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Abstract. We characterize the Archimedean vector lattices that admit a positively ho-

mogeneous continuous function calculus by showing that the following two conditions are

equivalent for each n-tuple x = (x1, . . . , xn) ∈ Xn, where X is an Archimedean vector

lattice and n ∈ N:
• there is a vector lattice homomorphism Φx : Hn → X such that

Φx(π
(n)
i ) = xi (i ∈ {1, . . . , n}),

where Hn denotes the vector lattice of positively homogeneous, continuous, real-

valued functions de�ned on Rn and π(n)
i : Rn → R is the ith coordinate projection;

• there is a positive element e ∈ X such that e > |x1| ∨ · · · ∨ |xn| and the norm

‖x‖e = inf
{
λ ∈ [0,∞) : |x| 6 λe

}
,

de�ned for each x in the order ideal Ie of X generated by e, is complete when

restricted to the closed sublattice of Ie generated by x1, . . . , xn.

Moreover, we show that a vector space which admits a `su�ciently strong' Hn-function

calculus for each n ∈ N is automatically a vector lattice, and we explore the situation in

the non-Archimedean case by showing that some non-Archimedean vector lattices admit

a positively homogeneous continuous function calculus, while others do not.

1. Introduction and main results

Yudin [8] and Krivine [4] showed that every Banach lattice admits a positively homogeneous

continuous function calculus. We refer to [5, Theorem 1.d.1] for an easily accessible, precise

statement of this result, which is a fundamental tool in the study of Banach lattices, for

instance allowing the de�nition of elements of the form
(∑n

j=1|xj|p
)1/p

for p ∈ (1,∞) when-

ever n ∈ N and x1, . . . , xn belong to some Banach lattice. Buskes, de Pagter and van Rooij

[2, Theorem 3.7] have subsequently generalized the theorem of Yudin and Krivine to the

class of uniformly complete Archimedean vector lattices.
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After most of the research that this note is based upon was carried out, we learnt of a

recent paper [3] of Buskes and Schwanke in which they study completions of Archimedean

vector lattices with respect to a given non-empty collection D of positively homogeneous

continuous functions. Of particular interest in the present context is their �nal result [3,

Corollary 3.18], which states that for each such collection D, every Archimedean vector

lattice has a D-completion, and it is unique up to vector lattice isomorphism.

The main aim of our work is to characterize the Archimedean vector lattices that admit a

positively homogeneous continuous function calculus; we refer to Theorem 1.3 for a precise

statement of this result. In combination with Proposition 3.1(i), it will in particular show

that this class is strictly larger than that of uniformly complete Archimedean vector lattices.

In the context of the work [3] of Buskes and Schwanke discussed above, Theorem 1.3 can

be viewed as providing an alternative and perhaps more explicit description of the class of

D-complete Archimedean vector lattices in the special case where D is the collection of all

positively homogeneous continuous functions.

In order to state our results precisely, we must introduce some notation and terminol-

ogy. All vector spaces and lattices are assumed to be over the �eld R of real numbers.

A real-valued function f de�ned on a vector space X is positively homogeneous if

f(λx) = λf(x) for each λ ∈ [0,∞) and each x ∈ X. For n ∈ N, we denote by Hn the

vector lattice of positively homogeneous, continuous, real-valued functions de�ned on Rn.

The ith coordinate projection

π
(n)
i : (t1, . . . , tn) 7→ ti, Rn → R,

clearly belongs to Hn for each i ∈ {1, . . . , n}.
We can now clarify what we mean by `a positively homogeneous continuous function

calculus' for a general vector lattice.

De�nition 1.1. A vector latticeX admits a positively homogeneous continuous func-

tion calculus if, for each n ∈ N and each n-tuple x = (x1, . . . , xn) ∈ Xn, there is a vector

lattice homomorphism Φx : Hn → X such that

Φx(π
(n)
i ) = xi (i ∈ {1, . . . , n}). (1.1)

In this case, we refer to the map x 7→ Φx as a positively homogeneous continuous

function calculus for X.

