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Abstract. We introduce and study the following modified version of the Invariant
Subspace Problem: whether every operator T on an infinite-dimensional Banach
space has an almost invariant half-space, that is, a subspace Y of infinite dimension
and infinite codimension such that Y is of finite codimension in T (Y ). We solve this
problem in the affirmative for a large class of operators which includes quasinilpotent
weighted shift operators on `p (1 6 p <∞) or c0.

1. Introduction

Throughout the paper, X is a Banach space and by L(X) we denote the set of all

(bounded linear) operators on X. By a “subspace” of a Banach space we always mean

a “closed subspace”. Given a sequence (xn) in X, we write [xn] for the closed linear

span of (xn).

Definition 1.1. A subspace Y of a Banach space X is called a half-space if it is

both of infinite dimension and of infinite codimension in X.

Definition 1.2. If T ∈ L(X) and Y is a subspace of X, then Y is called almost

invariant under T , or T -almost invariant , if there exists a finite dimensional

subspace F of X such that T (Y ) ⊆ Y + F .

In this work, the following question will be referred to as the almost invariant

half-space problem : Does every operator on an infinite-dimensional Banach space

have an almost invariant half-space? Observe that every subspace of X that is not a

half-space is clearly almost invariant under any operator. Also, note that the almost

invariant half-space problem is not weaker than the well known invariant subspace

problem, because in the latter the invariant subspaces are not required to be half-

spaces.
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The natural question whether the usual unilateral right shift operator acting on a

Hilbert space has almost invariant half-spaces has an affirmative answer. Moreover, it is

known that this operator has even invariant half-spaces. Indeed, by [6, Corollary 3.15],

this operator has an invariant subspace with infinite-dimensional orthogonal comple-

ment (thus the invariant subspace is of infinite codimension). It is not hard to see that

the space exhibited in the proof of this statement is in fact infinite dimensional.

It is natural to consider Donoghue operators as candidates for counterexamples to

the almost invariant half-space problem, as their invariant subspaces are few and well

understood. Recall that a Donoghue operator D ∈ L(`2) is an operator defined by

De0 = 0, Dei = wiei−1, i ∈ N,

where (wi) is a sequence of non-zero complex numbers such that
(
|wi|
)

is monotone

decreasing and in `2. It is known that if D is a Donoghue operator then D has only

invariant subspaces of finite dimension and D∗ has only invariant subspaces of finite

codimension (see [6, Theorem 4.12]). Hence neither D nor D∗ have invariant half-

spaces. In Section 3 we will employ the tools of Section 2 to show that, nevertheless,

every Donoghue operator has almost invariant half-spaces. We do not know whether

the operators constructed by Enflo [3] and Read [7] have almost invariant half-spaces.

The following result explains how almost invariant half-spaces of operators are re-

lated to invariant subspaces of perturbed operators.

Proposition 1.3. Let T ∈ L(X) and H ⊆ X be a half-space. Then H is almost

invariant under T if and only if H is invariant under T + K for some finite rank

operator K.

Proof. Suppose that T has an almost invariant half-space H. Let F be a subspace

of the smallest dimension satisfying the condition in Definition 1.2. Then we have

H ∩ F = {0}. Define P : H + F → F by P (h + f) = f . Since P is a finite rank

operator, we can extend it to a finite rank operator on X using Hahn-Banach theorem.

That is, there exists P̃ : X → F such that P̃ |H+F = P . Define K : X → X by

K := −P̃ T . Clearly K has finite rank and for any h ∈ H we have Th = h′ + f for

some h′ ∈ H and f ∈ F , so that

(T +K)(h) = Th− P̃ Th = h′ + f − P̃ (h′ + f) = h′ + f − f = h′

Therefore, (T +K)H ⊆ H, which shows that T +K has an invariant half-space.

Conversely, from (T +K)(H) ⊆ H it follows immediately that T (H) ⊆ H+K(H),so

that H is an almost invariant half space for T . �
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Finally we would like to point out that if an operator has almost invariant half-

spaces, then so does its adjoint. For that we will need two simple lemmas. The proof

of the first lemma is elementary.

Lemma 1.4. Let X be a Banach space and Y be a subspace of X. Then Y is infinite

codimensional if and only if Y ⊥ is of infinite dimension. Thus Y is a half-space if and

only if both Y and Y ⊥ are of infinite dimension.

