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Abstract. It is well known that the only proper non-trivial norm-closed ideal in
the algebra L(X) for X = `p (1 6 p < ∞) or X = c0 is the ideal of compact
operators. The next natural question is to describe all closed ideals of L(`p ⊕ `q) for
1 6 p, q < ∞, p 6= q, or, equivalently, the closed ideals in L(`p, `q) for p < q. This
paper shows that for 1 < p < 2 < q <∞ there are at least four distinct proper closed
ideals in L(`p, `q), including one that has not been studied before. The proofs use
various methods from Banach space theory.

1. Introduction

This paper is concerned with the structure of norm closed ideals of the algebra

L(X) of all bounded linear operators on an infinite-dimensional Banach space X. The

classical result of [Calk41] asserts that the only proper non-trivial closed ideal of L(`2) is

the ideal of compact operators. The same was shown to be true for `p (1 6 p <∞) and

c0 in [GMF60]. It remains open if there are other Banach spaces with only one proper

non-trivial closed ideal. The complete structure of closed ideals in L(X) was recently

described in [LLR04] for X =
(⊕∞

n=1 `
n
2

)
c0

and in [LSZ06] for X =
(⊕∞

n=1 `
n
2

)
`1

. In

the both cases, there are exactly two nested proper non-zero closed ideals. Apart from

those mentioned above, there are no other separable Banach spaces X for which the

structure of the closed ideals in L(X) is completely known. The structure of the closed

ideals of operators on non separable Hilbert spaces was independently obtained by

Gramsch [Gram67] and Luft [Luft68]. Recently Daws [Daws06] extended their results

to non separable `p-spaces, 1 6 p <∞, and non separable c0-spaces.

This motivates the study of the next natural special case X = `p⊕ `q (1 6 p, q <∞,

p 6= q), which is our main interest here. There were several results in this direction

proved in the 1970’s concerning various special ideals or special cases of p and q. We

2000 Mathematics Subject Classification. Primary: 47L20. Secondary: 47B10, 47B37.
Key words and phrases. Operator ideal, `p-space.
The first author was supported by the University of Alberta postdoctoral fellowship. The second

author was supported by NSF. The third author holds the Canada Research Chair in Geometric
Analysis. The fourth author was supported by the University of Alberta start-up grant. Most of the
work on the paper was done during second author’s visit to the University of Alberta in 2003 and
during the Workshop on linear analysis and probability at Texas A&M University in 2004.

Studia Math., 179 (2007), 239-262.

1



2 SARI, SCHLUMPRECHT, TOMCZAK-JAEGERMANN, AND TROITSKY

refer the reader to the book by Pietsch [Piet78, Chapter 5] for details. In particular,

[Piet78, Theorem 5.3.2] asserts that L(`p⊕`q) (with, say, p < q) has exactly two proper

maximal ideals (namely, the ideal of operators which factor through `p and the ideals

of operators which factor through `q), and establishes a one-to-one correspondence

between the non-maximal ideals in the algebra L(`p ⊕ `q) and the closed “ideals” in

L(`p, `q). Here an ideal in L(`p, `q) means a linear subspace J of L(`p, `q) such that

ATB ∈ J whenever A ∈ L(`q), T ∈ J , and B ∈ L(`p), and “closed” is always

understood with respect to the operator norm topology. Consequently, the subject of

the present paper is a study of the structure of closed ideals in L(`p, `q) with 1 6 p 6

q <∞.

In this paper we study a number of natural closed ideals in L(`p, `q) and relations

among them. In particular we show that if 1 < p < 2 < q < ∞ then the following

four closed ideals are proper and distinct: the ideal of all compact operators K, the

closed ideal J Ip,q generated by the formal identity operator Ip,q : `p → `q, the ideal

of all finitely strictly singular operators J FSS, and the closure of the ideal of all `2-

factorable operators J `2 (see Section 2 for appropriate definitions). Although these

ideals were identified earlier, they were not known to be distinct and proper except for

special cases. The following diagram illustrates the relationship between these ideals.

J FSS

&.UUUUU
UUUUU

{0} +3 K +3 J Ip,q // J FSS ∩ J `2

44iii

**UUUUUU
J FSS ∨ J `2 // L(`p, `q)

J `2

44iii

Here arrows stand for inclusions. A solid arrow (⇒ or →) between two ideals means

that there are no other ideals sitting properly between the two, while a double arrow

coming out of an ideal indicates the only immediate successor. A hyphenated arrow

(−−>) indicates a proper inclusion, while a dotted one indicates that we do not know

whether or not the inclusion is proper. In particular, the closed ideals in L(`p, `q) are

not totally ordered.

The paper is organized as follows. In Section 3 we study the ideal J Ip,q for 1 6 p <

q < ∞. In [Milm70], Milman proved that J Ip,q is FSS, and, therefore, J Ip,q ⊆ J FSS.

Since J Ip,q is not compact, K is properly contained in J Ip,q . We will show that every

closed ideal that contains a non-compact operator necessarily contains J Ip,q , so that

J Ip,q is the least non-compact ideal. In Section 4 we consider the ideal J `2 when

1 < p 6 2 6 q < ∞. We find a specific non-FSS operator T in J `2 such that the

closed ideal J T generated by T coincides with J `2 . This implies, in particular, that
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J FSS is a proper ideal (a result proved in [Milm70] for p = 2 6 q). Among results on

other related ideals we also show that J `2 ⊆ J `r for all r between p and q, and we

prove that every closed ideal of L(`p, `q) which contains a non-FSS operator must also

contain J `2 . In Section 5 we consider the “block Hadamard” operator U from `p to `q

for 1 < p < 2 < q < ∞. We show that U /∈ J `2 , hence J `2 is a proper ideal. Since,

obviously, Ip,q ∈ J `2 , it follows that J Ip,q ( J U . We show in Section 6 that U is FSS,

hence J Ip,q ( J FSS.

We thank Gilles Pisier for suggesting to us the proof of Theorem 6.5.

2. Notation and preliminaries

We use the standard notation from the Banach space theory as in [LT77, LT79,

Tom89, DJT95] and we refer the reader to these books for unexplained notions. Given

two Banach spaces X and Y , we write L(X, Y ) for the space of all continuous linear

operators from X to Y , we write L(X) for L(X,X). A linear subspace J of L(X, Y )

is said to be an ideal if ATB ∈ J whenever A ∈ L(Y ), T ∈ J , and B ∈ L(X). By a

closed ideal we mean an ideal closed in the operator norm topology. We denote by

K the closed ideal of all compact operators.

Throughout this paper, p and q always satisfy 1 6 p < q < ∞. We denote by p′

the conjugate of p, that is, 1
p

+ 1
p′

= 1. It is well known (see, e.g., [CPY74]) that K
is contained in every closed ideal of L(`p, `q). If Z is a Banach space, we say that

an operator T ∈ L(X, Y ) factors through Z if T = AB where A ∈ L(Z, Y ) and

B ∈ L(X,Z); we denote by J Z the closure of the set of all operators in L(`p, `q) that

factor through Z. It can be easily verified that if Z is isomorphic to Z ⊕ Z then J Z

is a subspace, hence an ideal. For S ∈ L(`p, `q) we denote by J S the closed ideal in

L(`p, `q) generated by S, that is, the smallest closed ideal containing S. It is easy to

see that J S consists of operators that can be approximated in norm by operators of

the form
∑n

i=1AiSBi, where Ai ∈ L(`q) and Bi ∈ L(`p) for i = 1, . . . , n. If A is an

n× n scalar matrix, we write ‖A‖p,q for the norm of A as an operator from `np to `nq .

It is known that every operator in L(`p, `q) is strictly singular, see, e.g., [LT77]. We

call an operator S : X → Y finitely strictly singular or FSS if for every ε > 0

there exists n ∈ N such that inf
x∈E, ‖x‖=1

‖Sx‖ < ε for every n-dimensional subspace E

of X. This class of operators already appeared in [Milm70] where its introduction has

been credited to Mityagin and Pe lczyński. It can be easily verified (see [Masc94]) that

S is FSS if and only if every ultrapower of S is strictly singular. It follows immediately
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that the set of all FSS operators from X to Y is a closed ideal. Denote by J FSS the

ideal of all FSS operators in L(`p, `q).

We denote by (ei) and (fi) the standard bases of `p and `q respectively, and we

denote their coordinate functionals by (e∗i ) and (f ∗i ). If (xn) is a sequence in a Banach

space, we write [xn] for its closed linear span. A sequence (xn) in a Banach space is

semi-normalized if infn‖xn‖ > 0 and supn‖xn‖ <∞.