We shall next introduce a condition which turns out to be equivalent to admitting a

positively homogeneous continuous function calculus. It involves the following standard
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notions. For a positive element e of a vector lattice X, the set

Ie =
{
x ∈ X : |x| 6 λe for some λ ∈ [0,∞)

}
(1.2)

is the order ideal generated by e, and

‖x‖e = inf
{
λ ∈ [0,∞) : |x| 6 λe

}
(x ∈ Ie) (1.3)

de�nes a lattice seminorm on Ie. Suppose that X is Archimedean , that is, whenever

x, y ∈ X+ satisfy nx 6 y for each n ∈ N, it follows that x = 0. Then ‖ · ‖e is a norm on Ie.

De�nition 1.2. Let X be an Archimedean vector lattice. Then:

• X is uniformly complete if, for each positive element e ∈ X, the order ideal Ie
is complete with respect to the norm ‖ · ‖e given by (1.3);

• X is �nitely uniformly complete if, for each n ∈ N and x1, . . . , xn ∈ X, there

is a positive element e ∈ X such that e > |x1| ∨ · · · ∨ |xn| and the norm ‖ · ‖e is

complete on the closed sublattice of
(
Ie, ‖ · ‖e

)
generated by x1, . . . , xn.

The �rst of these two notions is standard, whereas the second appears to be new. Clearly,

the �rst implies the second; Proposition 3.1(i) below will show that they are not equivalent.

We are now ready to state our two main results.

Theorem 1.3. Let X be an Archimedean vector lattice. Then X admits a positively ho-

mogeneous continuous function calculus if and only if X is �nitely uniformly complete.

When X is �nitely uniformly complete, the positively homogeneous continuous function

calculus is unique (in the sense that for each n ∈ N and x ∈ Xn, there is only one vector

lattice homomorphism Φx : Hn → X which satis�es (1.1)), and

Φ(Φx(f1),...,Φx(fm))(g) = Φx

(
g ◦ (f1 × · · · × fm)

)
(1.4)

for each m,n ∈ N, x ∈ Xn, f1, . . . , fm ∈ Hn and g ∈ Hm, where f1 × · · · × fm : Rn → Rm

is the function de�ned by

(f1 × · · · × fm)(t) =
(
f1(t), . . . , fm(t)

)
(t ∈ Rn). (1.5)

Writing f(x) for Φx(f), (1.4) takes the more suggestive form

g
(
f1(x), . . . , fm(x)

)
=
(
g ◦ (f1 × · · · × fm)

)
(x). (1.6)

Our other main result states that a vector space which admits a `su�ciently strong'

function calculus is automatically a vector lattice with a positively homogeneous continuous

function calculus.



4 N. J. LAUSTSEN AND V. G. TROITSKY

Theorem 1.4. Let X be a vector space and suppose that, for each n ∈ N and each n-tuple

x ∈ Xn, there is a linear map Φx : Hn → X which satis�es conditions (1.1) and (1.4).

Then X admits the structure of a vector lattice, and x 7→ Φx is a positively homogeneous

continuous function calculus for X with respect to this lattice structure. Moreover, X is

Archimedean if and only if ker Φx is closed in Hn for each n ∈ N and x ∈ Xn, where Hn

is given the topology obtained by identifying it with C(S`n∞) (see (2.2) for details of this

identi�cation).

The notion of (�nite) uniform completeness does not extend easily to the non-Archi-

medean setting. Indeed, if x, y ∈ X+ \ {0} satisfy nx 6 y for each n ∈ N, then for any

e ∈ X+ such that e > x ∨ y, we have ‖x‖e = 0 because nx 6 y 6 e for each n ∈ N. Hence
‖ · ‖e is only a seminorm (even when it is restricted to the sublattice generated by x and y).

This raises the question whether a non-Archimedean vector lattice may admit a positively

homogeneous continuous function calculus. We shall address it in Section 3, where on the

one hand Proposition 3.1(ii) will show that certain non-Archimedean vector lattices do ad-

mit a positively homogeneous continuous function calculus which satis�es (1.4), while on

the other Example 3.4 will exhibit a non-Archimedean vector lattice that does not admit

any positively homogeneous continuous function calculus. We observe that the former of

these two results implies that the condition in the �nal clause of Theorem 1.4 is not always

satis�ed.

