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1. Infinitely fine partitions

Throughout this paper (X ,A) always stands for a measurable space,

i.e., X is an arbitrary set and A is an algebra of its subsets.

By ∗X we denote the nonstandard extension of X . We assume that

the nonstandard model is κ-saturated where κ is the cardinality of A.

1.1. Definition. A measurable partition P of ∗X is said to be an in-

finitely fine partition (abbreviated ifp) if ∗A =
⋃{p ∈ P | p ⊆ ∗A}

for every measurable set A, or, equivalently, if P is finer than every

standard partition.

It follows from the saturation principle that every measurable space

(and even a Boolean algebra) has a hyperfinite ifp. From now on the

symbol P stands for a fixed hyperfinite ifp of the measurable space

(X ,A). Infinitely fine partitions were originally introduced in [Loe72].

Some properties of ifp’s were investigated in [Tro93].

Notice that if A contains all the singletons, then every standard

singleton belongs to P .

1.2. Definition. We say that p1, p2 ∈ P are equivalent (denoted p1 ∼
p2) if P \ {p1, p2} ∪ {p1 ∪ p2} is again an ifp.

1.3. Theorem. An element of P is not equivalent to any other element

of P if and only if it is standard.

Proof. Obviously every standard elements of P is not equivalent to

another element of P . Suppose that p ∈ P is non-standard. Consider
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the collection q = {A ∈ A | p ⊆ ∗A}. Let S be a finite subset of

q and put S =
⋂S, then S ∈ A. Evidently p ⊆ ∗S, but since p is

nonstandard, it follows that p 6= ∗S. Therefore, there exists p′ ∈ P

such that p′ ⊂ ∗S and p′ 6= p. Since S was chosen as an arbitrary finite

sub-collection of q, by the saturation principle there exists an element

p1 ∈ P distinct from p contained in the extension of every set belonging

to q, so that p ∼ p1. ¤

It was shown in [Loe72] that a standard bounded measurable func-

tion is approximately constant on every element of an ifp.

1.4. Lemma. Let p1, p2 ∈ P , then p1 ∼ p2 if and only if every stan-

dard bounded measurable function f : X → R takes approximately equal

values on p1 and p2.

Proof. The implication from left to right follows from the fact that

P \ {p1, p2} ∪ {p1 ∪ p2} is an ifp. The converse can be easily obtained

by considering characteristic functions of standard measurable sets. ¤

2. Nonatomicity

In this section we present some interpretations of nonatomicity in

terms of infinitely fine partitions.

Suppose now that (X ,A) is endowed with a standard finitely additive

measure µ. We introduce the following notations:

P+ = {p ∈ P | ∗µ(p) > 0} P0 = {p ∈ P | ∗µ(p) = 0}
A+ = {A ∈ A | µ(A) > 0} A0 = {A ∈ A | µ(A) = 0}

The elements of P+ will be referred to as the essential elements of P .

Notice that every points of an essential element of P is random (recall

that a point x ∈ ∗X is said to be random if x /∈ ∗N for each N ∈ A0).

2.1. Definition. Let p be an essential element of P . We say that p is

essentially joinable if p is equivalent to another essential element of

P . We call p essentially divisible if it can be written as a union of

two disjoint sets of positive measure.
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Recall that a set F ∈ A+ is said to be an atom of µ if for every

measurable set E ⊆ F we have either µ(E) = 0 or µ(E) = µ(F ).

A measure is said to be nonatomic if it has no atoms. A measure is

said to be strongly continuous if for every ε > 0 there exists a finite

measurable partition of X into sets of measure less than ε. A measure

µ is said to be strongly nonatomic if for every set F ∈ A+ and every

0 < c < µ(F ) there exists a measurable set E ⊂ F such that µ(E) = c.

It was shown in [BRBR83] that strong nonatomicity implies strong

continuity, strong continuity implies nonatomicity, and all the three

properties are equivalent for sigma-additive measures.

2.2. Theorem. The following statements are equivalent:

(1) every essential element of P is essentially divisible;

(2) every essential element of P is essentially joinable;

(3) µ is nonatomic.

