NORM CLOSED OPERATOR IDEALS IN LORENTZ SEQUENCE SPACES

ANNA KAMINSKA, ALEXEY I. POPOV, EUGENIU SPINU, ADI TCACIUC, AND VLADIMIR G. TROITSKY

Abstract

In this paper, we study the structure of closed algebraic ideals in the algebra of operators acting on a Lorentz sequence space.

1. Introduction

1.1. Ideals. This paper is concerned with the study of the structure of closed algebraic ideals in the algebra $L(X)$ of all bounded linear operatrors on a Banach space X.

Throughout the paper, by a subspace of a Banach space we mean a closed subspace; a vector subspace of X which is not necessarily closed will be referred to as linear subspace. A (two-sided) ideal in $L(X)$ is a linear subspace J of $L(X)$ such that $A T B \in J$ whenever $T \in J$ and $A, B \in L(X)$. The ideal J is called proper if $J \neq L(X)$. The ideal J is non-trivial if J is proper and $J \neq\{0\}$.

The spaces for which the structure of closed ideals in $L(X)$ is well-understood are very few. It was shown in [7] that the only non-trivial closed ideal in the algebra $L\left(\ell_{2}\right)$ is the ideal of compact operators. This result was generalized in [13] to the spaces $\ell_{p}(1 \leqslant p<\infty)$ and c_{0}. A space constructed recently in [5] is another space with this property. In [15] and [16], it was shown that the algebras $L\left(\left(\oplus_{k=1}^{\infty} \ell_{2}^{k}\right)_{c_{0}}\right)$ and $L\left(\left(\oplus_{k=1}^{\infty} \ell_{2}^{k}\right)_{\ell_{1}}\right)$ have exactly two non-trivial closed ideals. There are no other separable spaces for which the structure of closed ideals in $L(X)$ is completely known.

Partial results about the structure of closed ideals in $L(X)$ were obtained in [20, 5.3.9] for $X=L_{p}[0,1](1<p<\infty, p \neq 2)$ and in [22] and [23] for $L\left(\ell_{p} \oplus \ell_{q}\right)(1 \leqslant p, q<\infty)$. The purpose of this paper is to investigate the structure of ideals in $L\left(d_{w, p}\right)$ where $d_{w, p}$ is a Lorentz sequence space (see the definition in Subsection 1.3).

For two closed ideals J_{1} and J_{2} in $L(X)$, we will denote by $J_{1} \wedge J_{2}$ the largest closed ideal J in $L(X)$ such that $J \subseteq J_{1}$ and $J \subseteq J_{2}$ (that is, $J_{1} \wedge J_{2}=J_{1} \cap J_{2}$), and we will

[^0]denote by $J_{1} \vee J_{2}$ the smallest closed ideal J in $L(X)$ such that $J_{1} \subseteq J$ and $J_{2} \subseteq J$. We say that J_{2} is a successor of J_{1} if $J_{1} \subsetneq J_{2}$. If, in addition, no closed ideal J in $L(X)$ satisfies $J_{1} \subsetneq J \subsetneq J_{2}$, then we call J_{2} an immediate successor of J_{1}.

It is well-known that if X is a Banach space then every non-zero ideal in the algebra $L(X)$ must contain the ideal $\mathcal{F}(X)$ of all finite-rank operators on X. It follows that, at least in the presence of the approximation property (in particular, if X has a Schauder basis), every non-zero closed ideal in $L(X)$ contains the closed ideal $\mathcal{K}(X)$ of all compact operators.

Two ideals closely related to $\mathcal{K}(X)$ are the closed ideal $\mathcal{S S}(X)$ of strictly singular operators and the closed ideal $\mathcal{F S S}(X)$ of finitely strictly singular operators on X. Recall that an operator $T \in L(X)$ is called strictly singular if no restriction $\left.T\right|_{Z}$ of T to an infinite-dimensional subspace Z of X is an isomorphism. An operator T is finitely strictly singular if for any $\varepsilon>0$ there is $N \in \mathbb{N}$ such that any subspace Z of X with $\operatorname{dim} Z \geqslant N$ contains a vector $z \in Z$ satisfying $\|T z\|<\varepsilon\|z\|$. It is not hard to show that $\mathcal{K}(X) \subseteq \mathcal{F S S}(X) \subseteq S S(X)$ (see [17, 19, 22, 4] for more information about these classes of operators).

If X is a Banach space and $T \in L(X)$ then the ideal in $L(X)$ generated by T is denoted by J_{T}. It is easy to see that $J_{T}=\left\{\sum_{i=1}^{n} A_{i} T B_{i}: A_{i}, B_{i} \in L(X)\right\}$. It follows that if $S \in L(X)$ factors through T, i.e., $S=A T B$ for some $A, B \in L(X)$ then $J_{S} \subseteq J_{T}$.
1.2. Basic sequences. The main tool in this paper is the notion of a basic sequence. In this subsection, we will fix some terminology and remind some classical facts about basic sequences. For a thorough introduction to this topic, we refer the reader to [9] or [12].

If $\left(x_{n}\right)$ is a sequence in a Banach space X then its closed span will be denoted by $\left[x_{n}\right]$. We say that a basic sequence $\left(x_{n}\right)$ dominates a basic sequence $\left(y_{n}\right)$ and write $\left(x_{n}\right) \succeq\left(y_{n}\right)$ if the convergence of a series $\sum_{n=1}^{\infty} a_{n} x_{n}$ implies the convergence of the series $\sum_{n=1}^{\infty} a_{n} y_{n}$. We say that $\left(x_{n}\right)$ is equivalent to $\left(y_{n}\right)$ and write $\left(x_{n}\right) \sim\left(y_{n}\right)$ if $\left(x_{n}\right) \succeq\left(y_{n}\right)$ and $\left(y_{n}\right) \succeq\left(x_{n}\right)$.

Remark 1.1. It follows from the Closed Graph Theorem that $\left(x_{n}\right) \succeq\left(y_{n}\right)$ if and only if the linear map from $\operatorname{span}\left\{x_{n}\right\}$ to $\operatorname{span}\left\{y_{n}\right\}$ defined by the formula $T: x_{n} \mapsto y_{n}$ is bounded.

If $\left(x_{n}\right)$ is a basis in a Banach space $X, z=\sum_{i=1}^{\infty} z_{i} x_{i} \in X$, and $A \subseteq \mathbb{N}$ then the vector $\sum_{i \in A} z_{i} x_{i}$ will be denoted by $\left.z\right|_{A}$ (provided the series converges; this is always the case when the basis is unconditional). We will refer to $\left.z\right|_{A}$ as the restriction of
z to A. The restrictions $\left.z\right|_{[n, \infty) \cap \mathbb{N}}$ and $\left.z\right|_{(n, \infty) \cap \mathbb{N}}$, where $n \in \mathbb{N}$, will be abbreviated as $\left.z\right|_{[n, \infty)}$ and $\left.z\right|_{(n, \infty)}$, respectively. We say that a vector v is a restriction of z if there exists $A \subseteq \mathbb{N}$ such that $v=\left.z\right|_{A}$. The vector $z=\sum_{i=1}^{\infty} z_{i} x_{i}$ will also be denoted by $z=\left(z_{i}\right)$. If $z=\sum_{i=1}^{\infty} z_{i} x_{i}$ then the support of z is the set $\operatorname{supp} z=\left\{i \in \mathbb{N}: z_{i} \neq 0\right\}$.

Every 1-unconditional basis $\left(x_{n}\right)$ in a Banach space X defines a Banach lattice order on X by $\sum_{i=1}^{\infty} a_{i} x_{i} \geqslant 0$ if and only if $a_{i} \geqslant 0$ for all $i \in \mathbb{N}$ (see, e.g., [18, page 2]). For $x \in X$, we have $|x|=x \vee(-x)$. A Banach lattice is said to have order continuous norm if the condition $x_{\alpha} \downarrow 0$ implies $\left\|x_{\alpha}\right\| \rightarrow 0$. For an introduction to Banach lattices and standard terminology, we refer the reader to $[1, \S 1.2]$.

If $\left(x_{n}\right)$ is a basic sequence in a Banach space X, then a sequence $\left(y_{n}\right)$ in $\operatorname{span}\left\{x_{n}\right\}$ is a block sequence of $\left(x_{n}\right)$ if there is a strictly increasing sequence $\left(p_{n}\right)$ in \mathbb{N} and a sequence of scalars $\left(a_{i}\right)$ such that $y_{n}=\sum_{i=p_{n}+1}^{p_{n+1}} a_{i} x_{i}$ for all $n \in \mathbb{N}$.

The following two facts are classical and will sometimes be used without any references. The first fact is known as the Principle of Small Perturbations (see, e.g., [12, Theorem 4.23]).

Theorem 1.2. Let X be a Banach space, $\left(x_{n}\right)$ a basic sequence in X, and $\left(x_{n}^{*}\right)$ the correspondent biorthogonal functionals defined on $\left[x_{n}\right]$. If $\left(y_{n}\right)$ is a sequence such that $\sum_{n=1}^{\infty}\left\|x_{n}^{*}\right\| \cdot\left\|x_{n}-y_{n}\right\|<1$ then $\left(y_{n}\right)$ is a basic sequence equivalent to $\left(x_{n}\right)$. Moreover, if $\left[x_{n}\right]$ is complemented in X then so is $\left[y_{n}\right]$. If $\left[x_{n}\right]=X$ then $\left[y_{n}\right]=X$.

The next fact, which is often called the Bessaga-Pełczyński selection principle, is a result of combining the "gliding hump" argument (see, e.g., [9, Lemma 5.1]) with the Principle of Small Perturbations.

Theorem 1.3. Let X be a Banach space with a seminormalized basis $\left(x_{n}\right)$ and let $\left(x_{n}^{*}\right)$ be the correspondent biorthogonal functionals. Let $\left(y_{n}\right)$ be a seminormalized sequence in X such that $x_{n}^{*}\left(y_{k}\right) \xrightarrow{k \rightarrow \infty} 0$ for all $n \in \mathbb{N}$. Then $\left(y_{n}\right)$ has a subsequence $\left(y_{n_{k}}\right)$ which is basic and equivalent to a block sequence $\left(u_{k}\right)$ of $\left(x_{n}\right)$. Moreover, $y_{n_{k}}-u_{k} \rightarrow 0$, and u_{k} is a restriction of $y_{n_{k}}$.
1.3. Lorentz sequence spaces. Let $1 \leqslant p<\infty$ and $w=\left(w_{n}\right)$ be a sequence in \mathbb{R} such that $w_{1}=1, w_{n} \downarrow 0$, and $\sum_{i=1}^{\infty} w_{i}=\infty$. The Lorentz sequence space $d_{w, p}$ is a Banach space of all vectors $x \in c_{0}$ such that $\|x\|_{d_{w, p}}<\infty$, where

$$
\left\|\left(x_{n}\right)\right\|_{d_{w, p}}=\left(\sum_{n=1}^{\infty} w_{n} x_{n}^{* p}\right)^{1 / p}
$$

is the norm in $d_{w, p}$. Here $\left(x_{n}^{*}\right)$ is the non-increasing rearrangement of the sequence $\left(\left|x_{n}\right|\right)$. An overview of properties of Lorentz sequence spaces can be found in [17, Section 4.e].

The vectors $\left(e_{n}\right)$ in $d_{w, p}$ defined by $e_{n}(i)=\delta_{n i}(n, i \in \mathbb{N})$ form a 1 -symmetric basis in $d_{w, p}$. In particular, $\left(e_{n}\right)$ is 1-unconditional, hence $d_{w, p}$ is a Banach lattice. We call $\left(e_{n}\right)$ the unit vector basis of $d_{w, p}$. The unit vector basis of ℓ_{p} will be denoted by $\left(f_{n}\right)$ throughout the paper.

Remark 1.4. It is proved in [3, Lemma 1] and [10, Lemma 15] that if $\left(u_{n}\right)$ is a seminormalized block sequence of $\left(e_{n}\right)$ in $d_{w, p}, u_{n}=\sum_{i=p_{n}+1}^{p_{n+1}} a_{i} e_{i}$, such that $a_{i} \rightarrow 0$, then there is a subsequence $\left(u_{n_{k}}\right)$ such that $\left(u_{n_{k}}\right) \sim\left(f_{n}\right)$ and $\left[u_{n_{k}}\right]$ is complemented in $d_{w, p}$. Further, it was shown in [3, Corollary 3] that if $\left(y_{n}\right)$ is a seminormalized block sequence of $\left(e_{n}\right)$ then there is a seminormalized block sequence $\left(u_{n}\right)$ of $\left(y_{n}\right)$ such that $u_{n}=\sum_{i=p_{n}+1}^{p_{n+1}} a_{i} e_{i}$, with $a_{i} \rightarrow 0$. Therefore, every infinite dimensional subspace of $d_{w, p}$ contains a further subspace which is complemented in $d_{w, p}$ and isomorphic to ℓ_{p} ([10, Corollary 17]).

Remark 1.5. Remark 1.4 yields, in particular, that $d_{w, p}$ does not contain copies of c_{0}. Since the basis $\left(e_{n}\right)$ of $d_{w, p}$ is unconditional, the space $d_{w, p}$ is weakly sequentially complete by [2, Theorem 4.60] (see also [17, Theorem 1.c.10]). Also, [2, Theorem 4.56] guarantees that $d_{w, p}$ has order continuous norm. In particular, if $x \in d_{w, p}$ then $\left\|\left.x\right|_{[n, \infty)}\right\| \rightarrow 0$ as $n \rightarrow \infty$.

Remark 1.6. It was shown in [14] that if $p>1$ then $d_{w, p}$ is reflexive. This can also be easily obtained from Remark 1.4 (cf. [17, Theorem 1.c.12]).