2. Proofs of Theorems 1.3 and 1.4

For a topological space K, we write C(K) for the vector lattice of continuous, real-valued

functions de�ned on K. This is of course a Banach lattice with respect to the supremum

norm ‖ · ‖∞ when K is a compact Hausdor� space. We use the symbol 1 to denote the

constant function 1 de�ned on K.

Lemma 2.1. Let T : C(K)→ X be a vector lattice homomorphism, where K is a compact

Hausdor� space and X is an Archimedean vector lattice, and set e = T (1) ∈ X+. Then

T [C(K)] ⊆ Ie, T is continuous with operator norm at most 1 when regarded as a map

into
(
Ie, ‖ · ‖e

)
, and the restriction of the norm ‖ · ‖e to T [(C(K)] is complete.

Proof. Each f ∈ C(K) satis�es |f | 6 ‖f‖∞1, so as T is a vector lattice homomorphism,

we have

‖f‖∞e = T
(
‖f‖∞1

)
> T

(
|f |
)

=
∣∣T (f)

∣∣. (2.1)

This shows that T (f) ∈ Ie with
∥∥T (f)

∥∥
e
6 ‖f‖∞, so that T [C(K)] ⊆ Ie and T is continuous

with operator norm at most 1 when regarded as a map into
(
Ie, ‖ · ‖e

)
.
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We shall verify that the restriction of the norm ‖ · ‖e to T [(C(K)] is complete by showing

that each absolutely convergent series
∑∞

n=1 xn in
(
T [(C(K)], ‖ · ‖e

)
converges. It su�ces

to consider the case where xn is positive for each n ∈ N because ‖ · ‖e is a lattice norm.

Then we can take fn ∈ C(K)+ such that Tfn = xn. Set gn = fn ∧ ‖xn‖e1 and observe

that ‖gn‖∞ 6 ‖xn‖e, so that the series
∑∞

n=1 gn is absolutely convergent and therefore

convergent in C(K); denote its sum by g. We see that Tgn = xn ∧ ‖xn‖ee = xn because

xn 6 ‖xn‖ee. Since T is continuous and linear, we conclude that the series
∑∞

n=1 xn
converges to Tg in

(
T [C(K)], ‖ · ‖e

)
, and the result follows. �

For n ∈ N, the unit sphere

S`n∞ =
{

(t1, . . . , tn) ∈ Rn : max
16j6n

|tj| = 1
}

of the Banach space `n∞ is a compact metric space with respect to the metric d induced by

the norm, that is,

d
(
(s1, . . . , sn), (t1, . . . , tn)

)
= max

16j6n
|sj − tj|.

It is well known and easy to see that the restriction map

f 7→ f�S`n∞
(2.2)

is a vector lattice isomorphism ofHn onto C(S`n∞), where we recall thatHn denotes the sub-

lattice of C(Rn) of positively homogeneous functions. Hence we may identify Hn with the

Banach lattice C(S`n∞). Although we do not require this result, we remark that de Pagter

and Wickstead [6, Proposition 5.3] have shown that this Banach lattice is isomorphic to

the free Banach lattice on n generators.

The following result can be viewed as a generalization of [2, Theorem 3.7].

Proposition 2.2. Let X be an Archimedean vector lattice, and let x = (x1, . . . , xn) ∈ Xn

for some n ∈ N. Then the following three conditions are equivalent:

(a) there is a vector lattice homomorphism Φx : Hn → X which satis�es (1.1);

(b) the norm ‖ · ‖e is complete on the closed sublattice of
(
Ie, ‖ · ‖e

)
generated by the

elements x1, . . . , xn, where e = |x1| ∨ · · · ∨ |xn|;
(c) there is a positive element e ∈ X such that e > |x1| ∨ · · · ∨ |xn| and the norm ‖ · ‖e

is complete on the closed sublattice of
(
Ie, ‖ · ‖e

)
generated by x1, . . . , xn.

When one and hence all three of these conditions are satis�ed, the vector lattice homomor-

phism Φx : Hn → X satisfying (1.1) is unique.