Proof. To prove the implication (1)⇒(2), consider an essential element

p ∈ P . By the assumption, it is essentially divisible. Let q = {A ∈
A | p ⊂ ∗A}, and consider a finite sub-collection S of q. Let S =

⋂S.

Evidently, S is a standard set and p ⊂ ∗S. Essential divisibility of p

implies that there exists p1 ∈ ∗A+ such that 0 < ∗µ(p1) < ∗µ(p) 6 µ(S).

By the transfer principle there exists a standard set B ⊂ S such that

the both B and S \B are of positive measure. Assume without loss of

generality that p1 ⊂ ∗B. Obviously there is an essential element p2 ⊂
∗S \ ∗B ⊂ ∗S. Since S was chosen arbitrarily, it follows by saturation

that there exists p′ ∈ P+ distinct from p, such that p′ ⊆ ∗A for each

A ∈ q, and it follows that p′ ∼ p.

To prove (2)⇒(3) take an arbitrary set A ∈ A+. There exists p ∈ P+

such that p ⊆ ∗A. Since p is essentially joinable, then there is p′ ∈ P+

such that p′ ⊂ ∗A \ p and it follows that ∗µ(p) < µ(A). By using

the transfer principle we obtain the conclusion.

The implication (3)⇒(1) is straightforward. ¤
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2.3. Theorem. A measure is strongly continuous if and only if the

measure of every element of P is infinitesimal.

Proof. The proof is elementary. ¤

2.4. Theorem. A measure µ is strongly nonatomic if and only if (∀p ∈
P+)(∀λ ∈ ∗[0, 1])(∃p′ ∈ ∗A+)(p′ ⊂ p &

∗µ(p′)
∗µ(p)

= λ).

Proof. The implication from left to right is obvious. To prove the con-

verse implication, fix F ∈ A+ and c ∈ (0, µ(F )). Consider an internal

measurable subset E of ∗F such that

(1) E =
⋃{p ∈ P | p ⊂ E};

(2) ∗µ(E) 6 c;

(3) p * E implies ∗µ(E ∪ p) > c for each p ∈ P+.

Such a set exists because ∗F is a union of a hyperfinite number of

elements of P . We claim that ∗µ(E) = c. Indeed, if ∗µ(E) < c, then we

could take any p ⊆ ∗F \E and split it into the disjoint union of p1 and

p2 so that ∗µ(E ∪ p1) = c, which would contradict to the assumptions

on E. The transfer principle completes the proof. ¤

.

3. Representation of L∞

In the following section we extend a results obtained by P. Loeb

in [Loe72]. For this subsection, let µ be a standard sigma-additive

measure, P a hyperfinite ifp for a standard measurable space (X ,A),

and L∞ stands for L∞(X ,A, µ). In [Loe72] Loeb introduced a map

T0 : L∞ → RP by the following rule. For every p ∈ P+ pick a point

cp ∈ p. For f ∈ L∞ define

(T0(f))p =

{ ◦f(cp) if p ∈ P+;
0 if p ∈ P0.

Loeb showed in [Loe72] that the variation of a standard bounded mea-

surable function on each element of an ifp is infinitesimal, so that T0

does not depend on the choise of cp’s. Loeb proved that a vector
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v ∈ RP equals T0(f) for some f ∈ L∞ if and only if the following three

conditions hold:

(1) vp = 0 for all p ∈ P0;

(2) max
p∈P

|vp| is nearstandard;

(3) for each p in P+ and for each ε ∈ R+ there exists a set A ∈ A
such that p ⊆ ∗A and |vp − vp′| < ε for every essential p′ ⊆ ∗A.

3.1. Lemma. Condition (3) above is equivalent to the following state-

ment:

(3’) p1 ∼ p2 implies vp1 ≈ vp2 for any p1, p2 ∈ P+.