The following standard lemma follows immediately from Propositions 1.a.12 and 2.a.1

of [LT77].

Lemma 2.1. If X = `p (1 6 p <∞) or c0 and (xn) is a semi-normalized sequence in

X which converges to zero coordinate-wise (that is, for every i, e∗i (xn)→ 0 as n→∞),

then there is a subsequence (xni) equivalent to (ei), and [xni ] is complemented in X.

Remark 2.2. Suppose that 1 6 p 6 q < ∞ and T ∈ L(`p, `q). We say that T is

block-diagonal if T =
⊕∞

n=1 Tn, where Tn : `mnp → `mnq . Equivalently, there exists a

strictly increasing sequence of integers (kn) such that T =
∑∞

n=1 PnTQn, where Qn and

Pn are the canonical projections from `p and `q onto the finite-dimensional subspaces

spanned by ekn+1, . . . , ekn+1 and fkn+1, . . . , fkn+1 respectively. Note that mn = kn+1−kn
and Tn can be identified with PnTQn. It can be easily verified that if p 6 q then

‖T‖ = supn‖Tn‖. Indeed, ‖Tn‖ = ‖PnTQn‖ 6 ‖T‖ as Pn and Qn are contractions. On

the other hand,

‖Tx‖ =
( ∞∑
n=1

‖PnTQnx‖q
) 1
q
6
(

sup
n
‖PnTQn‖

)( ∞∑
n=1

‖Qnx‖q
) 1
q

6
(
sup
n
‖Tn‖

)( ∞∑
n=1

‖Qnx‖p
) 1
p

=
(
sup
n
‖Tn‖

)
‖x‖.

Remark 2.3. Suppose that R ∈ L(`p, `q) for 1 6 p 6 q <∞, and T is a block-diagonal

submatrix of R, that is, T =
∑∞

n=1 PnRQn, where (Pn) and (Qn) are as in Remark 2.2.

Then T can be written as a convex combination of operators of the form URV , where

U and V are isometries. See Proposition 1.c.8 of [LT77] and Remark 1 following it for

the construction.

3. The formal identity operator Ip,q

In this section we consider the formal identity operator Ip,q : `p → `q for 1 6 p <

q < ∞. Clearly, Ip,q is not compact, so that K ( J Ip,q . First, we show that J Ip,q is

contained in every closed ideal of L(`p, `q) except K. This result is probably known to

specialists, but we provide a short proof for completeness.
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Proposition 3.1. Let 1 6 p < q < ∞. If J is any ideal in L(`p, `q) containing a

non-compact operator, then Ip,q ∈ J .

Proof. Assume that J contains a non-compact operator T . There exists a normalized

sequence (xn) in `p such that (Txn) has no convergent subsequences. By passing to

subsequences and using a standard diagonalization argument, we can assume that (xn)

and (Txn) converge coordinate-wise. Let yn = xn−xn−1, then (yn) and (Tyn) converge

coordinate-wise to zero. Since (Txn) has no convergent subsequences, we can assume

(by passing to a further subsequence if necessary) that (Tyn) is semi-normalized. It

follows that (yn) is also semi-normalized. Using Lemma 2.1 twice, we can assume (by

passing to a subsequence) that (yn) is equivalent to (ei), (Tyn) is equivalent to (fi),

and [Tyn] is complemented in `q.

Let B : `p → [yn] be an isomorphism given by Ben = yn, and let A : [Tyn]→ `q be an

isomorphism given by A(Tyn) = fn. Since [Tyn] is complemented, A can be extended

to an operator on all of `q. Thus we can view B and A as elements of L(`p) and L(`q)

respectively. Observe that ATBen = fn for each n, hence ATB = Ip,q. It follows that

Ip,q ∈ J . �

Corollary 3.2. If a closed ideal of L(`p, `q) contains a non-compact operator, then it

contains J Ip,q .

The following result was proved in [Milm70]. For the reader’s convenience we provide

a short proof.

Proposition 3.3. Suppose that 1 6 p < q < ∞. The formal identity operator Ip,q is

FSS.

We will deduce this proposition from the following lemma, which appeared in [Milm70].

Lemma 3.4. If E is an n-dimensional subspace of c0 then there exists x ∈ E such

that x attains its sup-norm at at least n coordinates.

Proof. The proof is by induction. The statement is trivial for n = 1. Suppose that it

is true for n, take any subspace E of c0 of dimension n+ 1. By induction hypothesis,

there exists x ∈ E such that

(1) δ := ‖x‖∞ = |xi1 | = · · · = |xin|

for a set of distinct indices I = {i1, . . . , in}. Suppose that |xi| < δ for all i /∈ I

(otherwise we are done). Let Y be the subspace of c0 consisting of all the sequences
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that vanish at i1, . . . , in. Since Y has co-dimension n, it follows that Y ∩ E 6= {0}.
Pick a non-zero y ∈ Y ∩E. We claim that for some s > 0 the sequence x+ sy attains

its sup-norm at at least n+ 1 coordinates. Indeed, |xi+ tyi| = δ for all i ∈ I and t > 0.

Consider the function

f(t) = max
j /∈I
|xj + tyj|.

Clearly, f is continuous, f(0) < δ, and limt→+∞ f(t) = +∞. It follows that f(s) = δ

for some s > 0. Then |xi + syi| = ‖x+ sy‖∞ = δ for some i /∈ I. �

Proof of Proposition 3.3. Given ε > 0, pick n ∈ N such that n
1
q
− 1
p < ε. Suppose

that E is a subspace of `p with dimE = n. By Lemma 3.4 there exists x ∈ E and

indices i1, . . . , in satisfying (1). Without loss of generality, ‖x‖p = 1. It follows that

1 = ‖x‖pp > nδp, so that δ 6 n−
1
p . Then

‖x‖qq 6 ‖x‖q−p∞ ‖x‖pp = δq−p 6 n−
1
p

(q−p),

so that ‖x‖q 6 n
1
q
− 1
p < ε. It follows that Ip,q is FSS. �

Corollary 3.5. Let 1 6 p < q <∞. The ideal K is a proper subset of J FSS.

4. Operators factorable through `2

In this section we consider the ideal J `2 for 1 < p < 2 < q. Using Pe lczyński’s

decomposition, we will construct an operator T : `p → `q such that J `2 = J T . That is,

the closure of the ideal of all `2-factorable operators is exactly the closed ideal generated

by T . Furthermore, we show that T fails to be FSS, hence the ideal J FSS is proper. It

will be obvious from the definition of T that T factors through `r whenever p 6 r 6 q,

so it follows that J `2 ⊆ J `r . We also show that T factors through every non-FSS

operator. It follows that any closed ideal containing a non-FSS operator necessarily

contains J `2 .

To construct T , recall that it follows from Pe lczyński’s Decomposition Theorem that

for every 1 < r < ∞, `r is isomorphic to
(⊕∞

n=1 `
n
2

)
r
, the `r-direct sum of `n2 ’s (see

[LT77, p. 73]). Let 1 < p 6 q <∞, put U : `p →
(⊕∞

n=1 `
n
2

)
p

and V :
(⊕∞

n=1 `
n
2

)
q
→ `q

be two such isomorphisms. By I2,p,q :
(⊕∞

n=1 `
n
2

)
p
→
(⊕∞

n=1 `
n
2

)
q

we denote the formal

identity operator, that is, just the change of the norm on the direct sum. Then let

T = V I2,p,qU , that is,

(2) T : `p
U−→
( ∞⊕
n=1

`n2

)
p

I2,p,q−−−→
( ∞⊕
n=1

`n2

)
q

V−→ `q.

We will call T a Pe lczyński Decomposition operator.
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Remark 4.1. Note that T is not unique, it is defined up to the isomorphisms U and V ,

so that we have actually constructed a class of operators. It is clear, however, that any

two Pe lczyński Decomposition operators factor through each other. Moreover, one can

easily verify that if in the preceding construction we “skip” some of the blocks, that is,

if we consider
(⊕∞

n=1 `
kn
2

)
for some strictly increasing sequence of indices kn then the

resulting operator T ′ obviously factors through T . Conversely, T factors through T ′

because `n2 is a complemented subspace of `kn2 .

Furthermore, let En = U−1(`n2 ) ⊂ `p be the pre-image of the n-th block of (
⊕

`n2 )p.