Proof. Throughout the proof we shall freely identify Hn with C(S`n∞) via the map (2.2).
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(a)⇒(b). Suppose that Φx : C(S`n∞) → X is a vector lattice homomorphism which sa-

tis�es (1.1). Then, applying Φx to the identity∣∣π(n)
1 �S`n∞

∣∣ ∨ · · · ∨ ∣∣π(n)
n �S`n∞

∣∣ = 1, (2.3)

we obtain

Φx(1) =
∣∣Φx(π

(n)
1 �S`n∞

)
∣∣ ∨ · · · ∨ ∣∣Φx(π(n)

n �S`n∞
)
∣∣ = |x1| ∨ · · · ∨ |xn| = e.

Hence Lemma 2.1 implies that Φx[C(S`n∞)] ⊆ Ie and the restriction of the norm ‖ · ‖e
to Φx[C(S`n∞)] is complete, and therefore (b) is satis�ed because x1, . . . , xn ∈ Φx[C(S`n∞)].

(b)⇒(c). This is clear.

(c)⇒(a). Suppose that e ∈ X+ satis�es e > |x1| ∨ · · · ∨ |xn| and the norm ‖ · ‖e is

complete on the closed sublattice Xx of Ie generated by x1, . . . , xn. Then
(
Xx, ‖ · ‖e

)
is a

Banach lattice containing x1, . . . , xn, so the Yudin/Krivine Theorem as it is stated in [5,

Theorem 1.d.1] implies that there is a vector lattice homomorphism Φx : Hn → Xx which

satis�es (1.1). This remains true if we consider Φx as a map into the larger codomain X,

so that (a) is satis�ed.

To prove the �nal clause, suppose that (a)�(c) hold, and let Φx : C(S`n∞) → X be a

vector lattice homomorphism which satis�es (1.1). Then Φx is uniquely determined on the

sublattice of C(S`n∞) generated by π
(n)
1 �S`n∞

, . . . , π
(n)
n �S`n∞

. The Stone�Weierstrass Theorem

implies that this sublattice is dense in C(S`n∞) because it separates the points of S`n∞ and

contains 1 by (2.3). As in the proof of (a)⇒(b) above, we see that Lemma 2.1 applies; it

shows that Φx is continuous when regarded as an operator into
(
Ie, ‖ · ‖e

)
, and therefore Φx

is uniquely determined on all of C(S`n∞). �

Proof of Theorem 1.3. The equivalence of conditions (a) and (c) in Proposition 2.2 implies

immediately that X admits a positively homogeneous continuous function calculus if and

only if it is �nitely uniformly complete.

To prove (1.4), we begin by remarking that for m,n ∈ N and f1, . . . , fm ∈ Hn, the

function f1× · · · × fm given by (1.5) is continuous and the composition g ◦ (f1× · · · × fm)

is positively homogeneous for each g ∈ Hm. Hence, for x ∈ Xn, we have a map

g 7→ Φx

(
g ◦ (f1 × · · · × fm)

)
, Hm → X.

This map is a vector lattice homomorphism which maps π
(m)
i to Φx(fi) for each i ∈

{1, . . . ,m} because π(m)
i ◦ (f1× · · ·× fm) = fi, and it is therefore equal to Φ(Φx(f1),...,Φx(fm))

by the uniqueness statement in the last clause of Proposition 2.2. �

We shall next prove Theorem 1.4. This will involve the following easy and undoubtedly

well-known lemma.



VECTOR LATTICES ADMITTING A P.H.C. FUNCTION CALCULUS 7

Lemma 2.3. Let Y be a sublattice of a normed vector lattice X, and suppose that

Y ∩X+ ⊆ Y.

Then Y is closed.

Proof. Let y ∈ Y . Since Y is a sublattice, y± ∈ Y , and they are both positive by their

de�nitions. Hence y± ∈ Y by the assumption, and therefore y = y+ − y− ∈ Y . �

Proof of Theorem 1.4. Throughout this proof, we shall write f(x) instead of Φx(f). In

this notation, the linearity of Φx translates into the statement

(f + λg)(x) = f(x) + λ g(x) (n ∈ N, x ∈ Xn, f, g ∈ Hn, λ ∈ R), (2.4)

while (1.1) becomes

π
(n)
i (x1, . . . , xn) = xi (n ∈ N, i ∈ {1, . . . , n}, x1, . . . , xn ∈ X), (2.5)

and (1.6) replaces (1.4).