Remark 1.7. The unit vector basis $\left(e_{n}\right)$ of $d_{w, p}$ is weakly null. Indeed, by Rosenthal's ℓ_{1}-theorem (see [21]; also [17, Theorem 2.e.5]), $\left(e_{n}\right)$ is weakly Cauchy. Since it is symmetric, $\left(e_{n}\right) \sim\left(e_{2 n}-e_{2 n-1}\right)$.

The next proposition will be used often in this paper.
Proposition 1.8 ([3, Proposition 5 and Corollary 2]). If $\left(u_{n}\right)$ is a seminormalized block sequence of $\left(e_{n}\right)$ then $\left(f_{n}\right) \succeq\left(u_{n}\right)$. If $\left(u_{n}\right)$ does not contain subsequences equivalent to $\left(f_{n}\right)$ then also $\left(u_{n}\right) \succeq\left(e_{n}\right)$.

The following lemma is standard.
Lemma 1.9. Let $\left(x_{n}\right)$ be a block sequence of $\left(e_{n}\right), x_{n}=\sum_{i=p_{n}+1}^{p_{n+1}} a_{i} e_{i}$. If $\left(y_{n}\right)$ is a basic sequence such that $y_{n}=\sum_{i=p_{n}+1}^{p_{n+1}} b_{i} e_{i}$, where $\left|b_{i}\right| \leqslant\left|a_{i}\right|$ for all $i \in \mathbb{N}$, then $\left(x_{n}\right)$ is basic and $\left(x_{n}\right) \succeq\left(y_{n}\right)$.

Proof. Let

$$
\gamma_{i}= \begin{cases}\frac{b_{i}}{a_{i}}, & \text { if } a_{i} \neq 0 \\ 0, & \text { if } a_{i}=0\end{cases}
$$

Define an operator $T \in L\left(d_{w, p}\right)$ by $T\left(\sum_{i=1}^{\infty} c_{i} e_{i}\right)=\sum_{i=1}^{\infty} c_{i} \gamma_{i} e_{i}$. Then T is, clearly, linear and, since the basis $\left(e_{n}\right)$ is 1-unconditional, T is bounded with $\|T\| \leqslant 1$. In particular, $\left.T\right|_{\left[x_{n}\right]}$ is bounded. Also, $T\left(x_{n}\right)=y_{n}$ for all $n \in \mathbb{N}$, hence $\left(x_{n}\right) \succeq\left(y_{n}\right)$.
1.4. Outline of the results. The purpose of the paper is to uncover the structure of ideals in $L\left(d_{w, p}\right)$. We show that (some of) these ideals can be arranged into the following diagram.

$$
\{0\} \Rightarrow \mathcal{K} \subsetneq \overline{J^{j}} \rightarrow \overline{J^{\ell_{p}}} \wedge \mathcal{S S} \xrightarrow{\rightarrow} \underset{\substack{J_{p}^{\ell_{p}}}}{\longrightarrow} \overline{J^{\ell_{p}}} \vee \mathcal{S S} \rightarrow \mathcal{S S}_{d_{w, p}} \rightarrow L\left(d_{w, p}\right)
$$

(the notations will be defined throughout the paper). On this diagram, a single arrow between ideals, $J_{1} \longrightarrow J_{2}$, means that $J_{1} \subseteq J_{2}$. A double arrow between ideals, $J_{1} \Longrightarrow J_{2}$, means that J_{2} is the only immediate successor of J_{1} (in particular, $J_{1} \neq J_{2}$), whereas a dotted double arrow between ideals, $J_{1} \Rightarrow>J_{2}$, only shows that J_{2} is an immediate successor for J_{1} (in particular, J_{1} may have other immediate successors).

While working with the diagram above, we obtain several important characterizations of some ideals in $L\left(d_{w, p}\right)$. In particular, we show that $\mathcal{F S S}\left(d_{w, p}\right)=\mathcal{S S}\left(d_{w, p}\right)$ (Theorem 3.5). We also characterize the ideal of weakly compact operators (Theorem 3.6) and Dunford-Pettis operators (Theorem 5.7) on $d_{w, p}$. We show in Theorem 4.7 that $\overline{J^{j}}$ is the only immediate successor of \mathcal{K} under some assumption on the weights w. In the last section of the paper, we show that all strictly singular operators from ℓ_{1} to $d_{w, 1}$ can be approximated by operators factoring through the formal identity operator $j: \ell_{1} \rightarrow d_{w, 1}$ (see Section 4 for the definition). We also obtain a result on factoring positive operators from $\mathcal{S} \mathcal{S}\left(d_{w, p}\right)$ through the formal identity operator (Theorem 6.12).

2. Operators factorable through ℓ_{p}

Let X and Y be Banach spaces and $T \in L(X)$. We say that T factors through Y if there are two operators $A \in L(X, Y)$ and $B \in L(Y, X)$ such that $T=B A$.

The following two lemmas are standard. We present their proofs for the sake of completeness.

Lemma 2.1. Let X and Y be Banach spaces and $T \in L(X, Y), S \in L(Y, X)$ be such that $S T=\operatorname{id}_{X}$. Then T is an isomorphism and Range T is a complemented subspace of Y isomorphic to X.

Proof. For all $x \in X$, we have $\|x\|=\|S T x\| \leqslant\|S\|\|T x\|$, so $\|T x\| \geqslant \frac{1}{\|S\|}\|x\|$. This shows that T is an isomorphism. In particular, Range T is a closed subspace of Y isomorphic to X.

Put $P=T S \in L(Y)$. Then $P^{2}=T S T S=T \operatorname{id}_{X} S=T S=P$, hence P is a projection. Clearly, Range $P \subseteq$ Range T. Also, $P T=T S T=T$, so Range $T \subseteq$ Range P. Therefore Range $P=$ Range T, and Range T is complemented.

Lemma 2.2. Let X and Y be Banach spaces such that Y is isomorphic to $Y \oplus Y$. Then the set $J=\{T \in L(X): T$ factors through $Y\}$ is an ideal in $L(X)$.

Proof. It is clear that J is closed under multiplication by operators in $L(X)$. In particular, J is closed under scalar multiplication. Let $A, B \in J$. Write $A=A_{1} A_{2}$ and $B=B_{1} B_{2}$, where $A_{1}, B_{1} \in L(Y, X)$ and $A_{2}, B_{2} \in L(X, Y)$. Then $A+B=U V$ where $V: x \in X \mapsto\left(A_{2} x, B_{2} x\right) \in Y \oplus Y$ and $U:(x, y) \in Y \oplus Y \mapsto A_{1} x+B_{1} y \in Y$. Clearly, $U V$ factors through $Y \oplus Y \simeq Y$. Hence $A+B \in J$.

We will denote the set of all operators in $L\left(d_{w, p}\right)$ which factor through a Banach space Y by J^{Y}.

Theorem 2.3. The sets $J^{\ell_{p}}$ and $\overline{J^{\ell_{p}}}$ are proper ideals in $L\left(d_{w, p}\right)$.
Proof. Since ℓ_{p} is isomorphic to $\ell_{p} \oplus \ell_{p}$, it follows from Lemma 2.2 that $J^{\ell_{p}}$ is an ideal in $L\left(d_{w, p}\right)$. Let us show that $J^{\ell_{p}} \neq L\left(d_{w, p}\right)$.

Assume that $J^{\ell_{p}}=L\left(d_{w, p}\right)$, then the identity operator I on $d_{w, p}$ belongs to J. Write $I=S T$ where $T \in L\left(d_{w, p}, \ell_{p}\right)$ and $S \in L\left(\ell_{p}, d_{w, p}\right)$. By Lemma 2.1, the range of T is complemented in ℓ_{p} and is isomorphic to $d_{w, p}$. This is a contradiction because all complemented infinite-dimensional subspaces of ℓ_{p} are isomorphic to ℓ_{p} (see, e.g., [17, Theorem 2.a.3]), while $d_{w, p}$ is not isomorphic to ℓ_{p} (see [6] for the case $p=1$ and [14] for the case $1<p<\infty$; see also [17, p. 176]).

Being the closure of a proper ideal, $\overline{J^{\ell_{p}}}$ is itself a proper ideal (see, e.g., [11, Corollary VII.2.4]).

Proposition 2.4. There exists a projection $P \in L\left(d_{w, p}\right)$ such that Range P is isomorphic to ℓ_{p}. For every such P we have $J_{P}=J^{\ell_{p}}$.

Proof. Such projections exist by Remark 1.4. Let $Y=$ Range $P, U: Y \rightarrow \ell_{p}$ be an isomorphism onto, and $i: Y \rightarrow d_{w, p}$ be the inclusion map. It is easy to see that $P=$ $\left(i U^{-1}\right)(U P)$, hence $P \in J^{\ell_{p}}$, so that $J_{P} \subseteq J^{\ell_{p}}$.

On the other hand, if $T \in J^{\ell_{p}}$ is arbitrary, $T=A B$ with $A \in L\left(\ell_{p}, d_{w, p}\right), B \in$ $L\left(d_{w, p}, \ell_{p}\right)$, then one can write $T=(A U P) P\left(i U^{-1} B\right)$, so that $T \in J_{P}$. Thus $J^{\ell_{p}} \subseteq$ J_{P}.

Corollary 2.5. The ideal $\overline{J^{\ell_{p}}}$ properly contains the ideal of compact operators $\mathcal{K}\left(d_{w, p}\right)$.
Proof. It was already mentioned in the introductory section that compact operators form the smallest closed ideal in $L\left(d_{w, p}\right)$. Since a projection onto a subspace isomorphic to ℓ_{p} is not compact, it follows that $\mathcal{K}\left(d_{w, p}\right) \neq \overline{J^{\ell_{p}}}$.

3. Strictly singular operators

In this section we will study properties of strictly singular operators in $L\left(d_{w, p}\right)$. Since projections onto the subspaces of $d_{w, p}$ isomorphic to ℓ_{p} are clearly not strictly singular, it follows from Proposition 2.4 that $\mathcal{S S}\left(d_{w, p}\right) \neq J^{\ell_{p}}$. Moreover, $\mathcal{S S} \neq \overline{J^{\ell_{p}}} \vee \mathcal{S S}$ and $\overline{J^{\ell_{p}}} \wedge \mathcal{S S} \neq \overline{J^{\ell_{p}}}$. So, the ideals we discussed so far can be arranged as follows:

The following theorem shows that there can be no other closed ideals between $\mathcal{S S}$ and $\overline{J^{\ell_{p}}} \vee \mathcal{S S}$ on this diagram.

Theorem 3.1. Let $T \in L\left(d_{w, p}\right)$. If $T \notin \mathcal{S S}\left(d_{w, p}\right)$ then $J^{\ell_{p}} \subseteq J_{T}$.
Proof. Let $T \notin \mathcal{S} \mathcal{S}\left(d_{w, p}\right)$. Then there exists an infinite-dimensional subspace Y of $d_{w, p}$ such that $\left.T\right|_{Y}$ is an isomorphism. By Remark 1.4, passing to a subspace, we may assume that Y is complemented in $d_{w, p}$ and isomorphic to ℓ_{p}. Let $\left(x_{n}\right)$ be a basis of Y equivalent to the unit vector basis of ℓ_{p}. Define $z_{n}=T x_{n}$, then $\left(z_{n}\right)$ is also equivalent to the unit vector basis of ℓ_{p}. By Remark $1.4,\left(z_{n}\right)$ has a subsequence $\left(z_{n_{k}}\right)$ such that $\left[z_{n_{k}}\right]$ is complemented in $d_{w, p}$ and isomorphic to ℓ_{p}.

Denote $W=\left[x_{n_{k}}\right]$. Then W and $T(W)$ are both complemented subspaces of $d_{w, p}$ isomorphic to ℓ_{p}. Let P and Q be projections onto W and $T(W)$, respectively. Put $S=\left(\left.T\right|_{W}\right)^{-1}, S \in L\left(T(W), d_{w, p}\right)$. Then it is easy to see that $P=(S Q) T P$. Since $S Q$ and P are in $L\left(d_{w, p}\right)$, we have $J_{P} \subseteq J_{T}$. By Proposition 2.4, $J^{\ell_{p}} \subseteq J_{T}$.

Corollary 3.2. $\overline{J^{\ell_{p}}} \bigvee \mathcal{S S}\left(d_{w, p}\right)$ is the only immediate successor of $\mathcal{S S}\left(d_{w, p}\right)$ and $\overline{J^{\ell_{p}}}$ is an immediate successor of $\overline{J^{\ell_{p}}} \wedge \mathcal{S S}\left(d_{w, p}\right)$.

Now we will investigate the ideal of finitely strictly singular operators on $d_{w, p}$. To prove the main statement (Theorem 3.5), we will need the following lemma due to Milman [19] (see also a thorough discussion in [22]). This lemma will be used more than once in the paper.

Lemma 3.3 ([19]). If F is a k-dimensional subspace of c_{0} then there exists a vector $x \in F$ such that x attains its sup-norm at at least k coordinates (that is, x^{*} starts with a constant block of length k).

We will also use the following simple lemma.
Lemma 3.4. Let $s_{n}=\sum_{i=1}^{n} w_{i}(n \in \mathbb{N})$ where $w=\left(w_{i}\right)$ is the sequence of weights for $d_{w, p}$. If $x \in d_{w, p}, y=x^{*}$, and $N \in \mathbb{N}$ then $0 \leqslant y_{N} \leqslant \frac{\|x\|}{s_{N}^{1 / p}}$.

Proof. $\|x\|^{p}=\|y\|^{p}=\sum_{i=1}^{\infty} y_{i}^{p} w_{i} \geqslant y_{N}^{p} \sum_{i=1}^{N} w_{i}=y_{N}^{p} s_{N}$.
Theorem 3.5. Let X and Y be subspaces of $d_{w, p}$. Then $\mathcal{F S S}(X, Y)=\mathcal{S S}(X, Y)$. In particular, $\mathcal{F S S}\left(\ell_{p}, d_{w, p}\right)=\mathcal{S S}\left(\ell_{p}, d_{w, p}\right)$ and $\mathcal{F S S}\left(d_{w, p}\right)=\mathcal{S S}\left(d_{w, p}\right)$.