Similarly, put Fn = V (`n2 ) ⊂ `q. Then d(En, `
n
2 ) 6 ‖U‖ · ‖U−1‖ and d(Fn, `

n
2 ) 6

‖V ‖ · ‖V −1‖, where d(X, Y ) stands for the Banach-Mazur distance between X and Y .

Hence, (En) and (Fn) are sequences of uniformly Euclidean subspaces of `p and `q

respectively. Note that T (En) = Fn, so that T fixes copies of `n2 for all n ∈ N. This

immediately implies the following result.

Proposition 4.2. For 1 < p 6 q <∞, every Pe lczyński Decomposition operator fails

to be FSS.

Corollary 4.3. For 1 < p 6 q <∞, the ideal J FSS is proper.

Our next goal is to show that if 1 < p 6 2 6 q < ∞ then J T = J `2 . We will

make use of the concept of `2-factorable norm γ2. Recall that if S ∈ L(X, Y ) (X

and Y Banach spaces) then γ2(S) = inf‖S1‖‖S2‖, where the infimum is taken over

all factorizations S = S1 S2 where S2 : X → `2 and S1 : `2 → Y . It is known that γ2

is a norm on the ideal of all `2-factorable operators, and γ2(ASB) 6 ‖A‖γ2(S)‖B‖
whenever X

B−→ X
S−→ Y

A−→ Y . See [Tom89, DJT95] for more information on γ2.

Lemma 4.4. Suppose that R ∈ L(`p, `q), 1 < p 6 q <∞, and ε > 0.

(i) There exist two block-diagonal operators V,W ∈ L(`p, `q) such that ‖W‖ 6
‖R‖+ ε, ‖V ‖ 6 2‖R‖+ 2ε, and

∥∥R− (W + V )
∥∥ < ε.

(ii) Suppose that, in addition, R is `2-factorable. Then V and W can be chosen to

be `2-factorable, and γ2(W ) 6 γ2(R) + ε, γ2(V ) 6 2γ2(R) + 2ε, and γ2

(
R −

(W + V )
)
< ε.

Proof. Let ri,j stand for the (i, j)-th entry of the matrix of R, that is, ri,j = f ∗i (Rej).

For the purpose of this proof we introduce the following notation: for Ω ⊂ N× N, we

define the matrix RΩ = (ρi,j) by

ρi,j =

{
ri,j if (i, j) ∈ Ω,

0 otherwise.
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We start by approximating R by a matrix S with finitely many entries in every row

and every column. Namely, by truncating each row and each column of R sufficiently

far we can find two strictly increasing sequences (Mj) and (Ni) of positive integers

such that ‖R−RΓ‖ < ε where Γ ⊆ N× N is defined by

(i, j) ∈ Γ iff i 6Mj and j 6 Ni.

Put S = RΓ.

We will define two strictly increasing sequences (kn) and (ln) of positive integers,

such that Γ is contained in the union of two block-diagonal sets ∆ =
⋃∞
n=1 ∆n and

Λ =
⋃∞
n=1 Λn where

∆n =
{

(i, j) ∈ Γ | kn−1 < i, j 6 kn
}

and

Λn =
{

(i, j) ∈ Γ | ln−1 < i, j 6 ln
}
.

We define the sequences (kn) and (ln) by an interlaced induction. Put k0 = 0, l0 = 1.

For n > 0 we let

kn+1 = max{Mln , Nln} and ln+1 = max{Mkn+1 , Nkn+1}.

Clearly, (kn) and (ln) are strictly increasing. Next, we show that Γ ⊆ ∆ ∪ Λ. Let

(i, j) ∈ Γ. There exists n such that ln < max{i, j} 6 ln+1. If ln < min{i, j}, then

ln < i, j 6 ln+1, so that (i, j) ∈ Λ. Suppose now that min{i, j} 6 ln. Then either i or

j is less than or equal to ln, while the other is greater than ln. Say, i 6 ln and j > ln.

It follows that

i 6 ln 6 Nln 6 kn+1 and j > ln > Nkn > kn.

Therefore j 6 Ni 6 Nln 6 kn+1. Also, Ni > j > ln > Nkn yields i > kn. Hence,

kn < i, j 6 kn+1, so that (i, j) ∈ ∆.

Set W = S∆ and V = S −W . Then the non-zero entries of W and V are located in

∆ and Λ, respectively, so that W and V are block-diagonal. By the definition of S we

have
∥∥R − (W + V )

∥∥ < ε. Since W is a block-diagonal part of S, Remark 2.3 yields

that ‖W‖ 6 ‖S‖ 6 ‖R‖+ε. Finally, it follows from V = S−W that ‖V ‖ 6 2‖R‖+2ε.

If R is `2-factorable, then we can choose S with finitely many entries in each row

and column such that S is also `2-factorable and γ2(R − S) < ε. Indeed, let R =

R1R2 be a factorization of R through `2. Approximate R1 and R2 in norm by S1

and S2 respectively, such that S1 and S2 have finitely many entries in every row and

column. Put S = S1S2, then S is as claimed. We use triangle inequality to show that

γ2(R− S) < ε when ‖R1 − S1‖ and ‖R2 − S2‖ are sufficiently small.
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Set W = S∆ and V = S −W . It follows from Remark 2.3 that γ2(W ) 6 γ2(S) 6

γ2(R) + ε. Then then γ2(V ) = γ2(S −W ) 6 2γ2(R) + 2ε. In particular, W and V are

`2-factorable. �

Remark 4.5. In a similar fashion one can show that every operator between two

Banach spaces with shrinking unconditional bases can be approximated by a sum of

two block-diagonal operators.

Remark 4.6. A slight modification of the proof Lemma 4.4(i) yields ‖W‖ 6 ‖R‖.
Indeed, choose Mj and Ni sufficiently large so that not only ‖R − RΓ‖ < ε but also

‖R−RΩ‖ < ε for every Ω ⊆ N×N such that Γ ⊆ Ω. Then, after constructing ∆ and Λ,

put W = R∆ and V = R∆∪Λ −W . Then the non-zero entries of W and V are located

in ∆ and Λ, respectively, so that W and V are block-diagonal. Since ∆ ∪ Λ ⊇ Γ then∥∥R − (W + V )
∥∥ < ε. Since W is a block-diagonal part of R, Remark 2.3 yields that

‖W‖ 6 ‖R‖. Finally, ‖V ‖ 6 ‖R∆∪Λ‖+ ‖W‖ 6 2‖R‖+ ε.

Theorem 4.7. If 1 < p 6 2 6 q and T is a Pe lczyński Decomposition operator, then

J T = J `2.

Proof. Observe that I2,p,q, being the formal identity from
(⊕∞

n=1 `
n
2

)
p

to
(⊕∞

n=1 `
n
2

)
q
,

factors through
(⊕∞

n=1 `
n
2

)
2

= `2. It follows that T factors through `2 and, therefore,

J T ⊆ J `2 .

We show that J `2 ⊆ J T . Clearly, it suffices to show that every `2-factorable operator

belongs to J T . In view of Lemma 4.4(ii), it suffices to show this for block-diagonal

operators. Let W be an `2-factorable block-diagonal operator. Then we can write

W =
⊕∞

n=1 AnBn, where Bn : `knp → `kn2 and An : `kn2 → `knq such that supn‖An‖ and

supn‖Bn‖ are finite. By merging consecutive blocks if necessary, we can assume without

loss of generality that (kn) is strictly increasing. Observe that the operators

B =
∞⊕
n=1

Bn :
( ∞⊕
n=1

`knp

)
p
→
( ∞⊕
n=1

`kn2

)
p

and

A =
∞⊕
n=1

An :
( ∞⊕
n=1

`kn2

)
q
→
( ∞⊕
n=1

`knq

)
q

are bounded, and W = AI0B, where I0 is the formal identity from
(⊕∞

n=1 `
kn
2

)
p

to(⊕∞
n=1 `

kn
q

)
q
. Thus, W factors through I0. It follows from Remark 4.1 that I0 factors

through T . Hence, W factors through T . �

Remark 4.8. Actually, we proved that every operator in J `2 can be approximated by

sums of two T -factorable operators.
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Remark 4.9. Suppose that 1 < p < r < q. Then I2,p,q in (2) factors through(⊕∞
n=1 `

n
2

)
r
, which is isomorphic to `r. It follows that T factors through `r. Then

Theorem 4.7 implies that J `2 ⊆ J `r when p 6 2 6 q.

Next, we show that if p < 2 < q then J `2 is the least closed ideal beyond J FSS,

that is, every closed ideal that contains a non-FSS operator also contains J `2 . For the

proof we need the following well-known fact.