Proof. Suppose that p1 ∼ p2 for p1, p2 ∈ P+. Then it follows from

(3) that |vp1 − vp2| < ε for every ε ∈ R+, hence vp1 ≈ vp2 , so that

(3) implies (3’). To show the reverse implication, assume that there

exists p ∈ P+ and ε ∈ R+ such that for each A ∈ A satisfying p ⊆ ∗A

one can find p′ ∈ P+ such that p′ ⊆ ∗A and |vp − vp′| > ε. Let

q = {A ∈ A | p ⊆ ∗A} and consider a finite sub-collection S of q. Let

S =
⋂S. By the assumption, there exists an essential p′ ⊆ ∗S such

that |vp−vp′| > ε. By the saturation principle there exists an element

p′ ∈ P+, such that p′ ⊆ ∗A and |vp − vp′| > ε, but this contradicts to

(3’). ¤

4. Monads of ifp

Again, let P be an ifp for a standard measurable space (X ,A). For

p ∈ P we denote by [p] the equivalence class of p, i.e., [p] = {p′ ∈
P | p′ ∼ p}. The union of the elements of [p] will be denoted by

mp and referred to as a monad of P . Since “∼” is an equivalence

relation, M = {mp}p∈P is an partition of ∗X . It is easy to see that

M is exactly the partition of X generated by all standard measurable

sets. It implies, in particular, that the monads are independent of a

particular ifp.

Let Q be the Stone space of the algebra A. Recall that the points

of Q are the ultra-filters on A. It is well known that there exists a
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canonical boolean algebra isomorphism ι between A and the algebra

Clop Q of all clopen subsets of Q given by ι(A) = {q ∈ Q | A ∈ q}.
Notice that there is a one-to-one correspondences between the mon-

ads of P , the ultra-filters on A, the zero-one measures on A, and the

points of Q. Consider a monad m of P . The corresponding ultra-

filter qm is {A ∈ A | m ⊆ ∗A}, i.e., the elements of qm are exactly

the standard measurable sets containing the monad m. On the other

hand, since m =
⋃

[p] where [p] is exactly the equivalence class of those

elements of P which are contained in each A in qm, we have m =
⋂

qm.

Any monad m corresponds to some zero-one measure on A defined

by

δm(A) =

{
1 if m ⊆ ∗A,
0 otherwise.

It is easy to see that qm = {A ∈ A | δm(A) = 1}. Finally, for any

monad m we can consider the ultra-filter qm as a point of the Stone

space Q of A. Notice that the set
⋃{ι(p) | p ∈ P, p ⊆ m} is the usual

topological monad of qm in Q. Notice also, that {qm | m ⊂ ∗A} = ι(A)

for any A in A.

It follows from [Loe72, Proposition 4.2] that there is a one-to-one

correspondence between the monads of P and the multiplicative linear

functionals on L∞(X). Namely, if m is a monad of P , then the map

f 7→ ◦(∗f)|m is the multiplicative linear functional corresponding to m.

Consider a monad m of P . Since qm is a standard ultra-filter on A,

it follows that ∗qm contains exactly one element of P . This element

will be referred as the central element of m, we will denote it by pm.

Obviously pm ⊆ m. We mentioned before that {ι(p) | p ∈ P, p ⊆ m}
form a partition of the topological monad of the (standard) point qm

in Q. Then pm can be characterized as the element of P for which

qm ∈ ∗ι(pm). Finally, central elements can also be characterized in

terms of zero-one measures. Namely, p = pm if and only if ∗δm(p) = 1.

Denote by Pc the collection of all central elements of P .

It will be shown that properties of measures are essentially deter-

mined by their values at the central elements. For the rest of this
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section we suppose that µ is a standard finitely additive measure on

A. We assume for simplicity that µ is finite.

4.1. Theorem. If p is a central element with ∗µ(p) standard, then

(1) ∗µ(p′) = 0 for any noncentral p′ equivalent to p;

(2) There exists a set A ∈ A such that p ⊆ ∗A and µ(A) = ∗µ(p).

Proof. It follows from p ∈ Pc that p = pm for some monad m of P .