Lemma 1.5. A subspace Y of X is a half-space if and only if Y ⊥ is a half-space in X∗.

Proof. Suppose Y is a half-space. By Lemma 1.4, Y ⊥ must be infinite-dimensional.

Also (Y ⊥)⊥ ⊇ j(Y ) where j : X → X∗∗ denotes the natural embedding. Thus (Y ⊥)⊥

is infinite dimensional. Now Lemma 1.4 yields that Y ⊥ is a half-space.

Let’s assume that Y ⊥ is a half-space. Since Y ⊥ is infinite codimensional Y must

be infinite-dimensional (see, e.g. [1, Theorem 5.110]). On the other hand, since Y ⊥ is

infinite dimensional, by Lemma 1.4 we obtain that Y is of infinite codimension, thus

a half-space. �

Remark 1.6. The statement dual to that of Lemma 1.5 is not true in general. That

is, if Z is a half-space in X∗ then Z⊥ need not be a half-space. For example, c0 is a

half-space in `∞ while (c0)⊥ = {0} ⊆ `1 is not.

Proposition 1.7. Let T be an operator on a Banach space X. If T has an almost

invariant half-space then so does its adjoint T ∗.

Proof. Let Y be a half-space in X such that Y is almost invariant under T , and F

be a finite-dimensional subspace of X of smallest dimension such that TY ⊆ Y + F .

Then Y ∩ F = {0}. Thus there exists a subspace W of X such that W + F = X,

W ∩ F = {0}, and Y ⊆ W . In particular, W⊥ is finite dimensional. Denote Z =

(Y + F )⊥. By Lemma 1.5, Z is a half-space in X∗. For every z ∈ Z and y ∈ Y we

have 〈y, T ∗z〉 = 〈Ty, z〉 = 0 since Ty ∈ Y + F . Therefore T ∗Z ⊆ Y ⊥. To finish the

proof, it suffices to show that Y ⊥ = Z +W⊥.

Indeed, by the definition of Z we have that Z ⊆ Y ⊥. Also since Y ⊆ W we have

W⊥ ⊆ Y ⊥. Thus Z + W⊥ ⊆ Y ⊥. On the other hand, since F is finite dimensional

and F ∩W = {0}, we may choose a basis (fi) of F with biorthogonal functionals (f ∗i )

such that f ∗i ∈ W⊥. Since Y ⊆ W we have that f ∗i ∈ Y ⊥. Thus, if x∗ is an arbitrary

element of Y ⊥ then x∗−
∑
i

x∗(fi)f
∗
i ∈ (Y +F )⊥ = Z, and therefore x∗ ∈ Z+W⊥. �
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2. Basic tools

All Banach spaces in Sections 2, 3 and 4 are assumed to be complex. For a subset A

of C, we will write A−1 =
{

1
λ

: λ ∈ A, λ 6= 0
}

. For a Banach space X and T ∈ L(X),

we will use symbols σ(T ) for the spectrum of T , r(T ) for the spectral radius of T , and

ρ(T ) for the resolvent set of T . For a nonzero vector e ∈ X and λ ∈ ρ(T )−1, define a

vector h(λ, e) in X by

h(λ, e) :=
(
λ−1I − T

)−1
(e).

Note that if |λ| < 1
r(T )

then1 Neumann’s formula yields

(1) h(λ, e) = λ
∞∑
n=0

λnT ne.

Also, observe that
(
λ−1I − T

)
h(λ, e) = e for every λ ∈ ρ(T )−1, so that

(2) Th(λ, e) = λ−1h(λ, e)− e.

The last identity immediately yields the following result.

Lemma 2.1. Let X be a Banach space, T ∈ L(X), 0 6= e ∈ X, and A ⊆ ρ(T )−1. Put

Y = span
{
h(λ, e) : λ ∈ A

}
.

Then Y is a T -almost invariant subspace (which is not necessarily a half-space), with

TY ⊆ Y + span{e}.

Remark 2.2. The Replacement procedure. For any nonzero vector e in a Banach

space X, we have

h(λ, e)− h(µ, e) = (µ−1 − λ−1)h
(
λ, h(µ, e)

)
whenever λ, µ ∈ ρ(T )−1.