Proof. Let $T \in L(X, Y)$. Suppose that T is not finitely strictly singular. We will show that it is not strictly singular. Since T is not finitely strictly singular, there exists a constant $c>0$ and a sequence F_{n} of subspaces of X with $\operatorname{dim} F_{n} \geqslant n$ such that for each n and for all $x \in F_{n}$ we have $\|T x\| \geqslant c\|x\|$.

Fix a sequence $\left(\varepsilon_{k}\right)$ in \mathbb{R} such that $1>\varepsilon_{k} \downarrow 0$. We will inductively construct a sequence $\left(x_{k}\right)$ in X and two strictly increasing sequences $\left(n_{k}\right),\left(m_{k}\right)$ in \mathbb{N} such that:
(i) $\left(x_{k}\right)$ and $\left(T x_{k}\right)$ are seminormalized; we will denote $T x_{k}$ by u_{k};
(ii) for all $k \in \mathbb{N}, \operatorname{supp} x_{k} \subseteq\left[n_{k}, \infty\right)$ and $\operatorname{supp} u_{k} \subseteq\left[m_{k}, \infty\right)$;
(iii) if $k \geqslant 2$ then $\left\|\left.x_{k-1}\right|_{\left[n_{k}, \infty\right)}\right\|<\varepsilon_{k},\left\|\left.u_{k-1}\right|_{\left[m_{k}, \infty\right)}\right\|<\varepsilon_{k}$, and all the coordinates of u_{k-1} where the sup-norm is attained are less than m_{k};
(iv) for each $k \in \mathbb{N}$, the vector u_{k}^{*} begins with a constant block of length at least k. That is, $\left(x_{n}\right)$ and $\left(u_{n}\right)$ are two almost disjoint sequences and u_{n} 's have long "flat" sections.

Take x_{1} to be any nonzero vector in F_{1} and put $n_{1}=m_{1}=1$. Suppose we have already constructed $x_{1}, \ldots, x_{k-1}, n_{1}, \ldots, n_{k-1}$, and m_{1}, \ldots, m_{k-1} such that the conditions (i)(iv) are satisfied. Choose $n_{k} \in \mathbb{N}$ and $m_{k} \in \mathbb{N}$ such that $n_{k}>n_{k-1}, m_{k}>m_{k-1}$ and the condition (iii) is satisfied.

Consider the space

$$
V=\left\{y=\left(y_{i}\right) \in F_{n_{k}+m_{k}+k}: y_{i}=0 \text { for } i<n_{k}\right\} \subseteq F_{n_{k}+m_{k}+k}
$$

It follows from $\operatorname{dim} F_{n_{k}+m_{k}+k} \geqslant n_{k}+m_{k}+k$ that $\operatorname{dim} V \geqslant m_{k}+k$. Since $V \subseteq F_{n_{k}+m_{k}+k}$, $\|T y\| \geqslant c\|y\|$ for all $y \in V$. In particular, $\operatorname{dim}(T V) \geqslant m_{k}+k$. Define

$$
Z=\left\{z=\left(z_{i}\right) \in T V: z_{i}=0 \text { for } i<m_{k}\right\}
$$

It follows that $\operatorname{dim} Z \geqslant k$.
Clearly, $\operatorname{supp} y \subseteq\left[n_{k}, \infty\right)$ for all $y \in V$ and $\operatorname{supp} z \subseteq\left[m_{k}, \infty\right)$ for all $z \in Z$. By Lemma 3.3, we can choose $u_{k} \in Z$ such that u_{k} is normalized and u_{k}^{*} starts with a constant block of length k. Put $x_{k}=\left(\left.T\right|_{V}\right)^{-1}\left(u_{k}\right) \in Y$. Since $x_{k} \in V$ and $\left\|u_{k}\right\|=1$, it follows that $\frac{1}{\|T\|} \leqslant\left\|x_{k}\right\| \leqslant \frac{1}{c}$, so the conditions (i)-(iv) are satisfied for $\left(x_{k}\right)$.

For each $k \in \mathbb{N}$, let $x_{k}^{\prime}=\left.x_{k}\right|_{\left[n_{k}, n_{k+1}\right)}$ and $u_{k}^{\prime}=\left.u_{k}\right|_{\left[m_{k}, m_{k+1}\right)}$. Passing to tails of sequences, if necessary, we may assume that both $\left(x_{k}^{\prime}\right)$ and $\left(u_{k}^{\prime}\right)$ are seminormalized block sequences of $\left(e_{n}\right)$.

Since the non-increasing rearrangement of each u_{k}^{\prime} starts with a constant block of length k by (iii), the coefficients in u_{k}^{\prime} converge to zero by Lemma 3.4. Therefore, passing to a subsequence, we may assume by Remark 1.4 that $\left(u_{k}^{\prime}\right)$ is equivalent to the unit vector basis $\left(f_{n}\right)$ of ℓ_{p}. Using Theorem 1.2 and passing to a further subsequence, we may also assume that $\left(x_{k}\right) \sim\left(x_{k}^{\prime}\right)$ and $\left(u_{k}\right) \sim\left(u_{k}^{\prime}\right)$.

By Proposition 1.8, the sequence $\left(x_{k}^{\prime}\right)$ is dominated by $\left(f_{n}\right)$. Notice that the condition $u_{k}=T x_{k}$ implies $\left(x_{k}\right) \succeq\left(u_{k}\right)$. Therefore, we get the following chain of dominations and equivalences of basic sequences:

$$
\left(f_{n}\right) \succeq\left(x_{k}^{\prime}\right) \sim\left(x_{k}\right) \succeq\left(u_{k}\right) \sim\left(u_{k}^{\prime}\right) \sim\left(f_{n}\right)
$$

It follows that all the dominations in this chain are, actually, equivalences. In particular, $\left(x_{k}\right) \sim\left(u_{k}\right)$. Thus, T is an isomorphism on the space $\left[x_{k}\right]$, hence T is not strictly singular.

Recall that an operator T on a Banach space X is weakly compact if the image of the unit ball of X under T is relatively weakly compact. Alternatively, T is weakly compact if and only if for every bounded sequence $\left(x_{n}\right)$ in X there exists a subsequence $\left(x_{n_{k}}\right)$ of $\left(x_{n}\right)$ such that $\left(T x_{n_{k}}\right)$ is weakly convergent.

If $1<p<\infty$ then $d_{w, p}$ is reflexive, and, hence, every operator in $L\left(d_{w, p}\right)$ is weakly compact. In case $p=1$ we have the following.

Theorem 3.6. Let $T \in L\left(d_{w, 1}\right)$. Then T is weakly compact if and only if T is strictly singular.

Proof. Suppose that T is strictly singular. We will show that T is weakly compact.
Let $\left(x_{n}\right)$ be a bounded sequence in X. By Rosenthal's ℓ_{1}-theorem, there is a subsequence $\left(x_{n_{k}}\right)$ of $\left(x_{n}\right)$ such that $\left(x_{n_{k}}\right)$ is either equivalent to the unit vector basis $\left(f_{n}\right)$ of ℓ_{1} or is weakly Cauchy. In the latter case, $\left(T x_{n_{k}}\right)$ is also weakly Cauchy. If $\left(x_{n_{k}}\right) \sim\left(f_{n}\right)$ then, since T is strictly singular, $\left(T x_{n_{k}}\right)$ cannot have subsequences equivalent to $\left(f_{n}\right)$. Hence, using Rosenthal's theorem one more time and passing to a further subsequence, we may assume that, again, $\left(T x_{n_{k}}\right)$ is weakly Cauchy. Since $d_{w, 1}$ is weakly sequentially complete, the sequence $\left(T x_{n_{k}}\right)$ is weakly convergent. It follows that T is weakly compact.

Conversely, let J be the closed ideal of weakly compact operators in $L\left(d_{w, 1}\right)$. By the first part of the proof, J is a successor of $\mathcal{S} \mathcal{S}\left(d_{w, 1}\right)$. Suppose that $J \neq \mathcal{S} \mathcal{S}\left(d_{w, 1}\right)$. By Theorem 3.1, $J^{\ell_{1}} \subseteq J$. This, however, is a contradiction since a projection onto a copy of ℓ_{1} (which belongs to $J^{\ell_{1}}$ by Proposition 2.4) is not weakly compact.

4. Operators factorable through the formal identity

The operator $j: \ell_{p} \rightarrow d_{w, p}$ defined by $j\left(e_{n}\right)=f_{n}$ is called the formal identity operator from ℓ_{p} to $d_{w, p}$. It follows immediately from the definition of the norm in $d_{w, p}$ that $\|j\|=1$.

We will denote by the symbol J^{j} the set of all operators $T \in L\left(d_{w, p}\right)$ which can be factored as $T=A j B$ where $A \in L\left(d_{w, p}\right)$ and $B \in L\left(d_{w, p}, \ell_{p}\right)$.

Proposition 4.1. J^{j} is an ideal in $L\left(d_{w, p}\right)$.
Proof. It is clear from the definition that the set J^{j} is closed under both right and left multiplication by operators from $L\left(d_{w, p}\right)$. We have to show that if T_{1} and T_{2} are in J^{j} then $T_{1}+T_{2}$ is in J^{j}, as well.

Write $T_{1}=A_{1} j B_{1}, T_{2}=A_{2} j B_{2}$ with $A_{1}, A_{2} \in L\left(d_{w, p}\right)$ and $B_{1}, B_{2} \in L\left(d_{w, p}, \ell_{p}\right)$. Let $A \in L\left(d_{w, p} \oplus d_{w, p}, d_{w, p}\right)$ and $B \in L\left(d_{w, p}, \ell_{p} \oplus \ell_{p}\right)$ be defined by

$$
A\left(x_{1}, x_{2}\right)=A_{1} x_{1}+A_{2} x_{2} \quad \text { and } \quad B x=\left(B_{1} x, B_{2} x\right)
$$

Define also $U: \ell_{p} \rightarrow \ell_{p} \oplus \ell_{p}$ and $V: d_{w, p} \rightarrow d_{w, p} \oplus d_{w, p}$ by

$$
U\left(\left(x_{n}\right)\right)=\left(\left(x_{2 n-1}\right),\left(x_{2 n}\right)\right), \quad \text { and } \quad V\left(\left(x_{n}\right)\right)=\left(\left(x_{2 n-1}\right),\left(x_{2 n}\right)\right)
$$

Since the bases of ℓ_{p} and $d_{w, p}$ are both unconditional, U and V are bounded.
Now observe that for each $x=\left(x_{n}\right) \in d_{w, p}$ we can write

$$
\begin{aligned}
& A V j U^{-1} B x=A V j U^{-1}\left(B_{1} x, B_{2} x\right)= \\
& \quad A\left(j B_{1} x, j B_{2} x\right)=A_{1} j B_{1} x+A_{2} j B_{2} x=T_{1} x+T_{2} x
\end{aligned}
$$

This shows that $T_{1}+T_{2}=A V j U^{-1} B$ with $A V \in L\left(d_{w, p}\right)$ and $U^{-1} B \in L\left(d_{w, p}, \ell_{p}\right)$, hence $T_{1}+T_{2} \in J^{j}$.

As we already mentioned before, the space $d_{w, p}$ contains many complemented copies of ℓ_{p}. Consider the operator $j U P \in L\left(d_{w, p}\right)$ where P is a projection onto any subspace Y isomorphic to ℓ_{p} and $U: Y \rightarrow \ell_{p}$ is an isomorphism onto. It turns out that the ideal generated by any such operator does not depend on the choice of Y and, in fact, coincides with J^{j}.

Proposition 4.2. Let Y be a complemented subspace of $d_{w, p}$ isomorphic to $\ell_{p}, P \in$ $L\left(d_{w, p}\right)$ be a projection with range Y, and $U: Y \rightarrow \ell_{p}$ be an isomorphism onto. If $T=j U P$ then $J_{T}=J^{j}$.

Proof. Clearly, $J_{T} \subseteq J^{j}$. Let $S \in J^{j}$. Then $S=A j B$ where $A \in L\left(d_{w, p}\right)$ and $B \in$ $L\left(d_{w, p}, \ell_{p}\right)$. It follows that

$$
S=A j B=A j\left(U P U^{-1}\right) B=A T\left(U^{-1} B\right) \in J_{T}
$$

The next goal is to show that the ideal $\overline{J^{j}}$ "sits" between $\mathcal{K}(X)$ and $\mathcal{S S}(X) \wedge \overline{J^{\ell_{p}}}$.
Theorem 4.3. The formal identity operator $j: \ell_{p} \rightarrow d_{w, p}$ is finitely strictly singular.
Proof. Let $\varepsilon>0$ be arbitrary. Take $n \in \mathbb{N}$ such that $\frac{1}{n} \sum_{i=1}^{n} w_{i}<\varepsilon$; such n exists by $w_{n} \rightarrow 0$. Since $\left(w_{n}\right)$ is also a decreasing sequence, it follows that $w_{i}<\varepsilon$ for all $i \geqslant n$.

Let $Y \subseteq \ell_{p}$ be a subspace with $\operatorname{dim} Y \geqslant n$. By Lemma 3.3, there exists a vector $x \in Y$ such that $\|x\|_{\ell_{p}}=1$ and x attains its sup-norm at at least n coordinates. Denote $\delta=\|x\|_{\text {sup }}>0$. Then $\|x\|_{\ell_{p}} \geqslant n^{1 / p} \delta$, so $\delta \leqslant n^{-1 / p}$.