The map σ : (t1, t2) 7→ t1 ∨ t2, R2 → R, belongs to H2, so that σ(x1, x2) de�nes an

element of X for each pair x1, x2 ∈ X. Consequently, we may de�ne a relation 6 on X by

x1 6 x2 ⇐⇒ σ(x1, x2) = x2 (x1, x2 ∈ X).

Our �rst aim is to show that this relation is a partial order on X.

Reflexivity. The fact that σ(t, t) = t for every t ∈ R implies that σ◦
(
π

(2)
1 ×π

(2)
1

)
= π

(2)
1

in H2. Hence, by (1.6) and (2.5), we obtain

σ(x, x) = x (x ∈ X), (2.6)

which shows that x 6 x for each x ∈ X, as required.

Anti-symmetry. Since σ(t1, t2) = σ(t2, t1) for every pair t1, t2 ∈ R, we have σ =

σ ◦ (π
(2)
2 × π

(2)
1 ) in H2. Combining this identity with (1.6) and (2.5), we see that

σ(x1, x2) = σ
(
π

(2)
2 (x1, x2), π

(2)
1 (x1, x2)

)
= σ(x2, x1) (x1, x2 ∈ X). (2.7)

Now suppose that x1, x2 ∈ X satisfy x1 6 x2 and x2 6 x1. Then σ(x1, x2) = x2 and

σ(x2, x1) = x1, so that x1 = x2 by (2.7), as required.

Transitivity. The associativity of ∨ means that σ
(
t1, σ(t2, t3)

)
= σ

(
σ(t1, t2), t3

)
for

every t1, t2, t3 ∈ R. Hence the identity

σ ◦
(
π

(3)
1 ×

(
σ ◦ (π

(3)
2 × π

(3)
3 )
))

= σ ◦
((
σ ◦ (π

(3)
1 × π

(3)
2 )
)
× π(3)

3

)
holds in H3, from which we deduce that

σ
(
x1, σ(x2, x3)

)
= σ

(
σ(x1, x2), x3

)
(x1, x2, x3 ∈ X) (2.8)
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by (1.6) and (2.5). Now suppose that x1, x2, x3 ∈ X satisfy x1 6 x2 and x2 6 x3. Then we

have σ(x1, x2) = x2 and σ(x2, x3) = x3. Substituting these identities into (2.8), we obtain

σ(x1, x3) = σ(x2, x3) = x3, which shows that x1 6 x3, as required.

Having thus established that 6 is a partial order, we shall next show that each pair

(x1, x2) of elements of X has a supremum with respect to 6, and it is given by σ(x1, x2).

To this end, we observe that (2.8) and (2.6) imply that

σ
(
x1, σ(x1, x2)

)
= σ

(
σ(x1, x1), x2

)
= σ(x1, x2),

so that x1 6 σ(x1, x2). A similar argument, using also (2.7), shows that x2 6 σ(x1, x2), and

therefore σ(x1, x2) is an upper bound of the pair (x1, x2). To show that it is the least upper

bound, suppose that y ∈ X satis�es x1 6 y and x2 6 y, so that σ(x1, y) = y = σ(x2, y).

Then we have σ(x1, x2) 6 y because (2.8) implies that

σ
(
σ(x1, x2), y

)
= σ

(
x1, σ(x2, y)

)
= σ(x1, y) = y,

as required.

It remains to verify that 6 is positively homogeneous and translation-invariant.

Positive homogeneity. Suppose that x1, x2 ∈ X satisfy x1 6 x2, and let λ ∈ [0,∞).

The positive homogeneity of σ translates into the identity λσ = σ ◦ (λπ
(2)
1 × λπ

(2)
2 ) in H2,

and therefore we have

σ(λx1, λx2) = (λσ)(x1, x2) = λσ(x1, x2) = λx2

by (1.6), (2.4) and (2.5). This shows that λx1 6 λx2.