Indeed,

h(λ, e)− h(µ, e) =
[
(λ−1I − T )−1 − (µ−1I − T )−1

]
(e)

= (µ−1 − λ−1)(λ−1I − T )−1(µ−1I − T )−1(e)

= (µ−1 − λ−1)(λ−1I − T )−1h(µ, e)

= (µ−1 − λ−1)h
(
λ, h(µ, e)

)
Lemma 2.3. Suppose that T ∈ L(X) has no eigenvectors. Then, for any nonzero

vector e ∈ X the set
{
h(λ, e) : λ ∈ ρ(T )−1

}
is linearly independent.

1In case r(T ) = 0 we take 1
r(T ) = +∞.
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Proof. We are going to use induction on n to show that for any nonzero vector e ∈ X
and any distinct λ1, λ2, . . . , λn ∈ ρ(T )−1 the set{

h(λ1, e), h(λ2, e), . . . , h(λn, e)
}

is linearly independent. The statement is clearly true for n = 1; we assume it is true

for n− 1 and will prove it for n.

Fix e ∈ X and distinct λ1, λ2, . . . , λn ∈ ρ(T )−1. Let a1, a2, . . . , an be scalars such

that
∑n

k=1 akh(λk, e) = 0. It follows from (2) that

0 = T

( n∑
k=1

akh(λk, e)

)
=

n∑
k=1

akλ
−1
k h(λk, e)−

n∑
k=1

ake.

If
∑n

k=1 ak 6= 0 then e ∈ span
{
h(λk, e)

}n
k=1

, so that span
{
h(λk, e)

}n
k=1

is T -invariant

by (2). This subspace is finite-dimensional, so that T has an eigenvalue, which is a

contradiction. Therefore
∑n

k=1 ak = 0, so that a1 = −
∑n

k=2 ak.

Using the Replacement Procedure we obtain

0 =
n∑
k=1

akh(λk, e) =
(
−

n∑
k=2

ak

)
h(λ1, e) +

n∑
k=2

akh(λk, e)

=
n∑
k=2

ak
(
h(λk, e)− h(λ1, e)

)
=

n∑
k=2

ak(λ
−1
1 − λ−1

k )h
(
λk, h(λ1, e)

)
.

By the induction hypothesis, the set
{
h
(
λk, h(λ1, e)

)}n
k=2

is linearly independent, hence

ak(λ
−1
1 − λ−1

k ) = 0 for any 2 6 k 6 n. It follows immediately that ak = 0 for any

1 6 k 6 n, and this concludes the proof. �

This gives us a natural way to try to construct almost invariant half-spaces. Indeed,

suppose that T has no eigenvectors. Let e ∈ X such that e 6= 0, and let (λn) be a

sequence of distinct elements of ρ(T )−1. Put Y =
[
h(λn, e)

]∞
n=1

. Then Y is almost

invariant by Lemma 2.1 and infinite-dimensional by Lemma 2.3. However, the difficult

part is to show that Y is infinite codimensional. Even passing to subsequences might

not help, as there are sequences whose every subsequence spans a dense subspace (see,

e.g., [8, page 58] and also [2]).

3. Weighted shift operators

In this section we give a sufficient condition for a quasinilpotent operator to have

almost invariant half-spaces (Theorem 3.2). As an application, we show in Corollary 3.4
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that quasinilpotent weighted shifts on `p or c0 have invariant half-spaces. In particular,

every Donoghue operator has an almost invariant half-space.

Recall that a sequence (xi) in a Banach space is called minimal if xk /∈ [xi]i 6=k for

every k, (see also [4, section 1.f]). It is easy to see that this is equivalent to saying that

for every k, the biorthogonal functional x∗k defined on span{xi} by x∗k
(∑n

i=0 αixi
)

= αk

is bounded.

We will use the following numerical lemma.

Lemma 3.1. Given a sequence (ri) of positive reals, there exists a sequence (ci) of

positive reals such that the series
∑∞

i=0 ciri+k converges for every k.

Proof. For every i take ci = 1
2i min{ 1

r1
, . . . , 1

r2i
}. For every i > k we have k+ i 6 2i, so

that ciri+k 6 1
2i . It follows that

∞∑
i=0

ciri+k 6
k−1∑
i=0

ciri+k +
∞∑
i=k

1
2i < +∞.