Observe that the non-increasing rearrangement x^{*} of x satisfies the condition that $x_{i}^{*}=\delta$ for all $1 \leqslant 1 \leqslant n$. Therefore

$$
\|j x\|_{d_{w, p}}^{p}=\sum_{i=1}^{\infty} x_{i}^{* p} w_{i} \leqslant \delta^{p} \sum_{i=1}^{n} w_{i}+\varepsilon \sum_{i=n+1}^{\infty} x_{i}^{* p} \leqslant \delta^{p} n \varepsilon+\varepsilon\|x\|_{\ell_{p}}^{p} \leqslant 2 \varepsilon
$$

Hence $\|j x\|_{d_{w, p}} \leqslant(2 \varepsilon)^{1 / p}$.
Corollary 4.4. The following inclusions hold: $\mathcal{K}\left(d_{w, p}\right) \subsetneq \overline{J^{j}}$ and $J^{j} \subseteq \mathcal{S S}\left(d_{w, p}\right) \wedge J^{\ell_{p}}$.
Proof. Let Y, P, and U be as in Proposition 4.2. Then $j U P \in J^{j}$. If $x_{n}=U^{-1} f_{n} \in d_{w, p}$ then $\left(x_{n}\right)$ is seminormalized and $j U P x_{n}=e_{n}$. Hence the sequence $\left(j U P x_{n}\right)$ has no convergent subsequences, so that $j U P$ is not compact.

The inclusion $J^{j} \subseteq \mathcal{S} \mathcal{S}\left(d_{w, p}\right) \wedge J^{\ell_{p}}$ is obvious since j is strictly singular.

Conjecture 4.5. The ideal $\overline{J^{j}}$ is the only immediate successor of $\mathcal{K}\left(d_{w, p}\right)$.
In [3] and [10] (see also [17]), conditions on the weights $w=\left(w_{n}\right)$ are given under which $d_{w, p}$ has exactly two non-equivalent symmetric basic sequences. We will show that the conjecture holds true in this case.

Lemma 4.6. If $T \in \mathcal{S S}\left(d_{w, p}\right) \backslash \mathcal{K}\left(d_{w, p}\right)$ then there exists a seminormalized basic sequence $\left(x_{n}\right)$ in $d_{w, p}$ such that $\left(f_{n}\right) \succeq\left(x_{n}\right)$ and $\left(T x_{n}\right)$ is weakly null and seminormalized.

Proof. Let $\left(z_{n}\right)$ be a bounded sequence in $d_{w, p}$ such that $\left(T z_{n}\right)$ has no convergent subsequences. Then $\left(z_{n}\right)$ has no convergent subsequences either. Applying Rosenthal's ℓ_{1}-theorem and passing to a subsequence, we may assume that $\left(z_{n}\right)$ is either equivalent to the unit vector basis of ℓ_{1} or is weakly Cauchy.

Case: $\left(z_{n}\right)$ is equivalent to the unit vector basis of ℓ_{1}. Since a reflexive space cannot contain a copy of ℓ_{1}, we conclude that $p=1$, so $\left(z_{n}\right) \sim\left(f_{n}\right)$. Again, by Rosenthal's theorem, $\left(T z_{n}\right)$ has a subsequence which is either equivalent to $\left(f_{n}\right)$ or is weakly Cauchy. If $\left(T z_{n_{k}}\right) \sim\left(f_{n}\right)$ then T is an isomorphism on the space $\left[z_{n_{k}}\right]$, contrary to the assumption that $T \in \mathcal{S S}\left(d_{w, p}\right)$. Therefore, $\left(T z_{n_{k}}\right)$ is weakly Cauchy. Put $x_{k}=z_{n_{2 k}}-z_{n_{2 k-1}}$. Then $\left(x_{k}\right)$ is basic and $\left(T x_{k}\right)$ is weakly null. Passing to a further subsequence of $\left(z_{n_{k}}\right)$ we may assume that $\left(T x_{k}\right)$ is seminormalized. Also, $\left(x_{k}\right)$ is still equivalent to $\left(f_{n}\right)$, hence is dominated by $\left(f_{n}\right)$.

Case: $\left(z_{n}\right)$ is weakly Cauchy. Clearly, $\left(T z_{n}\right)$ is also weakly Cauchy. Consider the sequence $\left(u_{n}\right)$ in $d_{w, p}$ defined by $u_{n}=z_{2 n}-z_{2 n-1}$. Then both $\left(u_{n}\right)$ and $\left(T u_{n}\right)$ are weakly null. Passing to a subsequence of $\left(z_{n}\right)$, we may assume that $\left(T u_{n}\right)$ and, hence, $\left(u_{n}\right)$ are seminormalized. Applying Theorem 1.3, we get a subsequence $\left(u_{n_{k}}\right)$ of $\left(u_{n}\right)$ which is basic and equivalent to a block sequence $\left(v_{n}\right)$ of $\left(e_{n}\right)$. Denote $x_{k}=u_{n_{k}}$. By Proposition 1.8, $\left(f_{n}\right)$ dominates $\left(v_{n}\right)$ and, hence, $\left(x_{k}\right)$.

Theorem 4.7. If $d_{w, p}$ has exactly two non-equivalent symmetric basic sequences, then $\overline{J^{j}}$ is the only immediate successor of $\mathcal{K}\left(d_{w, p}\right)$.

Proof. Let T be a non-compact operator on $d_{w, p}$. It suffices to show that $J^{j} \subseteq J_{T}$. We may assume that T is strictly singular because, otherwise, we have $J^{j} \subseteq J^{\ell_{p}} \subseteq J_{T}$ by Theorem 3.1.

Let $\left(x_{n}\right)$ be a sequence as in Lemma 4.6. Passing to a subsequence and using Theorem 1.3, we may assume that $\left(T x_{n}\right)$ is basic and equivalent to a block sequence $\left(h_{n}\right)$ of $\left(e_{n}\right)$ such that $T x_{n}-h_{n} \rightarrow 0$. We claim that $\left(h_{n}\right)$ has no subsequences equivalent to $\left(f_{n}\right)$. Indeed, otherwise, for such a subsequence $\left(h_{n_{k}}\right)$ of $\left(h_{n}\right)$, we would have
$\left(f_{n}\right) \sim\left(f_{n_{k}}\right) \succeq\left(x_{n_{k}}\right) \succeq\left(T x_{n_{k}}\right) \sim\left(h_{n_{k}}\right) \sim\left(f_{n}\right)$, so $\left(x_{n_{k}}\right) \sim\left(T x_{n_{k}}\right)$, contrary to $T \in \mathcal{S S}\left(d_{w, p}\right)$. By [10, Theorem 19], $\left(h_{n}\right)$ has a subsequence which spans a complemented subspace in $d_{w, p}$ and is equivalent to $\left(e_{n}\right)$. Therefore, by Theorem 1.2, we may assume (by passing to a further subsequence) that $\left(T x_{n}\right) \sim\left(e_{n}\right)$ and $\left[T x_{n}\right]$ is complemented in $d_{w, p}$.

We have proved that there exists a sequence $\left(x_{n}\right)$ in $d_{w, p}$ such that $\left[T x_{n}\right]$ is complemented in $d_{w, p}$ and

$$
\left(f_{n}\right) \succeq\left(x_{n}\right) \succeq\left(T x_{n}\right) \sim\left(e_{n}\right)
$$

Let $A \in L\left(\ell_{p}, d_{w, p}\right)$ and $B \in L\left(\left[T x_{n}\right], d_{w, p}\right)$ be defined by $A f_{n}=x_{n}$ and $B\left(T x_{n}\right)=e_{n}$. Let $Q \in L\left(d_{w, p}\right)$ be a projection onto $\left[T x_{n}\right]$. Then for all $n \in \mathbb{N}$, we obtain: $B Q T A f_{n}=$ $B Q T x_{n}=B T x_{n}=e_{n}$. It follows that $B Q T A=j$, so that $J^{j} \subseteq J_{T}$.

In order to prove Conjecture 4.5 without additional conditions on w, it suffices to show that if $T \in \overline{J^{j}} \backslash \mathcal{K}\left(d_{w, p}\right)$ then $J^{j} \subseteq \overline{J_{T}}$. We will prove a weaker statement: if $T \in J^{j} \backslash \mathcal{K}\left(d_{w, p}\right)$ then $J^{j} \subseteq J_{T}$.

Recall (see [3, p.148]) that if $x=\left(a_{n}\right) \in d_{w, p}$ then a block sequence $\left(y_{n}\right)$ of $\left(e_{n}\right)$ is called a block of type I generated by x if it is of the form $y_{n}=\sum_{i=p_{n}+1}^{p_{n+1}} a_{i-p_{n}} e_{i}$ for all n. A set $A \subseteq d_{w, p}$ will be said to be almost lengthwise bounded if for each $\varepsilon>0$ there exists $N \in \mathbb{N}$ such that $\left\|\left.x^{*}\right|_{[N, \infty)}\right\|<\varepsilon$ for all $x \in A$. We will usually use it in the case when $A=\left\{x_{n}\right\}$ for some sequence $\left(x_{n}\right)$ in $d_{w, p}$. We need the following result, which is a slight extension of [3, Theorem 3]. We include the proof for completeness.

Theorem 4.8. Let $\left(x_{n}\right)$ be a seminormalized block sequence of $\left(e_{n}\right)$ in $d_{w, p}$.
(i) If $\left(x_{n}\right)$ is not almost lengthwise bounded then there exists a subsequence $\left(x_{n_{k}}\right)$ such that $\left(x_{n_{k}}\right) \sim\left(f_{n}\right)$.
(ii) If $\left(x_{n}\right)$ is almost lengthwise bounded, then there exists a subsequence $\left(x_{n_{k}}\right)$ equivalent to a block of type I generated by a vector $u=\sum_{i=1}^{\infty} b_{i} e_{i} \in d_{w, p}$ with $b_{i} \downarrow 0$. Moreover, if the sequence $\left(x_{n}\right)$ is bounded in ℓ_{p} then u is in $\ell_{p} .{ }^{1}$

Proof. (i) Without loss of generality, $\left\|x_{n}\right\| \leqslant 1$ for all $n \in \mathbb{N}$. By the assumption, there exists $\varepsilon>0$ with the property that for each $k \in \mathbb{N}$, there is $n_{k} \in \mathbb{N}$ such that $\left\|\left.x_{n_{k}}^{*}\right|_{(k, \infty)}\right\| \geqslant \varepsilon$. Let u_{k} be a restriction of $x_{n_{k}}$ such that $u_{k}^{*}=\left.x_{n_{k}}^{*}\right|_{[1, k]}$ and $v_{k}=x_{n_{k}}-u_{k}$.

Clearly, each nonzero entry of u_{k} is greater than or equal to the greatest entry of v_{k}. By Lemma 3.4, the k-th coordinate of u_{k}^{*} is less than or equal to $\frac{1}{s_{k}^{1 / p}}$ where $s_{k}=\sum_{i=1}^{k} w_{i}$.

[^1]It follows that $\left(v_{k}\right)$ is a block sequence of $\left(e_{n}\right)$ such that $\varepsilon \leqslant\left\|v_{k}\right\| \leqslant 1$ and absolute values of the entries of v_{k} are all at most $\frac{1}{s_{k}^{1 / p}}$. Since $\lim _{k} s_{k}=+\infty$ by the definition of $d_{w, p}$, passing to a subsequence and using Remark 1.4 we may assume that $\left(v_{k}\right)$ is equivalent to $\left(f_{n}\right)$. By Proposition 1.8, $\left(f_{n}\right)$ dominates $\left(x_{n_{k}}\right)$. Using also Lemma 1.9, we obtain the following diagram:

$$
\left(f_{n}\right) \succeq\left(x_{n_{k}}\right) \succeq\left(v_{k}\right) \sim\left(f_{n}\right) .
$$

Hence $\left(x_{n_{k}}\right)$ is equivalent to $\left(f_{n}\right)$.
(ii) Suppose that $x_{n}=\sum_{i=p_{n}+1}^{p_{n+1}} a_{i} e_{i}$. Clearly, the sequence $\left(a_{i}\right)$ is bounded. Without loss of generality, $a_{p_{n}+1} \geqslant \ldots \geqslant a_{p_{n+1}} \geqslant 0$ for each n. Put $y_{n}=x_{n}^{*}$. Using a standard diagonalization argument and passing to a subsequence, we may assume that (y_{n}) converges coordinate-wise; put $b_{i}=\lim _{n \rightarrow \infty} y_{n, i}$. It is easy to see that $b_{i} \geqslant b_{i+1}$ for all i. Put $u=\left(b_{i}\right)$.

Case: the sequence $\left(p_{n+1}-p_{n}\right)$ is bounded. Passing to a subsequence, we may assume that $N:=p_{n_{k}+1}-p_{n_{k}}$ is a constant. Note that supp $u \subseteq[1, N]$ and $\operatorname{supp} y_{n_{k}} \subseteq[1, N]$ for all k. Put $u_{k}=\sum_{i=p_{n_{k}}+1}^{p_{n_{k}+1}} b_{i-p_{n_{k}}} e_{i}$, then $u=u_{k}^{*}$ and $\left(u_{k}\right)$ as a block of type I generated by u. By compactness, $\left\|x_{n_{k}}-u_{k}\right\|=\left\|y_{n_{k}}-u\right\| \rightarrow 0$. Therefore, passing to a further subsequence, we have $\left(x_{n_{k}}\right) \sim\left(u_{k}\right)$. Being a vector with finite support, u belongs to ℓ_{p}.