Translation invariance. Since σ(t1+t3, t2+t3) = σ(t1, t2)+t3 for every t1, t2, t3 ∈ R,
we have

σ ◦
(
(π

(3)
1 + π

(3)
3 )× (π

(3)
2 + π

(3)
3 )
)

= σ ◦ (π
(3)
1 × π

(3)
2 ) + π

(3)
3 (2.9)

in H3. Let x1, x2, x3 ∈ X, suppose that x1 6 x2, and set x = (x1, x2, x3). Then we have

σ(x1 + x3, x2 + x3) =
(
σ ◦ (π

(3)
1 × π

(3)
2 ) + π

(3)
3

)
(x) by (1.6), (2.4), (2.5) and (2.9)

= σ(x1, x2) + x3 by (1.6), (2.4) and (2.5)

= x2 + x3 because x1 6 x2,

so that x1 + x3 6 x2 + x3, as required.

This completes the proof that X is a vector lattice with respect to the order 6.

To show that Φx is a vector lattice homomorphism for every n ∈ N and x ∈ Xn, take

f, g ∈ Hn. Then f ∨ g = σ ◦ (f × g) in Hn, so that (f ∨ g)(x) = σ(f(x), g(x)) by (1.6).

Recalling the convention that Φx(h) = h(x) for h ∈ Hn and that the supremum in X is
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given by x1 ∨ x2 = σ(x1, x2) for x1, x2 ∈ X, we see that this means that Φx preserves

suprema. Hence the conclusion follows because Φx is linear by assumption.

We shall prove the forward implication (⇒) of the �nal statement by contraposition.

Suppose that ker Φx is not closed in Hn for some n ∈ N and x ∈ Xn. By Lemma 2.3,

we can choose f ∈ H+
n ∩ ker Φx \ ker Φx, which implies that Φx(f) ∈ X+ \ {0}. For each

m ∈ N, take fm ∈ ker Φx such that ‖f − fm‖∞ 6 1/m. Then we have m(f − fm) 6 1, so

that

mΦx(f) = Φx

(
m(f − fm)

)
6 Φx(1) (m ∈ N).

This shows that X is not Archimedean.

Conversely, suppose that ker Φx is closed in Hn for each n ∈ N and x ∈ Xn. Further,

suppose that x1, x2 ∈ X+ satisfymx1 6 x2 for eachm ∈ N, and set x = (x1, x2) ∈ X2. The

Fundamental Isomorphism Theorem implies that the vector lattices Φx[H2] and H2/ ker Φx

are isomorphic. Since the order ideal ker Φx is closed by the assumption, the quotient

H2/ ker Φx is a Banach lattice and thus Archimedean. Therefore Φx[H2] is also Archime-

dean, from which we conclude that x1 = 0 because x1, x2 ∈ Φx[H2]. �

3. Examples

The purpose of this section is to present three examples that complement Theorems 1.3

and 1.4. The �rst of these examples shows that there are �nitely uniformly complete

Archimedean vector lattices which are not uniformly complete, while the second and third

explore the situation for non-Archimedean vector lattices by demonstrating that some

non-Archimedean vector lattices admit a positively homogeneous continuous function cal-

culus satisfying (1.4), whereas others do not admit any positively homogeneous continuous

function calculus.

Since the �rst two of these examples work in the generality of an arbitrary in�nite

compact Hausdor� space, we have chosen to formally label them `proposition' instead of

`example', even though they serve as illustrative examples in the context of this paper.

Moreover, as they share a common framework and have several parts of their proofs in

common, we shall state them as a single proposition rather than two.

Proposition 3.1. Let K be a compact Hausdor� space of in�nite cardinality, and choose

an accumulation point s0 ∈ K of a countably in�nite subset of K.

(i) The set

X =
{
f ∈ C(K) : f�U is constant for some neighbourhood U of s0

}
(3.1)
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is a proper, dense sublattice of C(K) and thus Archimedean, and X is �nitely

uniformly complete, but not uniformly complete.

(ii) The set

J =
{
f ∈ C(K) : f�U = 0 for some neighbourhood U of s0

}
is an order ideal of C(K); it is not closed, and the quotient C(K)/J is a non-Archi-

medean vector lattice which admits a positively homogeneous function calculus that

satis�es (1.4).

Proof. Being in�nite, K contains a countably in�nite subset S, and the compactness of K

implies that S has an accumulation point s0 ∈ K.