Theorem 4.10. For every 1 < r < ∞ there exists K > 0 such that for all n ∈ N
there exists N ∈ N such that every N-dimensional subspace F ⊂ `r contains an n-

dimensional subspace E which is K-complemented in `r and 2-isomorphic to `n2 .

Remark 4.11. The theorem follows by simultaneous use of Dvoretzky’s theorem both

in a subspace F ⊂ `r and in its dual F ∗ (see e.g., [MS86]). This gives the result with

N = Cnr/2 and K = C ′
√

max{r, r′}, where C,C ′ > 0 are absolute constants. This

theorem can be also viewed, for example, as a special case of results in [FT79].

We will also routinely use the following observation.

Remark 4.12. Suppose that (En) is a sequence of subspaces of a Banach space X

which are uniformly Euclidean and uniformly complemented in X. That is, there exist

a constant C > 0 and sequences (Pn) and (Vn) such that Pn is a projection from X

onto En with ‖Pn‖ < C, and Vn : En → `n2 is an isomorphism with ‖Vn‖ · ‖V −1
n ‖ 6 C

for every n. Let Gn be a subspace of En (n ∈ N). Then it is easy to see that the Gn’s

are uniformly Euclidean and uniformly complemented in X as well.

For x ∈ `r we write suppx = {i ∈ N | xi 6= 0}. For A ⊆ `r put suppA = ∪x∈A suppx.

Theorem 4.13. Let 1 < p 6 2 6 q < ∞. If R ∈ L(`p, `q) is not FSS, then every

Pe lczyński Decomposition operator factors through R.

Proof. Since R is not FSS, there exist a constant C > 0 and a sequence (En) of

subspaces of `p such that dimEn → ∞ as n → ∞, and R|En is invertible with

‖(R|En)−1‖ 6 C. We can assume, in addition, that suppEn is finite by truncating

all the vectors in a basis of En sufficiently far (and adjusting C if necessary). Let

Fn = R(En). Using Theorem 4.10 and Remark 4.12 we can easily obtain subspaces

E ′n ⊂ En and F ′n ⊂ Fn which are C-Euclidean, C-complemented in `p and `q respec-

tively, and such that F ′n = R(E ′n). By passing to a subsequence we may assume that

dimE ′n = n, and we relabel so obtained sequences by (En) and (Fn). Let Qn : `q → Fn

be a projection with ‖Qn‖ 6 C.
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We are going to define sequences (Ên), (F̂n) and (Q̂n) which satisfy all the properties

described in the previous paragraph and, in addition, there exists a strictly increasing

sequence (mn) in N such that the following four conditions are satisfied

(i) mn−1 < min supp Ên and mn−1 < min supp F̂n;

(ii) Q̂ny = 0 whenever max supp y 6 mn−1;

(iii) mn > max supp Ên;

(iv) ‖Q̂ny‖ 6 2−n‖y‖ whenever min supp y > mn.

We construct the sequences inductively. Let m0 = 0, and suppose that we already

constructed Êi, F̂i, Q̂i, and mi for all i < n. Let G and G′ be the subspaces of `p

and `q respectively, consisting of all vectors whose first mn−1 coordinates are zero. Put

k = 2mn−1 + n. It follows from dimFk = k and codimG′ = mn−1 that mn−1 + n 6

dimFk ∩ G′ = dimR−1
(
Fk ∩ G′

)
, because R|Ek is an isomorphism. Since codimG =

mn−1 we have G ∩ R−1
(
Fk ∩ G′

)
> n. Let Ên be an n-dimensional subspace of

G∩R−1
(
Fk ∩G′

)
, and F̂n = R(Ên). Then Ên ⊆ G and F̂n ⊆ G′, hence (i) is satisfied.

Clearly, F̂n is Ĉ-complemented in `q, where Ĉ = C2. Then there exists a projection

Q′ : `q → F̂n such that ‖Q′‖ 6 Ĉ. Let Q̂n = Q′P , where P is the basis projection of

`q onto [fi]i>mn−1 . Then Q̂n is again a projection from `q onto F̂n, ‖Q̂n‖ 6 Ĉ, and (ii)

is satisfied. Since rank Q̂n = n, we can write Q̂n =
∑n

j=1 zj ⊗ z∗j , where z1, . . . , zj ∈ `p
and z∗1 , . . . , z

∗
j ∈ `∗q. Then we can find r ∈ N sufficiently large, such that if ‖y‖ 6 1 and

min supp y > r then |z∗j (y)| is sufficiently small for all j = 1, . . . , n, so that ‖Q̂y‖ 6 2−n.

Let mn = max{r, s}, where s = max supp Ên, then (iii) and (iv) are satisfied.

For convenience, we relabel Ên, F̂n, Q̂n, and Ĉ as En, Fn, Qn, and C again. For every

n suppose that Vn is a C-isomorphism of `n2 onto En with ‖Vn‖ = 1 and ‖V −1
n ‖ 6 C.

Put

V =
∞⊕
n=1

Vn :
( ∞⊕
n=1

`n2

)
p
→
( ∞⊕
n=1

En

)
p
.

Since En’s are disjointly supported, we can consider
(⊕∞

n=1 En
)
p

as a subspace of `p.

It follows that V is a C-isomorphism between
(⊕∞

n=1 `
n
2

)
p

and a subspace of `p. Define

W : `q →
( ∞⊕
n=1

`n2

)
q

via W : x 7→
(
V −1
n

(
R|En

)−1
Qnx

)∞
n=1

.

We claim that W is bounded. Indeed, pick x ∈ `q. Then

(3) ‖Wx‖ =
( ∞∑
n=1

∥∥V −1
n

(
R|En

)−1
Qnx

∥∥q
2

) 1
q
6 C2

( ∞∑
n=1

‖Qnx‖q
) 1
q
.
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Let Pk be the basis projection from `q onto [fi]
mk
i=mk−1+1. Then x =

∑∞
k=1 Pkx. It follows

from (ii) thatQnPkx = 0 whenever k < n. Furthermore, (iv) yields
∥∥Qn

(∑
k>n Pkx

)∥∥ 6
2−n‖x‖. Also, ‖QnPnx‖ 6 C‖Pnx‖. Therefore, ‖Qnx‖ 6 C‖Pnx‖ + 2−n‖x‖. Using

Cauchy-Schwartz inequality, we get( ∞∑
n=1

‖Qnx‖q
) 1
q
6
( ∞∑
n=1

(
C‖Pnx‖

)q) 1
q

+
( ∞∑
n=1

(
2−n‖x‖

)q) 1
q
6 (C + 1)‖x‖.

Together with (3) this yields that W is bounded.

Finally, it is easy to see that WRV = I2,p,q, it follows easily that every Pe lczyński

Decomposition operator factors through R. �

Corollary 4.14. Let 1 < p 6 2 6 q <∞. If R ∈ L(`p, `q) is not FSS, then J `2 ⊆ J R.

5. Operators not factorable through `2

We employ the following known theorem (see [DJT95, Theorem 9.13] or [Tom89,

Theorem 27.1]) to deduce conditions for an operator in L(`p, `q) to factor through `r.

Theorem 5.1. Let 1 6 r < ∞, let U : X → Y be a bounded linear operator between

Banach spaces X and Y , and let C > 0. The following are equivalent:

(i) There exists a subspace L of Lr(µ), µ a measure, and a factorization U =

V W , where V : L → Y and W : X → L are bounded linear operators with

‖V ‖ · ‖W‖ 6 C.

(ii) Whenever finite sequences (xi)
n
i=1 and (zi)

m
i=1 in X satisfy

m∑
i=1

∣∣〈x∗, zi〉∣∣r 6 n∑
i=1

∣∣〈x∗, xi〉∣∣r for all x∗ ∈ X∗, then
m∑
i=1

‖Uzi‖r 6 Cr

n∑
i=1

‖xi‖r.

Let us use Theorem 5.1 to state a criterion for an operator U : `mp → `mq not to

factor as U = AB with ‖B‖p,r · ‖A‖r,q 6 C.