Case: the sequence $\left(p_{n+1}-p_{n}\right)$ is unbounded. We will construct the required subsequence $\left(x_{n_{k}}\right)$ and a sequence $\left(N_{k}\right)$ inductively. Put $n_{1}=N_{1}=1$ and let $k>1$. Suppose that n_{1}, \ldots, n_{k-1} and N_{1}, \ldots, N_{k-1} have already been selected. Since $\left(x_{n}\right)$ is almost lengthwise bounded, we can find $N_{k}>N_{k-1}$ such that $\left\|\left.y_{n}\right|_{\left(N_{k}, \infty\right)}\right\|<\frac{1}{k}$ for all n. Put $v_{k}=\left.u\right|_{\left[1, N_{k}\right]}$. Using coordinate-wise convergence, we can find $n_{k}>n_{k-1}$ such that $\left\|\left.y_{n_{k}}\right|_{\left[1, N_{k}\right]}-v_{k}\right\|_{\ell_{p}}<\frac{1}{k}$ and $p_{n_{k}}+N_{k} \leqslant p_{n_{k}+1}$. Put $u_{k}=\sum_{i=p_{n_{k}}+1}^{p_{n_{k}}+N_{k}} b_{i-p_{n_{k}}} e_{i}$. Then $u_{k}^{*}=v_{k}$, so that

$$
\begin{equation*}
\left\|\left.x_{n_{k}}\right|_{\left(p_{n_{k}}, p_{n_{k}}+N_{k}\right]}-u_{k}\right\|_{\ell_{p}}=\left\|\left.y_{n_{k}}\right|_{\left[1, N_{k}\right]}-v_{k}\right\|_{\ell_{p}}<\frac{1}{k} \tag{1}
\end{equation*}
$$

and

$$
\left\|\left.x_{n_{k}}\right|_{\left(p_{n_{k}}+N_{k}, p_{n_{k}+1}\right]}\right\|=\left\|\left.y_{n_{k}}\right|_{\left(N_{k}, \infty\right)}\right\|<\frac{1}{k} .
$$

It follows that $\left\|x_{n_{k}}-u_{k}\right\| \rightarrow 0$. Passing to a subsequence, we get $\left(x_{n_{k}}\right) \sim\left(u_{k}\right)$.
Next, we show that $u \in d_{w, p}$. Since $\|\cdot\| \leqslant\|\cdot\|_{\ell_{p}}$, it follows from (1) that

$$
\left\|v_{k}\right\|=\left\|u_{k}\right\| \leqslant\left\|\left.x_{n_{k}}\right|_{\left(p_{n_{k}}, p_{n_{k}}+N_{k}\right]}\right\|+\frac{1}{k} \leqslant\left\|x_{n_{k}}\right\|+\frac{1}{k} .
$$

Since $\left(x_{n}\right)$ is bounded, so is $\left(v_{k}\right)$. Since $\operatorname{supp} v_{k}=N_{k} \rightarrow \infty$, we have $u \in d_{w, p}$. For the "moreover" part, we argue in a similar way. By (1), we have

$$
\left\|v_{k}\right\|_{\ell_{p}} \leqslant\left\|u_{k}\right\|_{\ell_{p}} \leqslant\left\|\left.x_{n_{k}}\right|_{\left(p_{n_{k}}, p_{n_{k}}+N_{k}\right]}\right\|_{\ell_{p}}+\frac{1}{k} \leqslant\left\|x_{n_{k}}\right\|_{\ell_{p}}+\frac{1}{k} .
$$

Therefore, if $\left(x_{n}\right)$ is bounded in ℓ_{p} then so is $\left(v_{k}\right)$, hence $u \in \ell_{p}$.
Lemma 4.9. Suppose that $\left(u_{n}\right)$ is a block of type I in $d_{w, p}$ generated by some $u=$ $\sum_{i=1}^{\infty} b_{i} e_{i}$. If $b_{i} \downarrow 0$ and $u \in \ell_{p}$ then $\left(u_{n}\right)$ has a subsequence equivalent to $\left(e_{n}\right)$

Proof. By Corollary 4 of [3], we may assume that the basic sequence $\left(u_{n}\right)$ is symmetric. It suffices to show that $\left[u_{n}\right]$ is isomorphic to $d_{w, p}$ because all symmetric bases in $d_{w, p}$ are equivalent; see e.g., Theorem 4 of [3]. Without loss of generality, $\|u\|=1$. Lemma 4 of [3] asserts that $\left[u_{n}\right]$ is isomorphic to $d_{w, p}$ iff $\left(s_{n}^{(u)}\right) \sim\left(s_{n}\right)$, where $s_{n}=\sum_{i=1}^{n} w_{i}$, $s_{n}^{(u)}=\sum_{i=1}^{\infty} b_{i}^{p}\left(s_{n i}-s_{n(i-1)}\right)$, and $\left(\alpha_{n}\right) \sim\left(\beta_{n}\right)$ means that there exist positive constants A and B such that $A \alpha_{n} \leqslant \beta_{n} \leqslant B \alpha_{n}$ for all n. Let's verify that this condition is, indeed, satisfied. On one hand, taking only the first term in the definition of $s_{n}^{(u)}$, we get $s_{n}^{(u)} \geqslant b_{1}^{p} s_{n}$. On the other hand, it follows from $w_{i} \downarrow$ that $s_{n i}-s_{n(i-1)} \leqslant s_{n}$ for every i, hence $s_{n}^{(u)} \leqslant \sum_{i=1}^{\infty} b_{i}^{p} s_{n}=\|u\|_{\ell_{p}}^{p} s_{n}$.

Lemma 4.10. Let $\left(x_{n}\right)$ be a block sequence of $\left(f_{n}\right)$ in ℓ_{p} such that the sequences $\left(x_{n}\right)$ and $\left(j x_{n}\right)$ are seminormalized in ℓ_{p} and $d_{w, p}$, respectively. Then there exists a subsequence $\left(x_{n_{k}}\right)$ such that $\left(j x_{n_{k}}\right) \sim\left(e_{n}\right)$.

Proof. Clearly, $\left(x_{n}\right) \sim\left(f_{n}\right)$. It follows that $\left(j x_{n}\right) \nsim\left(f_{n}\right)$ because, otherwise, j would be an isomorphism on $\left[x_{n}\right]$, which is impossible because j is strictly singular by Theorem 4.3. Applying Theorem 4.8 to $\left(j x_{n}\right)$ and passing to a subsequence, we may assume that $\left(j x_{n}\right) \sim\left(u_{n}\right)$, where $\left(u_{n}\right)$ is a block of type I generated by some $u=\sum_{i=1}^{\infty} b_{i} e_{i}$ such that $b_{i} \downarrow 0$ and $u \in \ell_{p}$. Applying Lemma 4.9 and passing to a subsequence, we get $\left(u_{n}\right) \sim\left(e_{n}\right)$.

Theorem 4.11. If $T \in J^{j} \backslash \mathcal{K}\left(d_{w, p}\right)$ then $J^{j} \subseteq J_{T}$.
Proof. Write $T=A j B$ where $B: d_{w, p} \rightarrow \ell_{p}$ and $A: d_{w, p} \rightarrow d_{w, p}$. Let $\left(x_{n}\right)$ be as in Lemma 4.6. The sequence $\left(B x_{n}\right)$ is bounded, hence we may assume by passing to a subsequence that it converges coordinate-wise. Since $\left(T x_{n}\right)$ is weakly null and seminormalized, it has no convergent subsequences. It follows that, after passing to a subsequence of $\left(x_{n}\right)$, we may assume that $\left(T z_{n}\right)$ is seminormalized, where $z_{n}=x_{2 n}$ $x_{2 n-1}$. In particular, $\left(z_{n}\right),\left(B z_{n}\right)$, and $\left(j B z_{n}\right)$ are seminormalized. Also, $\left(B z_{n}\right)$ converges to zero coordinate-wise. Using Theorem 1.3 and passing to a further subsequence, we may assume that $\left(B z_{n}\right)$ is equivalent to a block sequence $\left(u_{n}\right)$ of $\left(f_{n}\right)$ and $B z_{n}-u_{n} \rightarrow 0$. It follows from $\left(f_{n}\right) \succeq\left(x_{n}\right)$ that $\left(f_{n}\right) \succeq\left(z_{n}\right) \succeq\left(B z_{n}\right) \sim\left(u_{n}\right) \sim\left(f_{n}\right)$. In particular, $\left(z_{n}\right) \sim\left(f_{n}\right)$.

Since $B z_{n}-u_{n} \rightarrow 0$ and $\left(j B z_{n}\right)$ is seminormalized, we may assume that the sequence $\left(j u_{n}\right)$ is seminormalized. By Lemma 4.10, passing to a further subsequence, we may assume that $\left(j u_{n}\right)$ and, hence, $\left(j B z_{n}\right)$ are equivalent to $\left(e_{n}\right)$.

Passing to a subsequence and using Theorem 1.3, we may assume that $\left(T z_{n}\right)$ is equivalent to a block sequence $\left(v_{n}\right)$ of $\left(e_{n}\right)$ such that $T z_{n}-v_{n} \rightarrow 0$. Since $T \in \mathcal{S} \mathcal{S}\left(d_{w, p}\right)$, no subsequence of $\left(T z_{n}\right)$ and, therefore, of $\left(v_{n}\right)$ is equivalent to $\left(f_{n}\right)$. By Proposition 1.8, $\left(v_{n}\right) \succeq\left(e_{n}\right)$. It follows from $\left(j B z_{n}\right) \sim\left(e_{n}\right)$ that $\left(e_{n}\right) \succeq\left(T z_{n}\right)$, hence $\left(T z_{n}\right) \sim\left(e_{n}\right) \sim$ $\left(v_{n}\right)$.

Write $v_{n}=\sum_{i=p_{n}+1}^{p_{n+1}} a_{n} e_{n}$. By Remark 1.4, $a_{n} \nrightarrow 0$. Hence, passing to a subsequence and using [10, Remark 9], we may assume that $\left[v_{n}\right]$ is complemented. By Theorem 1.3, we may assume that $\left[T z_{n}\right]$ is complemented. Let $P \in L\left(d_{w, p}\right)$ be a projection onto [$T z_{n}$] and $U \in L\left(\ell_{p}, d_{w, p}\right)$ and $V \in L\left(\left[T z_{n}\right], d_{w, p}\right)$ be defined by $U f_{n}=z_{n}$ and $V T z_{n}=e_{n}$. Then we can write $j=V P T U$. Therefore $J^{j} \subseteq J_{T}$.

5. $d_{w, p}$-STRICTLY SINGULAR OPERATORS

The ideals in $L\left(d_{w, p}\right)$ we have obtained so far can be arranged into the following diagram.

$$
\{0\} \Longrightarrow \mathcal{K} \subsetneq \overline{J^{j}} \longrightarrow \overline{J^{\ell_{p}}} \wedge \mathcal{S S} \longrightarrow \mathcal{S S} \longrightarrow \overline{J^{\ell_{p}}} \longrightarrow \overline{J^{\ell_{p}}} \vee \mathcal{S S} \longrightarrow L\left(d_{w, p}\right)
$$

(see the Introduction for the notations). In this section, we will characterize the greatest ideal in the algebra $L\left(d_{w, p}\right)$, that is, a proper ideal in $L\left(d_{w, p}\right)$ that contains all other proper ideals in $L\left(d_{w, p}\right)$.

If X and Y are two Banach spaces, then an operator $T \in L(X)$ is called Y-strictly singular if for any subspace Z of X isomorphic to Y, the restriction $\left.T\right|_{Z}$ is not an isomorphism. The set of all Y-strictly singular operators in $L\left(d_{w, p}\right)$ will be denoted by $\mathcal{S} \mathcal{S}_{Y}$.

According to this notation, the symbol $\mathcal{S S}_{d_{w, p}}$ stands for the set of all $d_{w, p}$-strictly singular operators in $L\left(d_{w, p}\right)$ (not to be confused with $\mathcal{S} \mathcal{S}\left(d_{w, p}\right)$).

Lemma 5.1. Suppose that $T \in \mathcal{S}_{d_{w, p}}$ and $\left(x_{n}\right)$ is a basic sequence in $d_{w, p}$ equivalent to the unit vector basis $\left(e_{n}\right)$. Then $T x_{n} \rightarrow 0$.

Proof. Suppose, by way of contradiction, that $T x_{n} \nrightarrow 0$. Then there is a subsequence $\left(x_{n_{k}}\right)$ such that $\left(T x_{n_{k}}\right)$ is seminormalized. Since $\left(x_{n}\right)$ is weakly null (Remark 1.7), we
may assume by using Theorem 1.3 and passing to a further subsequence that $\left(T x_{n_{k}}\right)$ is a basic sequence equivalent to a block sequence $\left(z_{k}\right)$ of $\left(e_{n}\right)$.

By Proposition 1.8, either $\left(z_{k}\right)$ has a subsequence equivalent to $\left(f_{n}\right)$ or $\left(z_{k}\right) \succeq\left(e_{n}\right)$. Since ($T x_{n_{k}}$) cannot have subsequences equivalent to $\left(f_{n}\right)$ (this would contradict boundedness of T), the former is impossible. Therefore $\left(z_{k}\right) \succeq\left(e_{n}\right)$. We obtain the following diagram:

$$
\left(e_{n}\right) \sim\left(x_{n_{k}}\right) \succeq\left(T x_{n_{k}}\right) \sim\left(z_{k}\right) \succeq\left(e_{n}\right) .
$$

Therefore $\left.T\right|_{\left[x_{n_{k}}\right]}$ is an isomorphism. This contradicts T being in $\mathcal{S S}_{d_{w, p}}$.
Corollary 5.2. Let $T \in \mathcal{S}_{d_{w, p}}$. If $Y \subseteq d_{w, p}$ is a subspace isomorphic to $d_{w, p}$ then there is a subspace $Z \subseteq Y$ such that Z is isomorphic to $d_{w, p}$ and $\left.T\right|_{Z}$ is compact.