(i). It is straightforward to verify that X is a sublattice of C(K).

To show that X 6= C(K), we begin by enumerating S \ {s0} as {sm : m ∈ N}, where
sm 6= sn for m 6= n. Then, for each m ∈ N, Urysohn's Lemma implies that there is a

continuous function hm : K → [0, 1] with hm(s0) = 0 and hm(sm) = 1. De�ne

h =
∞∑

m=1

2−mhm ∈ C(K)+. (3.2)

For each neighbourhood U of s0, we can choose m ∈ N such that sm ∈ U , and we have

h(sm) >
1

2m
> 0 = h(s0). (3.3)

This shows that h�U is not constant, so that h /∈ X.

Next, to establish the density of X in C(K), we shall prove that for each ε > 0 and

f ∈ C(K), we can �nd a neighbourhood U of s0 and a function g ∈ C(K) such that

‖f − g‖∞ 6 ε and g(u) = f(s0) (u ∈ U). (3.4)

Indeed, since f is continuous at s0, we can choose an open neighbourhood V of s0 such

that |f(v) − f(s0)| 6 ε for each v ∈ V . Being compact, K is regular, so there is an

open neighbourhoood U of s0 with U ⊆ V . Urysohn's Lemma then produces a continuous

function k : K → [0, 1] such that k(u) = 1 for each u ∈ U and k(t) = 0 for each t ∈ K \ V .
Set g = f(s0)k + (1− k)f ∈ C(K). Clearly g(u) = f(s0) for each u ∈ U , and∣∣f(v)− g(v)

∣∣ =
∣∣f(v)− f(s0)

∣∣ ∣∣k(v)
∣∣ 6 ε (v ∈ V ) and g�K\V = f�K\V ,

which implies that (3.4) is satis�ed.

SinceX contains the constant functions, the order ideal I1 ofX generated by the constant

function 1 is equal to X, and the associated norm ‖ · ‖1 given by (1.3) is equal to the su-

premum norm ‖ · ‖∞. This implies that
(
I1, ‖ · ‖1

)
is not complete because X is a proper,

dense subset of C(K), and therefore X is not uniformly complete.
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To verify that X is �nitely uniformly complete, let f1, . . . , fn ∈ X for some n ∈ N, and
take a neighbourhood U of s0 such that the restrictions f1�U , . . . , fn�U are all constant. We

may suppose that f1, . . . , fn are not all 0, so that c := max16j6n‖fj‖∞ > 0. Then e := c1

satis�es e > |f1| ∨ · · · ∨ |fn| and ‖g‖e = c−1‖g‖∞ for each g ∈ X. Moreover, the set

Y =
{
f ∈ C(K) : f�U is constant

}
is a closed sublattice of C(K) such that e, f1, . . . , fn ∈ Y ⊆ X. In particular, the norm ‖ · ‖e
is complete on Y and therefore also on the closed sublattice generated by f1, . . . , fn. This

proves that X is �nitely uniformly complete.

(ii). It is easily checked that J is an order ideal of C(K). We claim that its closure is

given by

J =
{
f ∈ C(K) : f(s0) = 0

}
. (3.5)

Indeed, the set on the right-hand side is clearly a closed set containing J , and (3.4) implies

that each f ∈ C(K) with f(s0) = 0 can be approximated arbitrarily well by elements of J .

This proves (3.5), from which we deduce that J is not closed because (3.3) shows that the

function h given by (3.2) belongs to J \ J .
Set Z = C(K)/J , and let Q : C(K) → Z be the quotient homomorphism. To prove

that Z is not Archimedean, set gn = (h − 1
n
1)+ ∈ C(K)+ for each n ∈ N, where h is

de�ned by (3.2), as above. We see that gn ∈ J because h is continuous with h(s0) = 0.

Hence the inequality 1 > n(h− gn) implies that Q(1) > nQ(h) for each n ∈ N. However,
Q(h) 6= 0 because h /∈ J , and therefore Z is not Archimedean.