�

Theorem 3.2. Let X be a Banach space and T ∈ L(X) satisfying the following con-

ditions:

(i) T has no eigenvalues.

(ii) The unbounded component of ρ(T ) contains {z ∈ C : 0 < |z| < ε} for some

ε > 0.

(iii) There is a vector whose orbit is a minimal sequence.

Then T has an almost invariant half-space.

Proof. Let e ∈ X be such that (T ie)∞i=0 is minimal. For each i put xi = T ie. Then

for each k, the biorthogonal functional x∗k defined on spanxi by x∗k
(∑n

i=0 αixi
)

= αk

is bounded. Let rk = ‖x∗k‖. Let (ci) be a sequence of positive real numbers as in

Lemma 3.1, so that βk :=
∑∞

i=0 ciri+k < +∞ for every k. By making ci’s even smaller,

if necessary, we may assume that i
√
ci → 0.

Consider a function F : C → C defined by F (z) =
∑∞

i=0 ciz
i. Evidently, F is

entire. Observe that we may assume that the set
{
z ∈ C : F (z) = 0

}
is infinite.

Indeed, by the Picard Theorem there exists a negative real number d such that the set{
z ∈ C : F (z) = d

}
is infinite. Now replace c0 with c0 − d. This doesn’t affect our

other assumptions on the sequence (ci).
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Fix a sequence of distinct complex numbers (λn) such that F (λn) = 0 for every n.

Since F is non-constant, the sequence (λn) has no accumulation points. Hence, |λn| →
+∞.

Note that (ii) can be restated as follows: ρ(T )−1 has a connected component C such

that 0 ∈ C and C contains a neighbourhood of ∞. Thus by passing to a subsequence

of λn’s and relabeling, if necessary, we can assume that λn ∈ C for all n.

Observe that the condition λn ∈ ρ(T )−1 for every n implies that h(λn, e) is defined

for each n. Put Y = [h(λn, e)]
∞
n=1. Then Y is almost invariant under T by Lemma 2.1

and dimY = ∞ by Lemma 2.3. We will prove that Y is actually a half-space by

constructing a sequence of linearly independent functionals (fn) such that every fn

annihilates Y .

For every k = 0, 1, . . . , put Fk(z) = zkF (z). Let’s write Fk(z) in the form of Taylor

series, Fk(z) =
∑∞

i=0 c
(k)
i zi. Then

c
(k)
i =

{
0 if i < k, and

ci−k if i > k.

Define a functional fk on span{T ie}∞i=0 via fk(T
ie) = c

(k)
i . Since T has no eigenvalues,

the orbit of T is linearly independent thus fk is well-defined. We will show now that

fk is bounded. Let x ∈ span{T ie}∞i=0, then x =
∑n

i=0 x
∗
i (x)T ie for some n, so that

|fk(x)| =
∣∣∣fk( n∑

i=0

x∗i (x)T ie
)∣∣∣ 6 ( n∑

i=0

‖x∗i ‖c
(k)
i

)
‖x‖

=
( n∑
i=k

rici−k

)
‖x‖ 6

( ∞∑
i=k

rici−k

)
‖x‖ = βk‖x‖,

so that ‖fk‖ 6 βk. Hence, fk can be extended by continuity to a bounded functional

on [T ie]∞i=1, and then by the Hahn-Banach Theorem to a bounded functional on all

of X.

Now we show that each fk annihilates Y . Fix k. Recall that for each λ ∈ ρ(T )−1

such that |λ| < 1
r(T )

we have h(λ, e) = λ
∞∑
i=0

λiT ie. Therefore

fk
(
h(λ, e)

)
= fk

(
λ

∞∑
i=0

λiT ie
)

= λ

∞∑
i=0

λic
(k)
i = λFk(λ) = λk+1F (λ).

for every λ ∈ C such that |λ| < 1
r(T )

(recall 0 ∈ C). The map λ 7→ h(λ, e) and, therefore,

the map λ 7→ fk
(
h(λ, e)

)
, is analytic on the set ρ(T )−1. Therefore, by the principle

of uniqueness of analytic function, the functions fk
(
h(λ, e)

)
and λk+1F (λ) must agree
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on C. Since λn ∈ C for all n, we have fk
(
h(λn, e)

)
= λk+1

n F (λn) = 0 for all n. Thus, Y

is annihilated by every fk.