Proof. Let $\left(x_{n}\right)$ be a basis of Y equivalent to $\left(e_{n}\right)$. By Lemma 5.1, $T x_{n} \rightarrow 0$. There is a subsequence $\left(x_{n_{k}}\right)$ of $\left(x_{n}\right)$ such that $\sum_{k=1}^{\infty} \frac{\left\|T x_{n_{k}}\right\|}{\left\|x_{n_{k}}\right\|}$ is convergent. Let $Z=\left[x_{n_{k}}\right]$. It follows that Z is isomorphic to $d_{w, p}$ and $\left.T\right|_{Z}$ is compact (see, e.g., [8, Lemma 5.4.10]).

Theorem 5.3. The set $\mathcal{S}_{d_{w, p}}$ of all $d_{w, p^{-}}$strictly singular operators in $L\left(d_{w, p}\right)$ is the greatest proper ideal in the algebra $L\left(d_{w, p}\right)$. In particular, $\mathcal{S S}_{d_{w, p}}$ is closed.

Proof. First, let us show that $\mathcal{S}_{d_{w, p}}$ is an ideal. Let $T \in \mathcal{S S}_{d_{w, p}}$. If $A \in L\left(d_{w, p}\right)$ then, trivially, $A T \in \mathcal{S S}_{d_{w, p}}$. If $T A \notin \mathcal{S} \mathcal{S}_{d_{w, p}}$ then there exists a subspace Y of $d_{w, p}$ such that Y and $T A(Y)$ are both isomorphic to $d_{w, p}$. Then $\left.A\right|_{Y}$ is bounded below, hence $A(Y)$ is isomorphic to $d_{w, p}$. It follows that T is an isomorphism on a copy of $d_{w, p}$, contrary to $T \in \mathcal{S}_{d_{w, p}}$. So, $\mathcal{S S}_{d_{w, p}}$ is closed under two-sided multiplication by bounded operators.

Let $T, S \in \mathcal{S}_{d_{w, p}}$. We will show that $T+S \in \mathcal{S}_{d_{w, p}}$. Let Y be a subspace of $d_{w, p}$ isomorphic to $d_{w, p}$. By Corolary 5.2, there exists a subspace Z of Y such that Z is isomorphic to $d_{w, p}$ and $\left.T\right|_{Z}$ is compact. Applying Corolary 5.2 again, we can find a subspace V of Z such that V is isomorphic to $d_{w, p}$ and $\left.S\right|_{V}$ is compact. Therefore $\left.(T+S)\right|_{V}$ is compact, so that $\left.(T+S)\right|_{Y}$ is not an isomorphism. So, $\mathcal{S S}_{d_{w, p}}$ is an ideal.

Clearly, the identity operator I does not belong to $\mathcal{S S}_{d_{w, p}}$, so $\mathcal{S S}_{d_{w, p}}$ is proper. Let us show that $\mathcal{S S}_{d_{w, p}}$ is the greatest ideal in $L\left(d_{w, p}\right)$.

Let $T \notin \mathcal{S S}_{d_{w, p}}$. Then there exists a subspace Y of $d_{w, p}$ such that Y and $T(Y)$ are isomorphic to $d_{w, p}$. By [10, Corollary 12], there exists a complemented (in $d_{w, p}$) subspace Z of $T(Y)$ such that Z is isomorphic to $d_{w, p}$. Let $P \in L\left(d_{w, p}\right)$ be a projection onto Z. Put $H=T^{-1}(Z)$. It follows that H is isomorphic to $d_{w, p}$. Let $U: d_{w, p} \rightarrow H$ and $V: Z \rightarrow d_{w, p}$ be surjective isomorphisms. Then $S \in L\left(d_{w, p}\right)$ defined by $S=(V P) T U$ is an invertible operator. Clearly $S \in J_{T}$, hence $J_{T}=L(X)$.

The fact that $\mathcal{S S}_{d_{w, p}}$ is closed follows from [11, Corollary VII.2.4].
The next theorem provides a convenient characterization of $d_{w, p}$-strictly singular operators.

Lemma 5.4. Let $T \in L\left(d_{w, p}\right)$ be such that $T e_{n} \rightarrow 0$. Suppose that $\left(x_{n}\right)$ is a bounded block sequence of $\left(e_{n}\right)$ in $d_{w, p}$ such that $\left(x_{n}\right)$ is almost lengthwise bounded. Then $T x_{n} \rightarrow$ 0 .

Proof. Write $x_{n}=\sum_{i=p_{n}+1}^{p_{n+1}} a_{i} e_{i}$. Since $\left(x_{n}\right)$ is bounded, there is $C>0$ such that $\left|a_{i}\right| \leqslant C$ for all i and $n \in \mathbb{N}$. Let $\varepsilon>0$. Find $N \in \mathbb{N}$ such that $\left\|\left.x_{n}^{*}\right|_{[N, \infty)}\right\|<\varepsilon$ for all $n \in \mathbb{N}$. Let u_{n} be a restriction of x_{n} such that $u_{n}^{*}=\left.x_{n}^{*}\right|_{[1, N)}$ and $v_{n}=x_{n}-u_{n}$. It is clear that $\left\|v_{n}\right\|=\left\|\left.x_{n}^{*}\right|_{[N, \infty)}\right\|<\varepsilon$. Also, $\left\|T u_{n}\right\| \leqslant N C \cdot \max _{p_{n}+1 \leqslant i \leqslant p_{n+1}}\left\|T e_{i}\right\|$.

Pick $M \in \mathbb{N}$ such that $\left\|T e_{k}\right\|<\frac{\varepsilon}{N}$ for all $k \geqslant M$. Then

$$
\left\|T x_{n}\right\| \leqslant\left\|T u_{n}\right\|+\left\|T v_{n}\right\| \leqslant N C \frac{\varepsilon}{N}+\varepsilon\|T\|=\varepsilon(C+\|T\|)
$$

for all n such that $p_{n}>M$. It follows that $T x_{n} \rightarrow 0$.
Theorem 5.5. An operator $T \in L\left(d_{w, p}\right)$ is $d_{w, p}$-strictly singular if and only if $T e_{n} \rightarrow 0$.
Proof. Suppose that $T e_{n} \rightarrow 0$ but $T \notin \mathcal{S} \mathcal{S}_{d_{w, p}}$. Then there exists a subspace Y of $d_{w, p}$ such that Y is isomorphic to $d_{w, p}$ and $\left.T\right|_{Y}$ is an isomorphism. Let $\left(x_{n}\right)$ be a basis of Y equivalent to $\left(e_{n}\right)$. By Remark 1.7, $x_{n} \xrightarrow{w} 0$. Using Theorem 1.3 and passing to a subsequence, we may assume that $\left(x_{n}\right)$ is equivalent to a block sequence $\left(z_{n}\right)$ of $\left(e_{n}\right)$ such that $x_{n}-z_{n} \rightarrow 0$. Since $\left(z_{n}\right)$ is equivalent to $\left(e_{n}\right)$, it is almost lengthwise bounded by Theorem 4.8. By Lemma 5.4, $T z_{n} \rightarrow 0$. Since $x_{n}-z_{n} \rightarrow 0$, we obtain $T x_{n} \rightarrow 0$. This is a contradiction since $\left(x_{n}\right)$ is seminormalized and $\left.T\right|_{\left[x_{n}\right]}$ is an isomorphism.

The converse implication follows from Lemma 5.1.
Remark 5.6. In Theorem 5.3 we showed, in particular, that $\mathcal{S S}_{d_{w, p}}$ is closed under addition. Alternatively, we could have deduced this from Theorem 5.5.

Recall that an operator T on a Banach space X is called Dunford-Pettis if for any sequence $\left(x_{n}\right)$ in $X, x_{n} \xrightarrow{w} 0$ implies $T x_{n} \rightarrow 0$. If $1<p<\infty$ then the class of Dunford-Pettis operators on $d_{w, p}$ coincides with $\mathcal{K}\left(d_{w, p}\right)$ because $d_{w, p}$ is reflexive. For the case $p=1$ we have the following result.

Theorem 5.7. Let $T \in L\left(d_{w, 1}\right)$. Then T is $d_{w, 1}$-strictly singular if and only if T is Dunford-Pettis.

Proof. If T is Dunford-Pettis then then T is $d_{w, 1}$-strictly singular by Theorem 5.5 because (e_{n}) is weakly null.

Conversely, suppose that T is $d_{w, 1}$-strictly singular. Let $\left(x_{n}\right)$ be a weakly null sequence. Suppose that $\left(T x_{n}\right)$ does not converge to zero. Then, passing to a subsequence, we may assume that $\left(x_{n}\right)$ is a seminormalized weakly null basic sequence equivalent to a block sequence $\left(u_{n}\right)$ of $\left(e_{n}\right)$ such that $x_{n}-u_{n} \rightarrow 0$. Clearly, $\left(u_{n}\right)$ is weakly null. In particular, $\left(u_{n}\right)$ has no subsequences equivalent to $\left(f_{n}\right)$. By Theorem 4.8, $\left(u_{n}\right)$ is almost lengthwise bounded. Hence, by Lemma 5.4, $T u_{n} \rightarrow 0$. It follows that $T x_{n} \rightarrow 0$, contrary to the choice of $\left(x_{n}\right)$.

6. Strictly singular operators Between ℓ_{p} and $d_{w, p}$.

We do not know whether the ideals $\overline{J^{j}}, \mathcal{S S} \wedge \overline{J^{\ell_{p}}}$, and $\mathcal{S S}$ are distinct. In this section, we discuss some connections between these ideals.

Conjecture 6.1. $\overline{J^{j}}=\mathcal{S S} \wedge \overline{J_{\ell_{p}}}$. In particular, every strictly singular operator in $L\left(d_{w, p}\right)$ which factors through ℓ_{p} can be approximated by operators that factor through j.

The following statement is a refinement of Lemma 1.9. Recall that $d_{w, p}$ is a Banach lattice with respect to the coordinate-wise order.

Lemma 6.2. Suppose that $\left(x_{n}\right)$ and $\left(y_{n}\right)$ are seminormalized sequences in $d_{w, p}$ such that $\left|x_{n}\right| \geqslant\left|y_{n}\right|$ for all $n \in \mathbb{N}$ and $x_{n} \rightarrow 0$ coordinate-wise. Then there exists an increasing sequence $\left(n_{k}\right)$ in \mathbb{N} such that $\left(x_{n_{k}}\right)$ and $\left(y_{n_{k}}\right)$ are basic and $\left(x_{n_{k}}\right) \succeq\left(y_{n_{k}}\right)$.

Proof. Clearly, $y_{n} \rightarrow 0$ coordinate-wise. By Theorem 1.3, we can find a sequence $\left(n_{k}\right)$ and two block sequences $\left(u_{k}\right)$ and $\left(v_{k}\right)$ of $\left(e_{n}\right)$ such that $\left(x_{n_{k}}\right)$ and ($y_{n_{k}}$) are basic, $\left(x_{n_{k}}\right) \sim\left(u_{k}\right),\left(y_{n_{k}}\right) \sim\left(v_{k}\right), x_{n_{k}}-u_{k} \rightarrow 0, y_{n_{k}}-v_{k} \rightarrow 0$, and for each $k \in \mathbb{N}$, the vector $u_{k}\left(v_{k}\right.$, respectively) is a restriction of $\left(x_{n_{k}}\right)$ (of $\left(y_{n_{k}}\right)$, respectively).

For each $k \in \mathbb{N}$, define $h_{k} \in d_{w, p}$ by putting its i-th coordinate to be equal to $h_{k}(i)=\operatorname{sign}\left(v_{k}(i)\right) \cdot\left(\left|u_{k}(i)\right| \wedge\left|v_{k}(i)\right|\right)$. Then $\left(h_{k}\right)$ is a block sequence of $\left(e_{n}\right)$ such that $\left|h_{k}\right| \leqslant\left|u_{k}\right|$. A straightforward verification shows that $\left|h_{k}-v_{k}\right| \leqslant\left|u_{k}-x_{n_{k}}\right|$. It follows that $h_{k}-v_{k} \rightarrow 0$. By Theorem 1.2, passing to a subsequence, we may assume that $\left(h_{k}\right)$ is basic and $\left(h_{k}\right) \sim\left(v_{k}\right)$. By Lemma 1.9, $\left(u_{k}\right) \succeq\left(h_{k}\right)$. Hence $\left(x_{n_{k}}\right) \succeq\left(y_{n_{k}}\right)$.

The next lemma is a version of Theorem 4.8 for the case $\left(x_{n}\right)$ is an arbitrary bounded sequence.

Lemma 6.3. If the bounded sequence $\left(x_{n}\right)$ in $d_{w, p}$ is not almost lengthwise bounded, then there is a subsequence $\left(x_{n_{k}}\right)$ such that $\left(x_{n_{2 k}}-x_{n_{2 k-1}}\right)$ is equivalent to the unit vector basis $\left(f_{n}\right)$ of ℓ_{p}.

Proof. We can assume without loss of generality that no subsequence of $\left(x_{n}\right)$ is equivalent to the unit vector basis of ℓ_{1}. Indeed, if $\left(x_{n_{k}}\right)$ is equivalent to the unit vector basis of ℓ_{1} then $p=1$. It follows that $\left(x_{n_{k}}\right)$ is equivalent to $\left(f_{n}\right)$ and hence $\left(x_{n_{2 k}}-x_{n_{2 k-1}}\right)$ is equivalent to $\left(f_{n}\right)$, as well.