Corollary 5.2. Let m ∈ N, C > 1, and r > 1, and assume that U is an invertible

m by m matrix. Let δ = ‖U−1‖r′,r′. Then ‖B‖p,r · ‖A‖r,q > δ−1 for any factorization

U = AB. Moreover, if Ũ is another m by m matrix with

(4) ‖Ũ − U‖p,q 6
(
2 max

16i6m
‖U−1ei‖p

)−1
,

then it follows that for any factorization Ũ = AB we have ‖B‖p,r · ‖A‖r,q > (2δ)−1.
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Proof. For i = 1, . . . ,m let xi = ei and zi = δ−1U−1ei and observe that for any x∗ ∈ Rm:( m∑
i=1

∣∣〈x∗, zi〉∣∣r)1/r

= δ−1
( m∑
i=1

∣∣〈(U−1)∗x∗, ei〉
∣∣r)1/r

= δ−1‖(U−1)∗x∗‖r

6 δ−1‖U−1‖r′,r′‖x∗‖r =
( m∑
i=1

∣∣〈x∗, xi〉∣∣r)1/r

,

which implies that the hypothesis of (ii) in Theorem 5.1 is satisfied. Secondly it follows

that

(5)
m∑
i=1

‖Uzi‖rq = δ−rm = δ−r
m∑
i=1

‖xi‖rp,

which means that the conclusion of (ii) in Theorem 5.1 is not satisfied for any C < δ−1.

It follows that condition (i) in Theorem 5.1 fails whenever C < δ−1.

Now assume that Ũ is another m by m matrix satisfying (4), then it follows for

i = 1, . . . ,m that

‖Ũ(zi)‖q > ‖U(zi)‖q − ‖(U − Ũ)(zi)‖q
> 1

2
‖U(zi)‖q +

(
1
2
‖U(zi)‖q − ‖U − Ũ‖p,q‖zi‖p

)
= 1

2
‖U(zi)‖q +

(
1
2δ
− ‖U − Ũ‖p,qδ−1‖U−1ei‖p

)
> 1

2
‖U(zi)‖q,

which implies, together with (5), that for Ũ the conclusion of (ii) in Theorem 5.1 is

not satisfied for any C < δ−1/2, hence (i) fails in this case. �

We will now define an operator which will be crucial for the rest of the paper, and

we start with the following notations. Let Hn be the n-th Hadamard matrix. That

is, H1 = (1), Hn+1 =
(
Hn Hn
Hn −Hn

)
for every n > 1. Then Hn is an N ×N matrix where

N = 2n. We use the identifications `p =
(⊕∞

n=1 Xn

)
p

and `q =
(⊕∞

n=1 Yn
)
q
, where

Xn = `2n

p and Yn = `2n

q are block subspaces of `p and `q respectively. We consider Hn

as an operator from Xn to Yn. Put

(6) Un = N
− 1

min{p′,q}Hn where N = 2n, and let U =
∞⊕
n=1

Un : `p → `q.

Remark 5.3. Observe that N−
1
2Hn is a unitary matrix on `N2 . In particular, it is

an isometry on `N2 , hence ‖Hn‖2,2 = N
1
2 , and H2

n = NI. One can easily verify that

‖Hn‖1,∞ = 1 and ‖Hn‖1,1 = ‖H‖∞,∞ = N .

Theorem 5.4. If 1 < p 6 2 6 q < ∞, then the operator U defined by (6) has the

following properties.
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(i) ‖U‖p,q = 1.

(ii) U is not compact.

(iii) If p′ 6= q then U is FSS.

(iv) Let p 6 r 6 q. Then U factors through `r when p 6 r 6 q′ or p′ 6 r 6 q;

otherwise U /∈ J `r .

(v) In particular, if p 6= q then U /∈ J `2.

Remark 5.5. In Section 6 we treat (iii) in the much harder case when p′ = q and

show that in this case U is still FSS.

Proof. Using the Riesz-Thorin interpolation theorem (e.g., [BL76, LT79]) for Hn acting

as an operator in L(`1, `∞) and as an operator in L(`2, `2), and using Remark 5.3, we

obtain ‖Hn‖r,r′ 6 N
1
r′ whenever 1 6 r 6 2. Similarly, interpolating between ‖H‖1,1

and ‖Hn‖2,2, and between ‖Hn‖2,2 and ‖H‖∞,∞, we obtain ‖H‖r,r 6 N
1

min{r,r′} whenever

1 6 r 6∞.

Define U
(r)
n = N−

1
r′Hn and U (r) =

⊕∞
n=1 U

(r)
n , then ‖U (r)

n ‖r,r′ 6 1 for every n, hence

‖U (r)‖r,r′ 6 1. Considering U as an operator in L(`p, `q), we can write

(7) U =


`p

U(p)

−−→ `q when p′ = q,

`p
U(p)

−−→ `p′
Ip′,q−−→ `q when p′ < q, and

`p
Ip,q′−−→ `q′

U(q′)
−−−→ `q when p < q′.

It follows immediately that ‖U‖p,q 6 1. Since J FSS is an ideal, (iii) follows from

Proposition 3.3. It also follows from (7) that U factors through `r if p 6 r 6 q′ or

p′ 6 r 6 q,

Consider first the case p′ 6 q. Then Un = N
− 1
p′Hn. Let hn,i = Hnei, the i-th column

of the n-th Hadamard matrix. It follows from H2
n = NI that Unhn,i = N

− 1
p′H2

nei =

N
1
p ei. Thus, ‖Unhn,i‖q = N

1
p = ‖hn,i‖p, so that ‖Un‖p,q = 1. Hence, U is not compact,

and ‖U‖p,q = 1 by Remark 2.2.

Next, suppose that p < r < p′ 6 q. We use Corollary 5.2 to show that U /∈ J `r

in this case. Indeed, assume to the contrary that U ∈ J `r . Then there exists Ũ

such that ‖U − Ũ‖ < 1
2

and Ũ factors through `r. Let C be the `r-factorization

constant of Ũ . Since p < min{r, r′} one can choose n so that C < 1
2
N

1
p
− 1

min{r,r′} , where

N = 2n. Let Ũn be the N ×N submatrix of Ũ corresponding to the n-th block of U ,

that is, Ũn = QnŨPn, where Pn (respectively, Qn) is the canonical projection from `p

(respectively, `q) onto the span of eN+1, . . . , e2N . Then the `r-factorization constant of
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Ũn is at most C. It follows from ‖U−1
n ei‖p = ‖N−

1
phn,i‖p = 1 that∥∥Un − Ũn∥∥ 6 ∥∥U − Ũ∥∥ < 1

2
=
(
2 max

16i6N

∥∥U−1
n ei

∥∥
p

)−1
.

Let δ = ‖U−1
n ‖r′,r′ . It follows from H2

n = NI and Un = N
− 1
p′Hn that U−1

n = N−
1
pH,

so that

δ = N
− 1
p′ ‖Hn‖r′,r′ 6 N

− 1
p

+ 1
min{r,r′} .

Corollary 5.2 yields that the `r-factorization constant of Ũn is at least (2δ)−1 >
1
2
N

1
p
− 1

min{r,r′} > C, which is a contradiction.

The case p < q′ can be reduced to the previous case by duality. Indeed, it follows

from (7) that U∗ = Iq,p′U
(q′) : `q′ → `p′ . It follows that if p 6 r 6 q′ then Iq,p′ and,

therefore, U∗ factors through `r′ . Hence, U factors through `r. Furthermore, since

Hn is symmetric for every n, it follows that U∗n coincides with Un as a matrix and

‖U∗n‖q′,p′ = 1. Applying the previous argument, we observe that U∗ is non-compact

and ‖U∗‖q′,p′ = 1, hence the same is true for U . Furthermore, if q′ < r < q, then

U∗ /∈ J `r′ so that U /∈ J `r .

Finally, (v) follows immediately from (iv). �

Remark 5.6. If p < r < r′ < q then the operator Ũ defined as

`p
Ip,r−−→ `r

U(r)

−−→ `r′
Ir′,q−−→ `q

is compact. Indeed, as a matrix

Ũn = U (r)
n = N−

1
r′Hn = N

1
min{p′,q}−

1
r′Un.

It follows from ‖Un‖p,q = 1 and r′ < min{p′, q} that ‖Ũn‖p,q = N
1

min{p′,q}−
1
r′ → 0 as

n→ 0.

Remark 5.7. It follows from Theorem 5.4(iv) that J `r is proper when max{p, q′} <
r < min{p′, q}. In particular, J `2 is proper. It follows from Remark 4.9 and Theo-

rem 5.4(iv) that J `2 ( J `r whenever p < r < q′ or p′ < r < q. We do not know,

however, whether J `r is proper in this case.

Next, we show that if U ′ is another “U -like” operator then U and U ′ factor through

each other.