It is left to prove the linear independence of {fk}∞k=1. Observe that fk 6= 0 for

all k since fk(T
ie) 6= 0 for i > k. Suppose that fN =

∑N−1
k=M akfk with aM 6= 0.

However fN(TMe) = 0 by definition of fN while
∑N−1

k=M akfk(T
Me) = aMc0 6= 0,

contradiction. �

Remark 3.3. Note that condition (ii) of Theorem 3.2 is satisfied by many important

classes of operators. For example, it is satisfied if σ(T ) is finite (in particular, if T is

quasinilpotent) or if 0 belongs in the unbounded component of ρ(T ).

Corollary 3.4. Suppose that X = `p (1 6 p <∞) or c0 and T ∈ L(X) is a weighted

right shift operator with weights converging to zero but not equal to zero. Then both T

and T ∗ have almost invariant half-spaces.

Proof. It can be easily verified that T is quasinilpotent. Clearly, T has no eigenvalues,

and the orbit of e1 is evidently a minimal sequence. By Theorem 3.2 and Remark 3.3,

T has almost invariant half-spaces. Finally, Proposition 1.7 yields almost invariant

half-spaces for T ∗. �

The following statement is a special case of Corollary 3.4.

Corollary 3.5. If D is a Donoghue operator then both D and D∗ have almost invariant

half-spaces.

Recall that a subset D of C is called a cone if D is closed under addition and

multiplication by positive scalars.

Remark 3.6. Condition (ii) in Theorem 3.2 can be weakened as follows: instead of

requiring that ρ(T ) contains a punctured disk centered at zero, we may only require

that it contains a non-trivial sector of this disk, i.e., the intersection of the punctured

disk with a non-empty open cone. Equivalently, ρ(T )−1 has a connected component

C such that 0 ∈ C, and there exists an open cone D in C and M > 0 such that{
z ∈ D : |z| > M

}
⊆ C. Indeed, suppose that such D and M exist. Choose ν in

this cone with |ν| = M . Also, suppose that, as in the proof of Theorem 3.2, we have

already found a sequence (λm) of zeros of F . The set {M λm

|λm|}
∞
m=0 has an accumulation

point, say µ. By passing to a subsequence, we may assume that M λm

|λm| → µ. Note

that the spectrum of µ
ν
T is obtained by rotating the spectrum of T . Thus ρ

(
µ
ν
T
)−1

has a connected component C ′ such that 0 ∈ C ′ and there exists an open cone D′ in C
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which contains a neighborhood of µ and
{
z ∈ D′ : |z| > M

}
⊆ C ′. Thus by passing

to a subsequence of (λm) we can assume that λm ∈ C ′ for all m. Replace in the proof

T with µ
ν
T . Note that this doesn’t affect the assumptions on the operator and the

definitions of ci’s, F , and λm’s. Finally, multiplying an operator by a non-zero number

does not affect its almost invariant half-spaces.

Note that every operator T with σ(T ) ⊆ R satisfies this weaker version of condi-

tion (ii). In particular, it is satisfied by self-adjoint operators on Hilbert spaces.

Corollary 3.7. Suppose that T ∈ L(X) such that T has no eigenvectors, σ(T ) ⊆
R, and there is a vector whose orbit is a minimal sequence. Then T has an almost

invariant half-space.

4. Non-quasinilpotent operators

In this section we will modify the argument of Theorem 3.2 to extend its statement

to another class of operators having non-zero spectral radius. It is a standard fact that

if (xi) is a minimal sequence then 1
‖x∗n‖

= dist
(
xn, [xi]i 6=n

)
for every n.

Theorem 4.1. Let X be a Banach space and T ∈ L(X) be an operator with r(T ) 6 1

having no eigenvectors. Let e ∈ X; put xn = T ne for n ∈ N. If (xn) is a minimal

sequence and
∑∞

n=1
‖x∗n‖
n

<∞ then T has an almost invariant half-space.

