

Since A is not nilpotent, then rankAn = r for every n, so that the restriction of A

to Y is invertible. Note that E = limi αiA
ni for some (ni) and a sequence (αi) of

positive reals, it follows that RangeE ⊆ Y . Also, E 6= 0 yields rankE = r, hence

Y = RangeE. It follows from E2 = 0 that E vanishes on Y . Let y ∈ Y , then y = Ex

for some x, so that Ay = EAx ∈ E(Y ) = 0. This contradicts A being invertible on Y .

Thus, E is a projection. Then E ∈ PS1P implies PE = EP = E. The minimality

of P yields that P = E ∈ PS1P ⊆ S1. This completes the proof of the claim.

Since S0 ⊆ S1 then S0 is the set of minimal projections in S1. It follows immediately

from the hypotheses that for every P,Q ∈ S0 we either have PQ = 0 or PQ = Q, hence

S0 is a semigroup. Applying Theorem 0.5(i) to S1 we conclude that S0 is non-trivial

and consists of projections of rank r. It follows that RangeP is r-dimensional for every

P ∈ S0. By Theorem 0.5(i,ii) for every positive x ∈ X there exists P ∈ S0 such that

Px 6= 0, and that for every A ∈ S1 with rankA = r there exists P ∈ S0 such that

PA = A.
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(ii) Pick P ∈ S0 and 0 6 a, b ∈ RangeP ; it suffices to show that a ∨ b ∈ RangeP

as well. It follows from a 6 a ∨ b that a = Pa 6 P (a ∨ b). Similarly, b 6 P (a ∨ b), so

that a ∨ b 6 P (a ∨ b). Let z = P (a ∨ b)− (a ∨ b), then z > 0. It suffices to show that

z = 0. Suppose z 6= 0. Then there exists Q ∈ S0 such that Qz 6= 0. In the case when

QP = 0 we have

0 6 Qz = QP (a ∨ b)−Q(a ∨ b) = −Q(a ∨ b) 6 0,

so that Qz = 0; a contradiction. On the other hand, if RangeQ = RangeP then

Qz = P (a ∨ b)−Q(a ∨ b) 6 P (a ∨ b)− (Qa) ∨ (Qb) = P (a ∨ b)− a ∨ b = z,

so that 0 6 Qz = PQz 6 Pz = 0; a contradiction.

(iii) Suppose that P,Q ∈ S0 such that PQ = 0, and suppose that 0 6 a ∈ RangeP

and 0 6 b ∈ RangeQ. It suffices to show that a ∧ b = 0. Suppose that a ∧ b > 0,

then E(a ∧ b) > 0 for some E ∈ S0. Since RangeP 6= RangeQ, we either have

RangeE 6= RangeP or RangeE 6= RangeQ. Suppose the former, then EP = 0 so

that Ea = EPa = 0; then 0 < E(a ∧ b) 6 (Ea) ∧ (Eb) = 0; a contradiction.

(iv) Let L0 be the linear span of all the ranges of the members of S0. Since every two

of these ranges are either identical or disjoint sublattices of X, it follows that L0 is itself

a sublattice. It suffices to show that L0 is invariant under S. Let A ∈ S and x ∈ L0,

we will show that Ax ∈ L0. We may assume that x ∈ RangeP for some P ∈ S0. It

follows from S0 ⊆ S1 that AP ∈ S1, so that Theorem 0.5(i) applied to S1 there exists

Q ∈ S0 such that QAP = AP . It follows that Ax = APx = QAPx ∈ RangeQ ⊆ L0.

(v) Let Λ = {RangeP | P ∈ S0}; then Λ consists of pairwise disjoint r-dimensional

sublattices of X. For each α ∈ Λ let Sα = {P ∈ S0 | RangeP = α}.
Let α ∈ Λ and P ∈ Sα. We claim that the restriction of PSP to α has no invariant

ideals. Indeed, suppose that J ( α is an ideal invariant under PSP . Let R be

the natural positive projection from α to the disjoint complement of J in α. Then

RPSP = {0}, so that S has an invariant closed ideal by Lemma 0.2; a contradiction.