Since p ∈ ∗qm and ∗µ(p) is standard, then by the transfer principle we

can find a standard set A ∈ qm such that µ(A) = ∗µ(p). This proves

(2). Finally, (1) follows immediately from (2). ¤

4.2. Corollary. Suppose that p is a central element of measure zero.

If p′ ∼ p then p′ is of measure zero.

4.3. Theorem. If p is a central element of P , then for every standard

ε > 0 there exists a standard set A ∈ A such that mp ⊆ ∗A and

µ(A) 6 ∗µ(pm) + ε.

Proof. Let λ = ∗µ(p) + ε
2
, then ∗µ(p) < ◦λ. Since p ∈ ∗qm then, by

the transfer principle, there exists a standard set A ∈ qm such that

µ(A) < ◦λ < ∗µ(pm) + ε. ¤

4.4. Corollary. The measure of every noncentral element is infinites-

imal. Moreover, the union of any collection of non-central elements of

m has infinitesimal measure. Furthermore, if m is a monad of P and

D ⊂ m for some D ∈ ∗A such that qm /∈ ∗ι(D), then ∗µ(D) ≈ 0.

4.5. Remark. There is another important consequence of Theorem 4.3.

We have noticed before that the monads do not depend on a particular

ifp, but only on the algebra. Now it follows immediately from The-

orem 4.3 that if m is a monad, then ◦(∗µ(pm)
)

does not depend on a

particular ifp either.

4.6. Lemma. If p is a central element of P then ∗µ(p) > ◦(∗µ(p)
)
.
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Proof. For every standard A ∈ qmp we have p ⊂ A, and, therefore,
◦(∗µ(p)

)
6 µ(A). By the transfer principle it follows that ◦(∗µ(p)

)
6

∗µ(p). ¤

5. Sobczik-Hammer Decomposition Theorem

The technique of ifp gives us an opportunity to present a simple

proof of the Sobczik-Hammer Decomposition Theorem.

5.1. Theorem (Sobczik-Hammer Decomposition Theorem). Let µ be

a finite finitely additive measure on a measurable space (X ,A). Then

there exists a sequence (δn)n∈N of distinct zero-one measures on A, a se-

quence (an)n∈N of nonnegative real numbers, and a strongly continuous

measure µ̄ on A, such that
∑∞

n=1 an < ∞ and µ = µ̄ +
∑∞

n=1 anδn.

Further, this decomposition is unique up to the order of terms.

Proof. Let P be a hyperfinite ifp for (X ,A). Let p1 be an element

of P of maximum measure, put a1 = ◦((∗µ(p1)
)
. For δ1 we take the

zero-one measure corresponding to mp1 . If µ is strongly continuous,

then a1 = 0 by Theorem 2.3. Otherwise, it follows from Corollary 4.4

that p1 is central. Then Lemma 4.6 implies that a1 6 ∗µ(p1). It follows

that µ1 = µ − a1δ1 is a standard measure which is nonnegative on

each element of P , hence µ1 is nonnegative. We proceed in the similar

fashion defining µn+1 = µn − anδn, etc. This process may stop after

a finite number of steps if an = 0 for some n. In this case we get

µ =
∑n

i=1 aiδi + µn where µn is a strongly continuous measure, so that

the conclusion of the theorem is satisfied. Otherwise, we and obtain a

decreasing sequence (an)n∈N of standard non-negative reals, a sequence

(δn)n∈N of standard distinct zero-one measures, and a sequence (µn)n∈N
of standard non-negative measures, such that µn = µ −∑n

i=1 aiδi for

every n ∈ N. In particular, µ(X ) >
∑n

i=1 aiδi(X ) =
∑n

i=1 ai for every

natural n ∈ N; it follows that
∑∞

i=1 ai < ∞.

It can be easily verified that µ̄ defined by µ̄ = µ − ∑∞
n=1 anδn is

a standard nonnegative measure, and µ̄ 6 µn for all n ∈ N. As-

sume that µ̄ is not strongly continuous, then there exists p ∈ P such
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that st(∗µ̄(p)) > 0. Since limn an = 0, we can find n ∈ N such that

st(∗µ̄(p)) > an > st(∗µn−1(p)); but this contradicts to the fact that

µ̄ 6 µn for each n ∈ N.