Again, we view `p =
(⊕∞

n=1 Xn

)
p

and `q =
(⊕∞

n=1 Yn
)
q
, where Xn = `2n

p and

Yn = `2n

q . Denote the basis vectors in Xn and Yn by e
(n)
1 , . . . , e

(n)
2n and f

(n)
1 , . . . , f

(n)
2n ,

respectively. We can view Hn and Un as operators from Xn to Yn.
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Theorem 5.8. Suppose that (ni) is an increasing sequence, and let Ũ =
⊕∞

i=1 Uni,

viewed as an operator from `p =
(⊕∞

i=1Xni

)
p

to `q =
(⊕∞

i=1 Yni
)
q
. Then U and Ũ

factor through each other.

Proof. Consider the following diagram

`p =
(⊕∞

i=1Xni

)
p

ı
↪→
(⊕∞

n=1Xn

)
p

U−→
(⊕∞

n=1 Yn
)
q

R−→
(⊕∞

i=1 Yni
)
q

= `q,

where ı is the canonical embedding, and R is the canonical projection. We can view ı

and R as operators on `p and `q respectively. Thus, we get Ũ = RUı.

Next, we prove that U factors through Ũ . First, we show that whenever n < m then

there exists operators C : Xn → Xm and D : Ym → Yn such that Un = DUmC and

‖C‖p,p 6 1 and ‖D‖q,q 6 1.

First, we consider the case q 6 p′. Define Cn : Xn → Xn+1 via Cne
(n)
i = e

(n+1)
i as

i = 1, . . . , 2n. Clearly, Cn is an isometry.

Let Zn be the subspace of Yn+1 consisting of all the vectors whose first half coordi-

nates are equal to the last half coordinates respectively, that is, Zn = span{f (n+1)
i +

f
(n+1)
i+2n | i = 1, . . . , 2n}. Let Pn be the “averaging” projection from Yn+1 onto Zn given

by

Pn

(2n+1∑
i=1

αif
(n+1)
i

)
=

2n∑
i=1

αi + αi+2n

2

(
f

(n+1)
i + f

(n+1)
i+2n

)
.

Then ‖Pn‖ = 1.

Define Bn : Zn → Yn via Bn(f
(n+1)
i +f

(n+1)
i+2n ) = 2

1
q f

(n)
i , then Bn is an isometry. Hence,

Dn = BnPn : Yn+1 → Yn is of norm one.

Fix 1 6 i 6 2n. Since Cne
(n)
i = e

(n+1)
i , Hn+1Cne

(n)
i is the i-th column of Hn+1. Since

i 6 2n it follows from the construction of Hn’s that the i-th column of Hn+1 is exactly

the i-th column of Hn repeated twice. In particular, Hn+1Cne
(n)
i ∈ Zn and, therefore,

Hn+1Cne
(n)
i = PnHn+1Cne

(n)
i . Finally,

BnPnHn+1Cne
(n)
i = 2

1
q (the i-th column of Hn) = 2

1
qHne

(n)
i .

Consequently, DnHn+1Cn = 2
1
qHn. It follows from Hn = 2

n
q Un that DnUn+1Cn = Un.

Iterating this m − n times, we get DUmC = Un where C : Xn → Xm is an isometry,

D : Ym → Yn is of norm one.

If q > p′, then we consider the adjoint operators. Note that U∗n = Un as matrices.

Applying the previous argument we find matrices C and D such that U∗n = DU∗mC

with ‖C‖q′,q′ 6 1 and ‖D‖p′,p′ 6 1. Then Un = C∗UmD
∗ is a required factorization in

the case q > p′.
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It follows that for every i we have

(8) D̃iUniC̃i = Ui

for some contractions C̃i : Xi → Xni and D̃i : Xni → Xi. Let

C̃ =
(
⊕∞i=1C̃i

)
:
(
⊕∞i=1Xi

)
p
→
(
⊕∞i=1Xni

)
p

and

D̃ =
(
⊕∞i=1D̃i

)
:
(
⊕∞i=1Xni

)
q
→
(
⊕∞i=1Xi

)
q
.

Then C̃ : `p → `p and D̃ : `q → `q are bounded, and by (8) we have D̃ŨC̃ = U . �

It follows that any two operators of type Ũ generated by different sequences factor

through each other.

6. The operator U is FSS

Again, let U be the operator defined by (6). Theorem 5.4(iii) states that U is FSS

when p 6= q′. We will show in this section that U is still FSS when 1 < p = q′. The

argument requires some preparation.

Recall that the n-th s-number of an operator T ∈ L(H) on a Hilbert space H is

defined via sn(T ) = inf
{
‖T − R‖ | rankR < n

}
. For 1 6 r < ∞, the Schatten norm∥∥T∥∥

Sr
of T equals the `r norm of the sequence of the s-numbers. We say that T belongs

to Schatten class Sr if
∥∥T∥∥

Sr
<∞. We denote by S∞ the set of all compact operators

equipped with the operator norm.

Lemma 6.1. If T ∈ L(H) such that
∥∥T∥∥

Sq
= 1 and inf

x∈F,‖x‖=1
‖Tx‖ > ε for a subspace

F of H, then dimF 6 ε−q.

Proof. Suppose that dimF = k. For every operator S of rank k − 1 there exists

x ∈ F such that ‖x‖ = 1 and Sx = 0. It follows that ‖T − S‖ > ‖Tx‖ > ε, so that

s1 > . . . > sk > ε. Therefore, 1 =
∥∥T∥∥q

Sq
> kεq. Hence k 6 ε−q. �

We will also utilize the following result of Maurey, [Maur74, Corollary 11, p. 21].

Theorem 6.2. Let (Ω, µ) be a measure space, Y a Banach space, 0 < u 6 v < ∞,
1
u

= 1
v

+ 1
r
, T a bounded operator from a closed subspace E of Lv(µ) to Y , and C > 0.

Then the following are equivalent.

(i) There exists a closed subspace F of Lu(µ) such that T factors as T = V Mg,

where V : F → Y with ‖V ‖ 6 C, and Mg : Lv(µ) → Lu(µ) is a multiplication

operator defined by Mgf = gf for every f ∈ Lv(µ), with g ∈ Lr(µ) and

‖g‖r 6 1.
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(ii) For any x1, . . . , xn in E,( n∑
i=1

‖Txi‖u
) 1
u
6 C

[∫ ( n∑
i=1

|xi|u
) v
u
dµ

] 1
v

.

In what follows, KG will denote the so-called Grothendieck constant, a fundamental

constant in the Banach space theory, see [DJT95, Tom89, LT77] for details.

Corollary 6.3. Let (Ω, µ) be a measure space. Suppose that q = p′ and 1
p

= 1
2

+ 1
r
.

(i) If T : Lq(µ)→ `k2 then T can be factored through a multiplication operator from

Lq(µ) to L2(µ), that is, T = SMg, where S : L2(µ) → `k2 with ‖S‖ 6 KG‖T‖
and ‖g‖r = 1.

(ii) If T : `k2 → Lp(µ) then T can be factored through a multiplication operator from

L2(µ) to Lp(µ), that is, T = Mh S, where S : `k2 → L2(µ) with ‖S‖ 6 KG‖T‖
and ‖h‖r 6 1.

Proof. Suppose that T : Lq(µ)→ `k2. We verify that condition (ii) of Theorem 6.2 holds

for u = 2, v = q = p′, and r > 1 such that 1
p

= 1
2

+ 1
r

(which is equivalent to 1
2

= 1
v

+ 1
r
).

Let f1, . . . , fn ∈ Lq. Then

n∑
i=1

∥∥Tfi∥∥2
=

n∑
i=1

k∑
j=1

∣∣(Tfi)j∣∣2 =
k∑
j=1

n∑
i=1

∣∣(Tfi)j∣∣2 =
∥∥∥( n∑

i=1

∣∣Tfi∣∣2) 1
2
∥∥∥2

`2
,

where the last expression is the norm of the sequence
((∑n

i=1|(Tfi)j|2
) 1

2

)n
j=1

. It follows

from [LT79, Theorem 1.f.14] that∥∥∥( n∑
i=1

∣∣Tfi∣∣2) 1
2
∥∥∥
`2
6 KG‖T‖

∥∥∥( n∑
i=1

|fi|2
) 1

2
∥∥∥
Lq

= KG‖T‖
[∫ ( n∑

i=1

|fi|2
) q

2
dµ

] 1
q

.

Now (i) follows from Theorem 6.2. To prove (ii), apply (i) to T ∗. �

For N ∈ N and 1 6 p 6 ∞, by LNp we denote the space Lp(µ) where µ is the

uniform probability measure on Ω = {1, . . . , N}. Thus, LNp =
(
RN , ‖·‖LNp

)
where, for

x̄ = (xi) ∈ RN , ‖x̄‖LNp =
(

1
N

∑N
i=1|xi|p

) 1
p for p < ∞ and ‖x̄‖LN∞ = max16i6N |xi|.