Thus, PSP has no invariant ideals. All the minimal projections in PSP|α have the same

range α, so that PSP has a positive common eigenvector x in α by Theorem 0.5(iii),

which is unique up to scaling. Observe that x does not depend on the choice of P in

Sα. Indeed, if P ′ ∈ Sα and A ∈ S then P ′AP ′x = PP ′AP ′Px is a multiple of x; hence

x is a common eigenvector of P ′SP ′. We will denote x by xα.

Next we will show that

(6) if P ∈ Sα, Q ∈ Sβ, and A ∈ S then QAPxα is a multiple of xβ.
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Suppose that y := QAPxα is non-zero. Clearly, y ∈ β. By Lemma 0.2 we have

PSQ 6= {0}, so that there exists B ∈ S with PBQ 6= 0. Then rankPBQ = r, so that

PBQ takes β to α injectively. It follows that

(7) (PBQ)y = P (BQA)Pxα = λxα for some λ > 0.

For any C ∈ S we have

(8) (PBQ)(QCQ)y = P (BQCQA)Pxα = µxα for some µ.

Injectivity of PBQ together with (7) and (8) implies that (QCQ)y is a multiple of y.

Thus, y is a positive eigenvector of QSQ, so that y is a multiple of xβ. This proves (6).

Let A ∈ S and α ∈ Λ. We will show that Axα is a multiple of xβ for some

β ∈ Λ. Indeed, pick any P ∈ Sα, then AP ∈ S1, hence there exists Q ∈ S0 such that

AP = QAP . Let β = RangeQ, then Axα = APxα = QAPxα is a multiple of xβ

by (6).

Let G = [xα]α∈Λ. Since all the xα’s are pairwise disjoint, G is a sublattice of X. By

the preceding paragraph, G is invariant under S.

(vi) Let F be a closed S-invariant sublattice of X; take any non-zero x ∈ F . Then

Px 6= 0 for some P ∈ S0. It follows that F ∩α 6= ∅ where α = RangeP . Hence, F ∩α
is a non-zero (not necessarily proper) sublattice of α invariant under PSP . As in the

proof of (v), the restriction of PSP to α has no invariant ideals, and xα is a positive

eigenvector for PSP|α. It follows from Theorem 4.6 that xα ∈ F .

We will show that xβ ∈ F for every β ∈ Λ, and hence G ⊆ F . Take any β ∈ Λ and

Q ∈ Sβ. Since QSP 6= {0} by Lemma 0.2, there exists A ∈ S such that QAP 6= 0. It

follows from (6) that QAPxα is a multiple of xβ, and, clearly, QAPxα ∈ F . It remains

to show that QAPxα 6= 0.

Since α is a finite-dimensional sublattice of X, it has a basis of pairwise disjoint

positive vectors (zk)
r
k=1 by [LT79, Corollary 1.b.4]. It follows from Theorem 0.1 that

xα is strictly positive with respect to this basis. Since QAP 6= 0, there exists a non-

zero x ∈ α such that QAPx 6= 0. By replacing x with x+ or x− we may assume

that x > 0. In particular, the expansion of x with respect to the basis (zk)
r
k=1 has

non-negative coefficients. It follows that 0 < x 6 λxα for some λ ∈ R+, so that

QAPxα > QAPx > 0.

(vii) Finally, suppose that G = X. It follows, in particular, that G = L, and

hence r = 1. Then X is the closed span of pairwise disjoint one-dimensional ranges of

the minimal projections in S. This implies that µ is discrete and S0 contains all the

rank-one tensors eγ ⊗ e∗δ , where ei are the discrete elements of Lp(µ). �
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Corollary 5.13. Suppose that S is an R
+-closed semigroup of positive operators on

Lp(µ) where 1 6 p < ∞ and µ is not discrete. Suppose that S contains a non-zero

compact operator and for every two minimal projections P and Q in S either PQ = 0

or RangeP = RangeQ. Then S has a closed invariant sublattice.

Remark 5.14. Note that the hypothesis in Theorem 5.12 and Corollary 5.13 that

PQ = 0 or RangeP = RangeQ for every two minimal projections is automatically

satisfied when the semigroup of minimal projections in S is commutative.
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(1975–1976) Espaces Lp, applications radonifiantes et géométrie des espaces de Banach, Exp.
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