We see that the numbers an and measures δn are completely deter-

mined by the values of µ on the central elements of P up to the order.

Thus, the constructed decomposition is unique. ¤

The concept of an infinitely fine partition also gives us an opportu-

nity to prove the Sobczik-Hammer Decomposition Theorem for vector

measures. Let Y be a standard Banach space, and let F : A → Y be

a standard Y -valued measure on (X ,A). Recall that the variation of F

is a real-valued measure given by |F |(A) = supπ

∑
B∈π‖F (B)‖, where

sup is taken over all finite measurable partitions π of A. A vector mea-

sure is said to be nonatomic (strongly continuous, strongly nonatomic)

if the same is true for its variation.

To prove a vector analogue of Sobczik-Hammer Theorem we need

the following lemma. As usually, we assume that P is a hyperfinite ifp

for (X ,A).

5.2. Lemma. If F is a standard vector measure of bounded variation

on (X ,A); then |∗F |(p) ≈ ‖∗F (p)‖ for each p ∈ P .

Proof. Clearly |F |(A) > ‖F (A)‖ for any measurable A. If p ∈ P \ Pc

then |∗F |(p) ≈ 0 by Corollary 4.4, so that |∗F |(p) ≈ ‖∗F (p)‖ holds

trivially.

Suppose that p ∈ Pc. Fix an infinitesimal ε > 0 and consider a hyper-

finite measurable partition π of p such that |∗F |(p) 6
∑

p′∈π‖∗F (p′)‖+ε.

Then P \ {p} ∪ π is again a hyperfinite ifp. Let pπ be the central ele-

ment of this new ifp, corresponding to the monad of p. By Corollary 4.4

|∗F |(p \ pπ) ≈ 0, so that

∥∥∗F (pπ)
∥∥ 6 |∗F |(p) 6

∑

p′∈π

∥∥∗F (p′)
∥∥+ε 6

∑

p′∈π,p′ 6=pπ

|∗F |(p′)+
∥∥∗F (pπ)

∥∥+ε

= |∗F |(p \ pπ) +
∥∥∗F (pπ)

∥∥ + ε ≈
∥∥∗F (pπ)

∥∥.
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It follows that
∥∥∗F (pπ)

∥∥ ≈ |∗F |(p). On the other hand, it follows from
∗F (p) = ∗F (pπ) + ∗F (p \ pπ) and

∥∥∗F (p \ pπ)
∥∥ 6 |∗F |(p \ pπ) ≈ 0 that∥∥∗F (p)

∥∥ ≈
∥∥∗F (pπ)

∥∥, so that
∥∥∗F (p)

∥∥ ≈ |∗F |(p). ¤

Now we can proceed with the vector-valued version of the Sobczik-

Hammer Theorem. A similar result can be found in [KM89], but

the proof presented there is based on completely different concepts.

5.3. Theorem (Sobczik-Hammer Decomposition Theorem for vector

measure). Let F be a standard Y -valued measure of bounded variation

on (X ,A) such that the range of F is relatively compact. Then there

exists a strongly additive vector measure F̄ , a sequence (xn)n∈N ⊂ E,

and a sequence (δn)n∈N of distinct zero-one measures on (X ,A), such

that F = F̄ +
∑∞

n=1 xnδn. Further, this decomposition is unique up to

the order of terms.

Proof. The proof is analogous to the proof of Theorem 5.1. Consider

a hyperfinite ifp P for (X ,A). Let p1 be an element of P of maxi-

mum value of |∗F |. Since F has compact range we are guaranteed that
∗F (p1) is nearstandard. Let x1 = st(∗F (p1)), let δ1 be the zero-one

measure corresponding to [p], and let F1 = F − x1δ1. It follows that

|∗F1|(p) ≈ ‖∗F1(p1)‖ = ‖∗F (p1)− st(F (p1))‖ ≈ 0. Further, follows from

the transfer principle, that |F1| 6 |F |.
Iterating this process we obtain standard sequences (Fn)n∈N, (xn)n∈N,