Clearly, ‖·‖LNp is a scalar multiple of ‖·‖`Np .

The following easy lemma is well-known to specialists. We state it exactly in the

form required later and we provide a short proof.

Lemma 6.4. Consider a product of three operators

S : LN2
Mψ−−→ LN1

T−→ `N∞
D−→ `N2
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where D = diag(dj)
N
j=1, i.e., the diagonal operator with diagonal (dj). Then the Hilbert-

Schmidt norm of S satisfies ‖S‖HS 6 ‖ψ‖LN2 ‖T‖
∥∥(dj)

∥∥
`N2

.

Proof. Observe that, in the notation of function spaces on (Ω, µ),

S : f 7→ ψf 7→
(
〈gn, ψf〉

)N
n=1
7→
(
dn〈gn, ψf〉

)N
n=1

,

for f ∈ LN2 , and for some sequence (gn)Nn=1 in LN∞, so that ‖T‖ = supn‖gn‖LN∞ . (Here

〈·, ·〉 denotes the inner product with respect to µ.) Let (fi)
N
i=1 be an orthonormal basis

of LN2 , then

‖S‖2
HS =

N∑
i=1

‖Sfi‖2
`N2

=
N∑
i=1

N∑
n=1

d2
n〈gn, ψfi〉2 =

N∑
n=1

d2
n

N∑
i=1

〈ψgn, fi〉2

=
N∑
n=1

d2
n · ‖ψgn‖2

LN2
6 ‖ψ‖2

LN2
·
(
sup
n
‖gn‖2

LN∞

)
·
∥∥(dj)

∥∥2

`N2
.

�

Theorem 6.5 ([Pis04]). Suppose that T : LNp → `Nq for some 1 6 p < 2 and q = p′.

Let E be a k-dimensional subspace of LNp , and C1, C2, and C3 be positive constants

such that

(i) ‖T‖LN2 ,`N2 6 1 and ‖T‖LN1 ,`N∞ 6 1;

(ii) E is C1-isomorphic to `k2;

(iii) F = T (E) is C2-complemented in `Nq ; and

(iv) T|E is invertible and
∥∥(T|E)−1

∥∥ 6 C3.

Then k 6
(
C3

1C2C
2
3K

2
G

)q
.

Proof. Suppose that T , E, and F satisfy the hypotheses for some C1, C2, and C2. Let

r be such that 1
p

= 1
2

+ 1
r
. There exists an isomorphism V : `k2 → E such that ‖V ‖ 6 1

and ‖V −1‖ 6 C1. By Corollary 6.3(ii) V factors through LN2 . Namely, V = MgS such

that S : `k2 → LN2 with ‖S‖ 6 C1KG and ‖g‖r 6 1. Let J : E → LNp be the canonical

inclusion map.

LN2
Mg−−−→ LNp

T−−−→ `Nq
D−−−−→

diagonal
`N2

S

x J

xincl. proj.

yQ yR
`k2

V−−−−−→
C1−isom.

E
T|E−−−→ F

W−−−−−−→
C1C3−isom

`k2

Let Q be a projection from `Nq onto F with ‖Q‖ 6 C2. It follows from (i) that

‖T‖LNp ,`Nq 6 1. Then F is C1C3-isomorphic to `k2. Let W : F → `k2 be an isomorphism

such that ‖W‖ 6 1 and ‖W−1‖ 6 C1C3. Corollary 6.3(i) implies that WQ factors
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through `N2 , that is, WQ = RD where R : `N2 → `k2 with ‖R‖ 6 KG‖WQ‖ 6 C2KG,

and D is a multiplication (or diagonal) operator D = diag(dj)
N
j=1 with

∥∥(dj)
∥∥
`Nr
6 1.

We are going to show that ‖DTMg‖SNq 6 1, using the classical complex interpolation

argument (see, e.g., [BL76]). For the convenience of the reader not familiar with the

subject, we provide the details. Let Z = {z ∈ C | 0 6 Re z 6 1}, and define a function

F from Z to the unit ball B(LN2 , `
N
2 ) of L(LN2 , `

N
2 ) as follows:

(9) F (z) = |D|(1−z)
r
2 signDTM|g|(1−z)

r
2 sign g

.

Here, as usually, |D| = diag(|dj|) and signD = diag(sign dj). Observe that F is

analytic in the interior of Z as a function from Z to CN × CN . Furthermore, F

is continuous and bounded on Z. A direct calculation shows that if 1
r

= 1−θ
2

then

F (θ) = DTMg.

If Re z = 1, it follows from (9) that F (1 + it) = AtTBt, where At = |D|− itr2 signD

and Bt = M
|g|−

itr
2 sign g

. Notice that At and Bt viewed as operators from `N2 to `N2 and

from LN2 to LN2 respectively are contractions. It follows that

(10)
∥∥F (z)

∥∥
LN2 ,`

N
2
6 ‖T‖LN2 ,`N2 6 1 whenever Re z = 1.

If Re z = 0 then we can write

F (it) = At|D|
r
2TM|g|

r
2
Bt.

It can be easily verified that
∥∥|g| r2∥∥

LN2
6 1 and

∥∥(|di| r2 )∥∥`N2 6 1. Since ‖T‖LN1 ,`N∞ 6 1,

it follows by Lemma 6.4 that

(11)
∥∥F (z)

∥∥
HS
6 1 whenever Re z = 0.

Put SNq = Sq(L
N
2 , `

N
2 ). It is known (see, e.g. [GK65, Theorem 13.1]) that the Schatten

classes interpolate like Lp-spaces. Since

1
∞(1− θ) + 1

2
θ = 1

2
− 1

r
= 1

q
,

it follows that (SN∞, S
N
2 )θ = SNq .

On the other hand, by definition of a complex interpolation space,

B(SN∞,S
N
2 )θ

=
{
f(θ) | f : Z → B(LN2 , `

N
2 ) analytic,∥∥f|{Re z=0}

∥∥
S2
6 1 and

∥∥f|{Re z=1}
∥∥
S∞
6 1
}
.

Since ‖·‖S2 = ‖·‖HS and ‖·‖S∞ = ‖·‖LN2 ,`N2 , it follows from (10) and (11) that DTMg =

F (θ) ∈ B(SN∞,S
N
2 )θ

and, thus, ‖DTMg‖SNq 6 1. It follows that

‖WTV ‖Sq =
∥∥RDTMgS

∥∥
Sq
6 ‖R‖

∥∥DTMg

∥∥
Sq
‖S‖ 6 C1C2K

2
G.
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Note that
∥∥(WTV )−1

∥∥ 6 C2
1C

2
3 . It follows from Lemma 6.1 that

k 6
( 1

C2
1C

2
3

1

C1C2K2
G

)−q
=
(
C3

1C2C
2
3K

2
G

)q
.

This concludes the proof. �

We also need the following lemma, which generalizes Lemma 3.4. Assume that X is

a Banach space with an FDD (Xn)∞n=1, see [LT77] for the definition of FDD. Let Pn be

the canonical projection from X onto Xn, and assume that X satisfies the following

condition, which means that X is far from a c0-sum of the Xn’s:

(12)
for any δ > 0 there is a k = k(δ) in N so that whenever
x ∈ SX , then card{n ∈ N : ‖Pnx‖ > δ} < k.

Suppose that for every n ∈ N we are given a seminorm qn on Xn such that qn(x) 6 ‖x‖,
where qn(x) stands for qn(Pnx) whenever x ∈ X.

Lemma 6.6. Suppose that X, (Xn), and (qn) are as in the preceding paragraph and

0 < r 6 1. Then there exists ε > 0 such that for every l ∈ N there exists L ∈ N
such that for every L-dimensional subspace G of X such that maxn∈N qn(x) > r‖x‖ for

all x ∈ G there exists an l-dimensional subspace F ⊆ G and an index n0 such that

qn0(x) > ε‖x‖ for all x ∈ F .

To prove Lemma 6.6 we need the following stabilization result, see, e.g., [MS86, p.6].

Theorem 6.7. For every n ∈ N, ε > 0 and c > 0 there is an N = N(n, ε, c) ∈ N
so that for any N-dimsensional space E, and any Lipschitz map f : SE → R whose

Lipschitz constant does not exceed c, there is an n-dimensional subspace F of E so that

max{f(x) : x ∈ SF} −min{f(x) : x ∈ SF} 6 ε.