Without loss of generality, $\sup _{n}\left\|x_{n}\right\|=1$. Since $\left(x_{n}\right)$ is not almost lengthwise bounded, there exists $c>0$ such that

$$
\begin{equation*}
\forall N \in \mathbb{N} \quad \exists n \in \mathbb{N} \quad\left\|\left.x_{n}^{*}\right|_{[N, \infty)}\right\|>c \tag{2}
\end{equation*}
$$

Let $\frac{c}{4}>\varepsilon_{k} \downarrow 0$. We will inductively construct increasing sequences $\left(n_{k}\right)$ and $\left(N_{k}\right)$ in \mathbb{N} and a sequence $\left(y_{k}\right)$ in $d_{w, p}$ such that the following conditions are satisfied for each k :
(i) $\left\|\left.x_{n_{k}}\right|_{\left[N_{k+1}, \infty\right)}\right\|<\varepsilon_{k}$;
(ii) y_{k} is supported on $\left[N_{k}, N_{k+1}\right)$;
(iii) y_{k} is a restriction of $x_{n_{k}}$;
(iv) $\left\|y_{k}\right\|>\frac{c}{2}$;
(v) $\left\|y_{k}\right\|_{\infty} \leqslant s_{N_{k}}^{-1 / p}$ where s_{N} is as in Lemma 3.4.

For $k=1$, we put $N_{1}=1$, and define n_{1} to be the first number n such that $\left\|x_{n}\right\|>c$; such an n exists by (2). Pick $N_{2} \in \mathbb{N}$ such that $\left\|\left.x_{n_{1}}\right|_{\left[N_{2}, \infty\right)}\right\|<\varepsilon_{1}$. Put $y_{1}=\left.x_{n_{1}}\right|_{\left[N_{1}, N_{2}\right)}$. It follows that $1 \geqslant\left\|y_{1}\right\|>c-\varepsilon_{1}>\frac{c}{2}$, and the coordinates of y_{1} are all at most 1 $\left(=s_{1}^{-1 / p}\right)$, hence all the conditions (i)-(v) are satisfied for $k=1$.

Suppose that appropriate sequences $\left(n_{i}\right)_{i=1}^{k},\left(N_{i}\right)_{i=1}^{k+1}$, and $\left(y_{i}\right)_{i=1}^{k}$ have been constructed. Use (2) to find n_{k+1} such that $\left\|\left.x_{n_{k+1}}^{*}\right|_{\left[2 N_{k+1}, \infty\right)}\right\|>c$. Let z be the vector obtained from $x_{n_{k+1}}$ by replacing its N_{k+1} largest (in absolute value) entries with zeros. Then $\left\|\left.z\right|_{\left[N_{k+1}, \infty\right)}\right\| \geqslant\left\|\left.z^{*}\right|_{\left[N_{k+1}, \infty\right)}\right\|=\left\|\left.x_{n_{k+1}}^{*}\right|_{\left[2 N_{k+1}, \infty\right)}\right\|>c$. By Lemma 3.4, $\|z\|_{\infty} \leqslant s_{N_{k+1}}^{-1 / p}$. Choose N_{k+2} such that $\left\|\left.x_{n_{k+1}}\right|_{\left[N_{k+2}, \infty\right)}\right\|<\varepsilon_{k+1}$. It follows that $\left\|\left.z\right|_{\left[N_{k+2}, \infty\right)}\right\|<\varepsilon_{k+1}$. Put $y_{k+1}=\left.z\right|_{\left[N_{k+1}, N_{k+2}\right)}$. Then $\left\|y_{k+1}\right\| \geqslant c-\varepsilon_{k+1}>\frac{c}{2}$, and the inductive construction is complete.

The sequence $\left(y_{k}\right)$ constructed above is a seminormalized block sequence of $\left(e_{n}\right)$ such that the coordinates of $\left(y_{k}\right)$ converge to zero by condition (v). Using Remark 1.4 and passing to a subsequence, we may assume that $\left(y_{k}\right)$ is equivalent to the unit vector basis $\left(f_{n}\right)$ of ℓ_{p}.

Since $\left(x_{n}\right)$ contains no subsequences equivalent to the unit vector basis of ℓ_{1}, using the Rosenthal's ℓ_{1}-theorem and passing to a further subsequence, we may assume that
$\left(x_{n_{k}}\right)$ is weakly Cauchy. For all $m>k \in \mathbb{N}$, we have: $\left\|\left.x_{n_{k}}\right|_{\left[N_{m}, \infty\right)}\right\| \leqslant\left\|\left.x_{n_{k}}\right|_{\left[N_{k+1}, \infty\right)}\right\| \leqslant$ ε_{k}. Therefore $\left\|x_{n_{m}}-x_{n_{k}}\right\| \geqslant\left\|\left.\left(x_{n_{m}}-x_{n_{k}}\right)\right|_{\left[N_{m}, \infty\right)}\right\| \geqslant\left\|\left.x_{n_{m}}\right|_{\left[N_{m}, \infty\right)}\right\|-\varepsilon_{k} \geqslant\left\|y_{m}\right\|-$ $\varepsilon_{k} \geqslant \frac{c}{2}-\varepsilon_{k}>\frac{c}{4}$. It follows that the sequence $\left(u_{k}\right)$ defined by $u_{k}=x_{n_{2 k}}-x_{n_{2 k-1}}$ is seminormalized and weakly null. Passing to a subsequence of $\left(x_{n_{k}}\right)$, we may assume that $\left(u_{k}\right)$ is equivalent to a block sequence of $\left(e_{n}\right)$. By Proposition 1.8, $\left(f_{n}\right) \succeq\left(u_{k}\right)$.

Let $v_{k}=x_{n_{2 k}}-\left(\left.x_{n_{2 k-1}}\right|_{\left[1, N_{2 k}\right)}\right)$. Then $\left\|u_{k}-v_{k}\right\|=\left\|\left.x_{n_{2 k-1}}\right|_{\left[N_{2 k}, \infty\right)}\right\|<\varepsilon_{2 k-1} \rightarrow 0$. By Theorem 1.2, passing to a subsequence of $\left(x_{n_{k}}\right)$, we may assume that $\left(v_{k}\right)$ is basic and $\left(v_{k}\right) \sim\left(u_{k}\right)$. Also, $\left(v_{k}\right)$ is weakly null. Note that $\left|y_{2 k}\right| \leqslant\left|v_{k}\right|$ for all $k \in \mathbb{N}$, since supp $y_{2 k} \subseteq\left[N_{2 k}, N_{2 k+1}\right)$, so that $y_{2 k}$ is a restriction of v_{k}. By Lemma 6.2, passing to a subsequence, we may assume that $\left(v_{k}\right) \succeq\left(y_{2 k}\right)$. Therefore we obtain the following diagram:

$$
\left(f_{k}\right) \succeq\left(u_{k}\right) \sim\left(v_{k}\right) \succeq\left(y_{2 k}\right) \sim\left(f_{2 k}\right) \sim\left(f_{n}\right)
$$

It follows that $\left(u_{k}\right)$ is equivalent to $\left(f_{k}\right)$.
Corollary 6.4. If $T \in \mathcal{S S}\left(\ell_{p}, d_{w, p}\right)$ then the sequence $\left(T f_{n}\right)$ is almost lengthwise bounded.

Proof. Suppose that $\left(T f_{n}\right)$ is not almost lengthwise bounded. By Lemma 6.3, there is a subsequence $\left(f_{n_{k}}\right)$ such that $\left(T f_{n_{2 k}}-T f_{n_{2 k-1}}\right)$ is equivalent to $\left(f_{n}\right)$. It follows that $\left.T\right|_{\left[f_{n_{2 k}}-f_{n_{2 k-1}}\right]}$ is an isomorphism.

Remark 6.5. If we view T as an infinite matrix, the vectors $\left(T f_{n}\right)$ represent its columns.
Theorem 6.6. If $T \in L\left(\ell_{1}, d_{w, 1}\right)$ is such that the sequence $\left(T f_{n}\right)$ is almost lengthwise bounded, then for any $\varepsilon>0$ there exists $S \in L\left(\ell_{1}\right)$ such that $\|T-j S\|<\varepsilon$, where $j \in L\left(\ell_{1}, d_{w, 1}\right)$ is the formal identity operator.

Proof. Let $\varepsilon>0$ be fixed. Find $N \in \mathbb{N}$ such that $\left\|\left.\left(T f_{n}\right)^{*}\right|_{[N, \infty)}\right\|<\varepsilon$ for all n. Let $z_{n} \in d_{w, 1}$ be the vector obtained from $T f_{n}$ by keeping its largest N coordinates and replacing the rest of the coordinates with zeros.

Define $S: \ell_{1} \rightarrow d_{w, 1}$ by $S f_{n}=z_{n}$. Note that $\|T-S\|=\sup _{n}\left\|(T-S) f_{n}\right\|=$ $\sup _{n}\left\|T f_{n}-z_{n}\right\| \leqslant \varepsilon$; in particular, S is bounded. Let $F=\operatorname{span}\left\{e_{1}, \ldots, e_{N}\right\}$. Since $\operatorname{dim} F<\infty$, there exists $C>0$ such that

$$
\frac{1}{C}\|x\|_{\ell_{1}} \leqslant\|x\|_{d_{w, 1}} \leqslant C\|x\|_{\ell_{1}}
$$

for all $x \in F$. Observe that for each $n \in \mathbb{N}$, the non-increasing rearrangement $\left(S f_{n}\right)^{*}$ is in F. Therefore, for all $n \in \mathbb{N}$, we have

$$
\left\|S f_{n}\right\|_{\ell_{1}}=\left\|\left(S f_{n}\right)^{*}\right\|_{\ell_{1}} \leqslant C\left\|\left(S f_{n}\right)^{*}\right\|_{d_{w, 1}}=C\left\|S f_{n}\right\|_{d_{w, 1}} \leqslant C\|S\| .
$$

It follows that the operator $\widetilde{S}: \ell_{1} \rightarrow \ell_{1}$ defined by $\widetilde{S} f_{n}=S f_{n}$ belongs to $L\left(\ell_{1}\right)$. Obviously, $S=j \widetilde{S}$. So, $\|T-j \widetilde{S}\|<\varepsilon$.

The next corollary follows immediately from Theorem 6.6 and Corollary 6.4. This corollary can be considered as a support for Conjecture 6.1.

Corollary 6.7. $\mathcal{S} \mathcal{S}\left(\ell_{1}, d_{w, 1}\right)$ is contained in the closure of $\left\{j S: S \in L\left(\ell_{1}, d_{w, 1}\right)\right\}$.
Question. Does Corollary 6.7 remain valid for $p>1$?

The following fact is standard, we include its proof for convenience of the reader.
Proposition 6.8. If X is a Banach space then $\mathcal{S S}\left(X, \ell_{1}\right)=\mathcal{K}\left(X, \ell_{1}\right)$.
Proof. Let $T \notin \mathcal{K}\left(X, \ell_{1}\right)$. Pick a bounded sequence $\left(x_{n}\right)$ in X such that $\left(T x_{n}\right)$ has no convergent subsequences. By Schur's theorem, $\left(T x_{n}\right)$ and, therefore, $\left(x_{n}\right)$ have no weakly Cauchy subsequences. Applying Rosenthal's ℓ_{1}-theorem twice, we find a subsequence $\left(x_{n_{k}}\right)$ such that $\left(x_{n_{k}}\right)$ and $\left(T x_{n_{k}}\right)$ are both equivalent to the unit vector basis of ℓ_{1}. It follows that T is not strictly singular.

Proposition 6.9. For all $p \in[1, \infty), \mathcal{S} \mathcal{S}\left(d_{w, p}, \ell_{p}\right)=\mathcal{K}\left(d_{w, p}, \ell_{p}\right)$.
Proof. By Proposition 6.8, we only have to consider the case $p>1$. Let $T \notin \mathcal{K}\left(X, \ell_{p}\right)$. Pick a bounded sequence $\left(x_{n}\right)$ in X such that $\left(T x_{n}\right)$ has no convergent subsequences. Since $d_{w, p}$ contains no copies of ℓ_{1}, by Rosenthal's ℓ_{1}-theorem we may assume that (x_{n}) is weakly Cauchy. Passing to a further subsequence, we may assume that the sequence $\left(T y_{n}\right)$, where $y_{n}=x_{2 n}-x_{2 n-1}$, is seminormalized. It follows that $\left(y_{n}\right)$ is also seminormalized. Also, $\left(y_{n}\right)$ and, therefore, $\left(T y_{n}\right)$ are weakly null. Passing to a subsequence of $\left(x_{n}\right)$, we may assume that $\left(y_{n}\right)$ and $\left(T y_{n}\right)$ are both basic, equivalent to block sequences of $\left(e_{n}\right)$ and $\left(f_{n}\right)$, respectively. By [3, Proposition 5] and [17, Proposition 2.a.1], $\left(f_{n}\right) \succeq\left(y_{n}\right)$ and $\left(f_{n}\right) \sim\left(T y_{n}\right)$. So, we obtain the diagram

$$
\left(f_{n}\right) \succeq\left(y_{n}\right) \succeq\left(T y_{n}\right) \sim\left(f_{n}\right) .
$$

Hence $\left[y_{n}\right]$ is isomorphic to $\left[T y_{n}\right]$, so that T is not strictly singular.
The following lemma is standard.

Lemma 6.10. Let X be a Banach space. Every seminormalized basic sequence in X is dominated by the unit vector basis of ℓ_{1}.

Lemma 6.11. Let $\left(x_{n}\right)$ and $\left(y_{n}\right)$ be two sequences in a Banach space X such that $\left(x_{n}\right)$ is equivalent to the unit vector basis of ℓ_{1} and $\left(y_{n}\right)$ is convergent. Then the sequence $\left(z_{n}\right)$ defined by $z_{n}=x_{n}+y_{n}$ has a subsequence equivalent to the unit vector basis of ℓ_{1}.

Proof. Observe that $\left(z_{n}\right)$ cannot have weakly Cauchy subsequences since $\left(x_{n}\right)$ does not have such subsequences. Since $\left(z_{n}\right)$ is bounded, the result follows from Rosenthal's ℓ_{1}-theorem.