Proof. Let D stand for the unit disk in C. For a sequence (λn) ⊂ D such that

(3)
∞∑
n=1

(
1− |λn|

)
<∞.

the corresponding Blaschke product is defined by

(4) B(z) =
∞∏
n=1

|λn|
λn

λn − z
1− λnz

.

It is well known that B is a bounded analytic function on D with zeros exactly at

(λn). According to [5, Theorem 2] we can choose a sequence (λn) ⊂ D satisfying (3)

such that B(n)(0)
n!

= O
(

1
n+1

)
. Thus B(n)(0) = O

(
n!
n+1

)
. For m ∈ N set Fm(z) = zmB(z).

Obviously the functions (Fm) are linearly independent. It follows from

Fm(z) = zmB(z) =
∞∑
n=0

B(n)(0)

n!
zn+m =

∞∑
n=m

B(n−m)(0)

(n−m)!
zn

that

(5) F (n)
m (0) =

{
0 for n < m, and

n!
(n−m)!

B(n−m)(0) 6 C n!
n−m+1

for n > m.
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Put Y = [h(λn, e)]
∞
n=1. By Lemma 2.1, Y is almost invariant under T and dimY =

∞ by Lemma 2.3. As in the proof of Theorem 3.2, we will show that under the

conditions of the Theorem 4.1 there is a sequence of linearly independent functionals

annihilating Y .

Define a linear functional fm on span{xn} by fm(xn) = F
(n)
m (0)
n!

. Since T has no

eigenvectors, the orbit of T is linearly independent, so fm is well defined.

Let’s prove that fm is bounded for every m ∈ N. Take any x :=
∑
αnxn ∈ span{xn}.

Using (5), we obtain

∣∣fm(x)
∣∣ =

∣∣∣∑αn
F

(n)
m (0)

n!

∣∣∣ 6 C
∑
n>m

|αn|
n−m+ 1

= C
∑
n>m

|x∗n(x)|
n−m+ 1

6 C‖x‖
∑
n>m

‖x∗n‖
n−m+ 1

.

It suffices to show that
∑

n>m
‖x∗n‖

n−m+1
<∞. Note that

m(n−m+ 1) = (m− 1)(n−m) + n > n

whenever n > m, so that
∞∑
n=m

‖x∗n‖
n−m+ 1

= m
∞∑
n=m

‖x∗n‖
m(n−m+ 1)

6 m
∞∑
n=m

‖x∗n‖
n

<∞

by assumption. Hence, fm is bounded, so that we can extend it to X. Observe that if

|λ| < 1 and m ∈ N then (1) yields that

fm
(
h(λ, e)

)
= fm

(
λ
∞∑
n=0

λnT ne
)

= λ
∞∑
n=0

λn
F

(n)
m (0)

n!
= λFm(λ),

Thus fm
(
h(λk, e)

)
= λkFm(λk) = 0 for all m, k ∈ N, hence each fm annihilates Y .

Finally, the set {fm}∞m=1 is linearly independent. Indeed if it was linearly dependent

and a certain linear non-zero linear combination of them vanished, then by writing the

Taylor expansion of each Fm on D we see that the same linear combination of Fm’s

would vanish. This is a contradiction, since the Fm’s are linear independent. �

5. Invariant subspaces of operators with many almost invariant

half-spaces

Let X be a Banach space and T : X → X be a bounded operator. It is well known

that if every subspace of X is invariant under T then T must be a multiple of the

identity. In this section we will obtain a result of the same spirit for almost invariant

half-spaces.
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Proposition 5.1. Let X be a Banach space and T ∈ L(X). Suppose that every half-

space of X is almost invariant under T . Then T has a non-trivial invariant subspace

of finite codimension. Iterating, one can get a chain of such subspaces.

Proof. Let’s assume that T has no non-trivial invariant subspaces of finite codimen-

sion. We will now construct by an inductive procedure a half-space that is not almost

invariant under T .

Put Y0 = X. Fix an arbitrary non-zero z1 ∈ X. Choose f1 ∈ X∗ such that f1(z1) 6= 0

and put Y1 = ker f1.