Proof of Lemma 6.6. Let k(·) be the function defined in (12). Put

m = k
(
r2

4

)
, δ = r

4m
, and s = k(δ).

It suffices to show that for l′ ∈ N there exists L so that if G is a subspace of X of

dimension L and maxn∈N qn(x) > r‖x‖ for all x ∈ G then G has an l′-dimensional

subspace F ′ and a set I ⊂ N with card I = s such that maxn∈I qn(x) > δ‖x‖ for all

x ∈ F ′.
Indeed, once we prove this formally weaker claim, we can take a number l′ large

enough, so that we can apply Theorem 6.7 s times to deduce that F ′ has an l-dimen-

sional subspace F , which has the property that for all n ∈ I

max
x∈SF

qn(x)− min
x∈SF

qn(x) 6 δ
2
.
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Now pick any y ∈ SF , then qn0(y) = maxn∈I qn(y) > δ for some n0 ∈ I. Then for every

x ∈ SF we have

qn0(x) > min
z∈SF

qn0(z) > max
z∈SF

qn0(z)− δ
2
> qn0(y)− δ

2
> δ

2
,

so that the statement of our Lemma is satisfied for ε = δ
2
.

Let l′ ∈ N and define numbers L0, L1, . . . , Lm as follows. Put L0 = l′, and, assuming

that L0, L1, . . . , Ln, n < m, have already been defined, we use Theorem 6.7 to choose

Ln+1 large enough so that for every Ln+1-dimensional subspace G of X and every

Lipschitz-1 map f : SG → R there is an Ln-dimensional subspace G′ ⊆ G such that

max
x∈G′

f(x)−min
x∈G′

f(x) 6 δ.

Let L = Lm. Assume that out claim is false. This would mean that there exists a

subspace G of X of dimG = L such that

(13) max
n∈N

qn(x) > r‖x‖ for all x ∈ G, and

(14)
for each I ⊂ N of card I = s and each subspace F ′ ⊆ G of
dimF ′ = l′ there exists x ∈ SF ′ such that maxn∈I qn(x) 6 δ.

Choose an arbitrary vector x1 ∈ SG and a subset I1 ⊂ N of card I1 = s so that

minn∈I1 qn(x1) > maxn∈N\I1 qn(x1). It follows from (13) that there exists an index n1

such that qn1(x1) > r; we can assume that n1 ∈ I1. On the other hand, the definition

of s implies that qn(x1) 6 δ whenever n /∈ I1. It follows from the definition of Lm that

there exists a subspace Gm−1 of G of dimension Lm−1 so that

(15) max
x∈SGm−1

max
n∈I1

qn(x) 6 min
x∈SGm−1

max
n∈I1

qn(x) + δ 6 2δ,

where the last inequality follows from (14).

Next, pick an x2 ∈ SGm−1 and I2 ⊂ N \ I1 so that card I2 = s and minn∈I2 qn(x2) >

maxn/∈I1∪I2 qn(x2). Again, it follows from (13) that there exists an index n2 such that

qn2(x2) > r; we can assume that n2 ∈ I1∪ I2. By (15), qn(x2) 6 2δ < r for each n ∈ I1,

so that n2 ∈ I2. Again, qn(x2) 6 δ whenever n /∈ I1 ∪ I2. We can choose a subspace

Gm−2 of Gm−1 of dimension Lm−2 so that

max
x∈SGm−2

max
n∈I2

qn(x) 6 2δ.

Proceeding this way, we obtain a sequence of vectors x1, . . . , xm and disjoint sets

I1, . . . , Im of cardinality s, and indices n1, . . . , nm such that for each i = 1, . . . ,m we
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have ni ∈ Ii and qni(xi) > r. Also,

qn(xi) 6

{
2δ if n ∈ I1 ∪ · · · ∪ Ii−1, and

δ if n /∈ I1 ∪ · · · ∪ Ii,

hence qn(xi) 6 2δ whenever n /∈ Ii. If n ∈ Ii then qn(xi) 6 ‖xi‖ = 1.

Put x =
∑m

i=1 xi, then for every n ∈ N we have qn(x) 6 1 +m ·2δ 6 2. On the other

hand,

r 6 qni(xi) 6 qni(x) + qni(x− xi) 6 qni(x) + 2mδ,

so that qni(x) > r− 2mδ = r
2

for each i = 1, . . . ,m. It follows from the definition of m

that there can be at most m− 1 indices n such that qn(x) > r2

4
‖x‖, hence r2

4
‖x‖ > r

2
.

It follows that ‖x‖ > 2
r
, so that qn(x) 6 2 < r‖x‖ for every n ∈ N, which is a

contradiction. �

Now we are ready to prove that U is FSS.

Theorem 6.8. The operator U constructed in (6) is FSS for all 1 < p 6 2 6 q <∞,

unless p = q = 2.

Proof. In view of Theorem 5.4(iii) we may assume that q = p′. Recall that U =⊕∞
n=1 Un is composed of blocks Un : Xn → Yn, where Xn = `2n

p and Yn = `2n

q . For each

n, let Pn : `p → Xn be the canonical projection. For x ∈ `p put qn(x) =
∥∥UnPnx∥∥. By

Theorem 5.4(i) we have qn(x) 6 ‖x‖.
Assume that U is not FSS. Then there exists a constant C such that there are

subspaces G of `p of arbitrarily large dimension such that the restriction of U to G is

a C-isomorphism. Let x ∈ SG, write x =
∑∞

n=1 xn where xn ∈ Xn, then ‖Ux‖ > 1
C

.

On the other hand,

‖Ux‖q =
∞∑
n=1

‖Unxn‖q 6 max
n∈N
‖Unxn‖q−p

∞∑
n=1

‖Unxn‖p 6 max
n∈N

qn(x)q−p.

Hence, max
n∈N

qn(x) > C
q
p−q .

It follows from Lemma 6.6 that there exists ε > 0 such that for every k and for every

G ⊆ `p of sufficiently large dimension there exists a subspace F of G and an index n

such that dimF = k and qn(x) > ε for all x ∈ SF . This implies that the restriction of

UnPn to F is a 1
ε
-isomorphism. Put E = Pn(F ), then E is a k-dimensional subspace

of Xn, and Un is a 1
ε
-isomorphism on E. In view of Theorem 4.10 we may assume that

E is 2-isomorphic to `k2 and Un(E) is K-complemented in `2n

q .

Let Vn be the canonical isometry between LNp and Xn = `Np , where N = 2n. It

follows that ‖Vnx‖`Nr = N
1
r
− 1
p‖x‖LNr for every x ∈ LNp and every r ∈ [p, q]. It follows
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from the definition of Un and Remark 5.3 that∥∥UnVn∥∥LN2 ,`N2 = N
1
2
− 1
p‖Un‖`N2 ,`N2 = N

1
2
− 1
p
− 1
q ‖Hn‖`N2 ,`N2 = 1

and ∥∥UnVn∥∥LN1 ,`N∞ = N1− 1
p‖Un‖`N1 ,`N∞ = N1− 1

p
− 1
q ‖Hn‖`N1 ,`N∞ = 1.

Now applying Theorem 6.5 to UnVn and V −1
n (E) we obtain a contradiction with the

fact that k = dimE was chosen arbitrarily. �

Remark 6.9. If p = q = 2 then U is an isometry, hence not FSS. Consider the case

when p = 1 and q =∞. The preceding proof does not work, since now we cannot use

Theorem 4.10. Actually, U is not FSS in this case. Indeed, we now have Un = Hn. It

is easy to see that among the columns of Hn one finds all the Rademacher vectors (of

length N = 2n). Since the span of these vectors in `N∞ is isometrically isomorphic to

`n1 , it follows that the restriction of Hn to the appropriate subspace of `N1 preserves a

copy of `n1 .

Question. Are there any other closed ideals in L(`p, `q)? In view of the diagram at the

beginning of our paper this question can be subdivided in the following subquestions:

(i) Is J Ip,q equal to J FSS ∩J `2? If not, is J FSS ∩J `2 an immediate successor of

J Ip,q?

(ii) Is J FSS an immediate successor of J FSS ∩J `2? More generally, are there any

immediate successors of J FSS ∩ J `2 , other than J `2?

(iii) Is J FSS ∨ J `2 an immediate successor of J `2?

(iv) Is J FSS ∨ J `2 equal to L(`p, `q)?

Question. Suppose again that U is the operator defined in (6). Since U is FSS, we

have J U ⊆ J FSS. Does J U equal J FSS?
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