Recall that an operator A between two Banach lattices X and Y is called positive if $x \geqslant 0$ entails $T x \geqslant 0$.

Conjecture 6.1 asserts, in particular, that if $T \in \mathcal{S} \mathcal{S}\left(d_{w, p}\right)$ and $T=A B$ for some $A: d_{w, p} \rightarrow \ell_{p}$ and $B: \ell_{p} \rightarrow d_{w, p}$ then $T \in \overline{J^{j}}$. In the next theorem, we prove this under the additional assumptions that $p=1$ and both A and B are positive.

Theorem 6.12. Let $T \in \mathcal{S S}\left(d_{w, 1}\right)$ be such that $T=A B$, where $A \in L\left(\ell_{1}, d_{w, 1}\right)$, $B \in L\left(d_{w, 1}, \ell_{1}\right)$, and both A and B are positive. Then $T \in \overline{J^{j}}$.

Proof. Define a sequence $\left(A_{N}\right)$ of operators in $L\left(\ell_{1}, d_{w, 1}\right)$ by the following procedure. For each $n \in \mathbb{N}$, let $A_{N} f_{n}$ be obtained from $A f_{n}$ by keeping the largest N coordinates and replacing the rest of the coordinates with zeros. Since $A f_{n} \geqslant 0$ for all $n \in \mathbb{N}$, this defines a positive operator $\ell_{1} \rightarrow d_{w, 1}$. Also, $\left\|A_{N} f_{n}\right\| \leqslant\left\|A f_{n}\right\| \leqslant\|A\|$ for all $n \in \mathbb{N}$, hence $\left\|A_{N}\right\| \leqslant\|A\|$.

Define $A_{N}^{\prime}=A-A_{N}$. It is clear that $0 \leqslant A_{N}^{\prime} f_{n} \leqslant A f_{n}$ for all $n \in \mathbb{N}$, hence $A_{N}^{\prime} \geqslant 0$ and $\left\|A_{N}^{\prime}\right\| \leqslant\|A\|$. We claim that $A_{N}^{\prime} \rightarrow 0$ in the strong operator topology (SOT). Indeed, since $A_{N}^{\prime} f_{n}$ is obtained from $A f_{n}$ by removing the largest N coordinates, the elements of the matrix of A_{N}^{\prime} are all smaller than $\frac{\|A\|}{s_{N}}$ by Lemma 3.4. In particular, if $0 \leqslant x \in \ell_{1}$, then $A_{N}^{\prime} x \downarrow 0$; it follows that $\left\|A_{N}^{\prime} x\right\| \rightarrow 0$ because $d_{w, 1}$ has order continuous norm (see Remark 1.5). If $x \in \ell_{1}$ is arbitrary then $\left\|A_{N}^{\prime} x\right\| \leqslant\left\|A_{N}^{\prime}|x|\right\| \rightarrow 0$.

We will show that $\left\|A_{N}^{\prime} B\right\| \rightarrow 0$ as $N \rightarrow \infty$, so that $\left\|A B-A_{N} B\right\| \rightarrow 0$ as $N \rightarrow \infty$. Since $\left(A_{N} f_{n}\right)_{n=1}^{\infty}$ is almost lengthwise bounded (in fact, the vectors in the sequence $\left(A_{N} f_{n}\right)_{n=1}^{\infty}$ all have at most N nonzero entries), the theorem will follow from Theorem 6.6.

Assume, by way of contradiction, that there are $c>0$ and a sequence $\left(N_{k}\right)$ in \mathbb{N} such that $\left\|A_{N_{k}}^{\prime} B\right\|>c$. Then there exists a normalized positive sequence $\left(x_{k}\right)$ in $d_{w, p}$ such that $\left\|A_{N_{k}}^{\prime} B x_{k}\right\|>c$. By Rosenthal's ℓ_{1}-theorem, we may assume that $\left(x_{k}\right)$ is either weakly Cauchy or equivalent to $\left(f_{n}\right)$.

Assume that $\left(x_{k}\right)$ is weakly Cauchy. Then $\left(B x_{k}\right)$ is weakly Cauchy. Since $\left(B x_{k}\right)$ is a sequence in ℓ_{1}, it must converge to some $z \in \ell_{1}$ by the Schur property. Then
$\left\|A_{N_{k}}^{\prime} B x_{k}-A_{N_{k}}^{\prime} z\right\| \leqslant\left\|A_{N_{k}}^{\prime}\right\| \cdot\left\|B x_{k}-z\right\| \leqslant\|A\| \cdot\left\|B x_{k}-z\right\| \rightarrow 0$. Since $A_{N_{k}}^{\prime} \rightarrow 0$ in SOT, it follows that $A_{N_{k}}^{\prime} B x_{k} \rightarrow 0$, contrary to the assumption. Therefore (x_{k}) must be equivalent to $\left(f_{n}\right)$.

Since the entries of the matrix of A_{N}^{\prime} are all less than $\frac{\|A\|}{s_{N}}$, the coordinates of the vector $A_{N_{k}}^{\prime} B x_{k}$ are all less than $\frac{\|A\|}{s_{N_{k}}}\|B\| \rightarrow 0$. Hence, passing to a subsequence, we may assume that $\left(A_{N_{k}}^{\prime} B x_{k}\right)$ is equivalent to a block sequence $\left(u_{k}\right)$ of $\left(e_{n}\right)$ such that each u_{k} is a restriction of $A_{N_{k}}^{\prime} B x_{k}$. In particular, the coordinates of $\left(u_{k}\right)$ converge to zero. Passing to a further subsequence, we may assume by Remark 1.4 that $\left(A_{N_{k}}^{\prime} B x_{k}\right) \sim\left(f_{n}\right)$.

The sequence $\left(T x_{k}\right)$ cannot have subsequences equivalent to $\left(f_{n}\right)$ since T is strictly singular. Therefore, by Rosenthal's ℓ_{1}-theorem, we may assume that $\left(T x_{k}\right)$ is weakly Cauchy. Since $d_{w, 1}$ is weakly sequentially complete (Remark 1.5), the sequence ($T x_{k}$) weakly converges to a vector $y \in d_{w, 1}$. Since the positive cone in a Banach lattice is weakly closed, $y \geqslant 0$.

Note that $T x_{k} \geqslant A_{N_{k}}^{\prime} B x_{k} \geqslant u_{k} \geqslant 0$ for every k. Since $\left(u_{k}\right)$ is a seminormalized block sequence of $\left(e_{n}\right)$, it follows that $\left(T x_{k}\right)$ is not norm convergent. Write $T x_{k}=y+h_{k}$; then $\left(h_{k}\right)$ converges to zero weakly but not in norm. Therefore, passing to a subsequence, we may assume that $\left(h_{k}\right)$ is seminormalized and basic (but not, necessarily, positive).

Let $r_{k}=A_{N_{k}}^{\prime} B x_{k}-\left(A_{N_{k}}^{\prime} B x_{k} \wedge y\right) \geqslant 0, k \in \mathbb{N}$. Observe that $A_{N_{k}}^{\prime} B x_{k} \wedge y \in[0, y]$ for all k. Since $d_{w, 1}$ has order continuous norm and the order in $d_{w, 1}$ is defined by a 1-unconditional basis, order intervals in $d_{w, 1}$ are compact (see, e.g., [24, Theorem 6.1]). Therefore, passing to a subsequence of $\left(x_{n_{k}}\right)$, we may assume that $\left(A_{N_{k}}^{\prime} B x_{k} \wedge y\right)$ is convergent, hence, passing to a further subsequence, $\left(r_{k}\right)$ is equivalent to $\left(f_{n}\right)$ by Lemma 6.11 and Theorem 1.2.

It follows from $y+h_{k} \geqslant A_{N_{k}}^{\prime} B x_{k} \geqslant 0$ that $\left|h_{k}\right| \geqslant r_{k}$ for all k. Passing to a subsequence, we may assume by Lemma 6.2 that $\left(h_{k}\right) \succeq\left(r_{k}\right) \sim\left(f_{n}\right)$. By Lemma 6.10, in fact $\left(h_{k}\right) \sim\left(f_{n}\right)$, and, hence, by Lemma 6.11, $\left(A B x_{k}\right) \sim\left(f_{n}\right)$. Since also $\left(x_{k}\right) \sim\left(f_{n}\right)$, this contradicts to $T=A B \in \mathcal{S S}\left(d_{w, 1}\right)$.

References

[1] Y. Abramovich and C. Aliprantis, An invitation to operator theory. Graduate Studies in Mathematics, 50. American Mathematical Society, Providence, RI, 2002. xiv+530 pp.
[2] C. Aliprantis and O. Burkinshaw, Positive operators. Springer, Dordrecht, 2006. xx +376 pp .
[3] Z. Altshuler, P. G. Casazza, and B. Lin, On symmetric basic sequences in Lorentz sequence spaces. Israel J. Math. 15 (1973), 140-155.
[4] G. Androulakis, P. Dodos, G. Sirotkin, and V. G. Troitsky, Classes of strictly singular operators and their products. Israel J. Math. 169 (2009), 221-250.
[5] S. A. Argyros, R. G. Haydon, A hereditarily indecomposable L_{∞}-space that solves the scalar-pluscompact problem, arXiv:0903.3921v2.
[6] J. Calder and J. Hill, A collection of sequence spaces. Trans. Amer. Math. Soc. 152 (1970), 107118.
[7] J. W. Calkin, Two-sided ideals and congruences in the ring of bounded operators in Hilbert space, Ann. Math. 42 (2) (1941), 839-873.
[8] S. R. Caradus, W. E. Pfaffenberger, B. Yood, Calkin algebras and algebras of operators on Banach spaces. Lecture Notes in Pure and Applied Mathematics, Vol. 9. Marcel Dekker, Inc., New York, 1974.
[9] N. Carothers, A short course on Banach space theory. London Mathematical Society Student Texts, 64. Cambridge University Press, Cambridge.
[10] P. G. Casazza and B. Lin, On symmetric basic sequences in Lorentz sequence spaces. II. Israel J. Math. 17 (1974), 191-218.
[11] J. B. Conway, A course in Functional Analysis. Second edition. Springer, 1990.
[12] M. Fabian, P. Habala, P. Hájek, V. Montesinos, and V. Zizler, Banach space theory. The basis for linear and nonlinear analysis. CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC. Springer, New York, 2011.
[13] I. Feldman, I. Gohberg, A. Markus, Normally solvable operators and ideals associated with them, Bul. Akad. Štiince RSS Moldoven, 76 (10) (1960), 51-70 (Russian). English translation: American. Math. Soc. Translat. 61 (1967), 63-84.
[14] D. Garling, A class of reflexive symmetric BK-spaces. Canad. J. Math. 21 (1969), 602-608.
[15] N. J. Laustsen, R. J. Loy, C. J. Read, The lattice of closed ideals in the Banach algebra of operators on certain Banach spaces. J. Funct. Anal. 214 (2004), no. 1, 106-131.
[16] N. J. Laustsen, T. Schlumprech, A. Zsák, The lattice of closed ideals in the Banach algebra of operators on a certain dual Banach space. J. Operator Theory, 56 (2006), no. 2, 391-402.
[17] J. Lindenstrauss and L. Tzafriri, Classical Banach spaces. I. Sequence spaces. Ergebnisse der Mathematik und ihrer Grenzgebiete, Vol. 92. Springer-Verlag, Berlin-New York, 1977.
[18] J. Lindenstrauss, L. Tzafriri, Classical Banach spaces. II. Function spaces. Ergebnisse der Mathematik und ihrer Grenzgebiete, Vol. 97. Springer-Verlag, Berlin-New York, 1979.
[19] V. Milman, Operators of class C_{0} and C_{0}^{*}, Teor. Funktsii Funktsional. Anal. i Prilozen. 10 (1970), 15-26 (Russian).
[20] A. Pietsch, Operator ideals. North-Holland Mathematical Library, 20. North-Holland Publishing Co., Amsterdam-New York, 1980.
[21] H. Rosenthal, A characterization of Banach spaces containing ℓ_{1}, Proc. Nat. Acad. Sci. U.S.A. 71 (1974), 2411-2413.
[22] B. Sari, T. Schlumprecht, N. Tomczak-Jaegermann, and V. G. Troitsky, On norm closed ideals in $L\left(\ell_{p}+\ell_{q}\right)$, Studia Math., no. 179, 2007, 239-262.
[23] T. Schlumprecht, On the closed subideals of $L\left(\ell_{p} \oplus \ell_{q}\right)$, Operators and Matrices, to appear.
[24] W. Wnuk, Banach lattices with order continuous norms. Polish Scientific Publishers, Warsaw 1999.
(A. Kaminska) Department of Mathematical Sciences The University of Memphis, Memphis, TN 38152-3240. USA

E-mail address: kaminska@memphis.edu
(A. I. Popov, E. Spinu, and V. G. Troitsky) Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, AB, T6G 2G1. Canada

E-mail address: apopov@math.ualberta.ca, spinu@ualberta.ca
E-mail address: troitsky@ualberta.ca
(A. Tcaciuc) Mathematics and Statistics Department, Grant MacEwan University, Edmonton, AB, T5J P2P, Canada

E-mail address: atcaciuc@ualberta.ca

[^0]: Date: August 12, 2011.
 2010 Mathematics Subject Classification. Primary: 47L20. Secondary: 47B10, 47B37.
 Key words and phrases. Lorentz space, operator ideal, strictly singular operator.
 The forth and fifth authors were supported by NSERC.

[^1]: ${ }^{1}$ As a sequence space, ℓ_{p} is a subset of $d_{w, p}$. That is, we can identify ℓ_{p} with Range j. More precisely, we claim here that if $\left(j^{-1} x_{n}\right)$ is bounded in ℓ_{p} then u is in Range j. Being a block sequence of $\left(e_{n}\right)$, $\left(x_{n}\right)$ is contained in Range j.