and (δn)n∈N such that Fn = F − ∑n
i=1 xiδi, |Fn+1| 6 |Fn| 6 |F |, and

‖xn+1‖ 6 ‖xn‖ for each n ∈ N. Let F̄ = F − ∑∞
i=1 xiδ1, then an

argument similar to the one in the proof of Theorem 5.1 shows that F̄

is strongly continuous. ¤

6. Horn-Tarsky Theorem

6.1. Theorem. Let A be an algebra of subsets of a set X , C a subalgebra

of A, and µ a finitely additive measure on C. Then µ can be extended

to a finitely additive measure on A.
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Proof. Let PA and PC be hyperfinite ifp’s for A and C respectively.

Without loss of generality we can assume PA is a refinement of PC.

Take p ∈ PC and let p1, p2, . . . , pN be a hyperfinite partition of p into

elements of PA. Next, we assign a weight w(pi) ∈ ∗R+ to each p1 as

1 6 i 6 N so that
∑N

i=1 w(pi) = ∗µ(p).

We apply this procedure to every p ∈ PC. Now each element of PA
is assigned a weight. For a set A ∈ A we put

λ(A) = st

( ∑
p∈PA, p⊆∗A

w(p)

)
.

It can be easily verified that λ is a standard finitely additive measure

and λ|C = µ. ¤

Obviously, the same reasoning can be used to prove Horn-Tarsky

Theorem for a Banach-valued measure, but again we would need the

range of the measure be relatively compact so that we could take stan-

dard parts when defining λ.

7. Ergodic transformations

Let (X ,A) again be a measurable space, and let τ : X → X be a

measurable transformation, i.e., τ−1(A) ∈ A for each A ∈ A. We

say that a set A is τ-invariant if τ−1(A) = A. If P is an ifp for (X ,A),

we say that P is τ-invariant if τ−1(p) ∈ P for each p ∈ P . In this case

τ−1 induces a permutation of elements of P . Let µ be a probability

measure on (X ,A). Recall that a measurable transformation τ is said

to be measure-preserving if µ
(
τ−1(A)

)
= µ(A) for each A ∈ A, and

ergodic if each τ -invariant set has measure zero or one. If P is an ifp,

we write P+ = {p ∈ P | ∗µ(p) > 0}.

7.1. Proposition. If τ is ergodic and measure preserving, and P is a

τ -invariant ifp, then P+ is hyperfinite and τ -invariant, all the elements

of P+ have the same measure, and τ−1 induces a cyclic permutation of

elements of P+.
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Proof. Fix p ∈ P+ and consider the sequence {τ−k(p) | k ∈ ∗N }, i.e.,

the orbit of p in P under τ−1. Since τ is measure-preserving, all the

sets in the orbit have the same measure. If all of them were distinct,

hence disjoint, this would contradict to µ being a probability measure.

Thus, we have τ−n(p) = τ−m(p) for some distinct m and n. Without

loss of generality we can assume that m = 0, i.e., τ−n(p) = p for some

n ∈ ∗N. Then A =
⋃n−1

k=0 τ−k(p) is a τ -invariant set of positive measure.

Since τ is ergodic, we have µ(A) = 1. This implies that every element

of P+ is contained in A, so that P+ = {τ−k(p) | k = 0, . . . , n − 1}. It

follows immediately that P+ is hyperfinite and that τ acts as a cyclic

permutation of the elements of P+. ¤

Unfortunately, one cannot always find an invariant ifp. For example,

it is easy to see that no ifp is invarial under a strongly mixing transfor-

mation. Recall, that a measure-preserving transformation τ is called a

strong mixing if µ
(
A ∩ τ−n(B)

) → µ(A)µ(B) for any two A,B ∈ A.

Indeed, if P were a τ -invariant ifp, then by Proposition 7.1 P has to

be hyperfinite, and τ−1 induces a cyclic permutation of the elements of

P+. But then µ
(
p1 ∩ τ−n(p2)

)
does not converge for any p1, p2 ∈ P , a

contradiction.
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