Since Y1 is not invariant under T , there exists z2 ∈ Y1 such that f1(Tz2) 6= 0. Define

g2 ∈ Y ∗1 by g2(y) = f1(Ty). Let P1 be a projection along span {z1} onto Y1. Define

f2 = g2◦P1 ∈ X∗. Now put Y2 = ker g2 = ker f2∩Y1. Then we have Y1 = Y2⊕span {z2}.
Since f1(Ty) = g2(y) = 0 for all y ∈ Y2, we have TY2 ⊆ Y1.

Continuing inductively with this procedure, we will build sequences (zn) of vectors,

(fn) of functionals, and (Yn) of subspaces such that

(i) zn+1 ∈ Yn,

(ii) Yn+1 = ker fn+1 ∩ Yn =
n+1⋂
k=1

ker fk,

(iii) fn+1(y) = fn(Ty) for all y ∈ Yn,

(iv) Yn = Yn+1 ⊕ span {zn+1},
(v) TYn+1 ⊆ Yn, and

(vi) fn(zi) = 0⇔ i 6= n,

for all n ∈ N. Indeed, suppose we have defined Yi, zi, and fi, 1 6 i 6 n, satisfying (i)–

(vi). Define gn+1 ∈ Y ∗n by gn+1(y) = fn(Ty) and put fn+1 = gn+1 ◦ Pn ∈ X∗ where Pn

is a projection along [zk]
n
k=1 onto Yn

(
take Pn(x) = x−

∑n
k=1

fk(x)
fk(zk)

zk
)
. Again, there is

zn+1 ∈ Yn such that fn+1(zn+1) 6= 0. Put Yn+1 = ker fn+1 ∩ Yn. Evidently, (i)–(vi) are

then satisfied.

It is easily seen that the sequence (zk) is linearly independent. Put Z = [z2k]
∞
k=1.

Clearly dimZ = ∞. It is also easy to see that f2k−1|Z = 0 for all k ∈ N. Thus, Z is

actually a half-space.

By assumption of the theorem, there exists F with dimF = m < ∞ such that

TZ ⊆ Z+F . For each k ∈ N, pick uk ∈ Z and vk ∈ F such that Tz2k = uk+vk. By (iv),

we have z2k ∈ Y2k−1. Applying (iii) with n = 2k − 1, we get f2k(z2k) = f2k−1(Tz2k).

Now (vi) yields f2k−1(Tz2k) 6= 0.

On the other hand, if 1 6 i < k then z2k ∈ Y2i−1, so that analogously f2i(z2k) =

f2i−1(Tz2k). Therefore f2i−1(Tz2k) = 0.
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Since f2j−1|Z = 0 for all j ∈ N, we have f2j−1(uk) = 0 for all j and k. Therefore,

for all k ∈ N and 1 6 i < k, we have f2k−1(vk) 6= 0 and f2i−1(vk) = 0. This implies,

however, that F is infinite dimensional. �

Using a similar technique, we obtain the following result.

Proposition 5.2. For all T ∈ L(X) and n ∈ N there exists a subspace Y of X with

codimY = n and a vector eY ∈ X such that TY ⊆ Y + span{eY }.

Proof. Proof is by induction on n. For n = 1, any hyperplane satisfies the conclusion

of the statement. Suppose that the statement is valid for all k < n.

Suppose that X contains a subspace Y of codimension j 6 n that is invariant

under T . If j = n then we are done. If j < n then by the induction assumption we

can find Z ⊆ Y such that Z has codimension n − j in Y and TZ ⊆ Z + [y] for some

y ∈ Y . Indeed, consider the restriction T ′ of T to Y . Now we apply the induction

assumption to T ′ and to n − j and produce a subspace Z ⊆ Y invariant under T of

codimension j. But then Z has codimension n in X and still TZ ⊆ Z + [y], so that Z

satisfies the conclusion.

Therefore, we can assume that Z has no invariant subspaces of codimension k 6 n.

Thus we can use the argument of Proposition 5.1 to show that there exist (finite)

sequences of vectors (zk)
n+1
k=1 , functionals (fk)

n
k=1, and subspaces (Yk)

n
k=1 such that the

conditions (i)–(vi) are satisfied. In particular, we get:

Yn =
n⋂
k=1

ker fk,

and (fk) are linearly independent, so that codimYn = n. Finally, by (vi) and (iv), we

have TYn ⊆ Yn−1 = Yn + [zn]. �
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