Being a Banach lattice, C(K) has a positively homogeneous continuous function calculus

which satis�es (1.4). More precisely, in the particular case of a C(K)-space, the positively

homogeneous continuous function calculus takes the following explicit form:(
Φf (g)

)
(t) = g

(
f1(t), . . . , fn(t)

)
(t ∈ K) (3.6)

for n ∈ N, f = (f1, . . . , fn) ∈ C(K)n and g ∈ Hn, as it is easy to see.

Let R : Z → C(K) be a right inverse map of Q. (We can choose R to be linear if we

wish, but not in general a vector lattice homomorphism, of course.) Then, for each n ∈ N
and z = (z1, . . . , zn) ∈ Zn, we can de�ne a vector lattice homomorphism by

Φz = Q ◦ Φ(Rz1,...,Rzn) : Hn → Z. (3.7)

It satis�es (1.1) because

Φz(π
(n)
i ) = Q

(
Φ(Rz1,...,Rzn)(π

(n)
i )
)

= Q(Rzi) = zi (i ∈ {1, . . . , n}).
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To verify that Φz satis�es (1.4), let m ∈ N, f1, . . . , fm ∈ Hn and g ∈ Hm, and set

ki = Φ(Rz1,...,Rzn)(fi) ∈ C(K) for i ∈ {1, . . . ,m}. Then, on the one hand, (3.7) implies that

Φ(Φz(f1),...,Φz(fm))(g) = Q
(
Φ(RQk1,...,RQkm)(g)

)
, (3.8)

while on the other,

Φz

(
g ◦ (f1 × · · · × fm)

)
= Q

(
Φ(k1,...,km)(g)

)
(3.9)

by (3.7) and (1.4). Since RQki − ki ∈ kerQ = J for each i ∈ {1, . . . ,m}, we can �nd a

neighbourhood U of s0 such that

RQki(u) = ki(u) (u ∈ U, i ∈ {1, . . . ,m}).

Hence, using (3.6) twice, we obtain(
Φ(RQk1,...,RQkm)(g)

)
(u) = g

(
RQk1(u), . . . , RQkm(u)

)
= g
(
k1(u), . . . , km(u)

)
=
(
Φ(k1,...,km)(g)

)
(u) (u ∈ U),

so that Φ(RQk1,...,RQkm)(g)−Φ(k1,...,km)(g) ∈ J . Combining this with (3.8)�(3.9), we conclude

that (1.4) holds. �

Remark 3.2. (i) The reader who prefers a more concrete example may simply con-

sider K = [0, 1] and s0 = 0 in Proposition 3.1.

(ii) The hypothesis that s0 is the accumulation point of a countably in�nite subset of K

is necessary, as the example K = [0, ω1] (the set of ordinals no greater than the

�rst uncountable ordinal ω1, endowed with the order topology) and s0 = ω1 shows:

it is a standard fact that the set X given by (3.1) is equal to C(K) in this case.

Our �nal example involves the following notion. For a locally compact Hausdor� space Ω,

C0(Ω) =
{
f ∈ C(Ω) : the set {t ∈ Ω : |f(t)| > ε} is compact for each ε > 0

}
is a Banach lattice with respect to the pointwise de�ned operations and the supremum

norm ‖ · ‖∞. The evaluation map at a point t0 ∈ Ω is denoted by εt0 , that is,

εt0 : f 7→ f(t0), C0(Ω)→ R.

We require the following result, which is probably well-known. However, as we have been

unable to �nd it in the literature, we include a proof, which is similar to that of [1,

Theorem 2.33].

Lemma 3.3. Let Ω be a locally compact Hausdor� space. A map ϕ : C0(Ω) → R is a

vector lattice homomorphism if and only if ϕ = c εt0 for some c ∈ [0,∞) and t0 ∈ Ω.
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Proof. Each map of the form c εt0 , where c ∈ [0,∞) and t0 ∈ Ω, is clearly a vector lattice

homomorphism.

Conversely, suppose that ϕ : C0(Ω) → R is a vector lattice homomorphism, and denote

by Cc(Ω) the norm-dense subspace of C0(Ω) consisting of all compactly supported functions.

The restriction of ϕ to Cc(Ω) is a positive linear functional, so the Riesz�Markov Theorem

(see for instance [7, p. 352]) implies that

ϕ(f) =

∫
f dµ (f ∈ Cc(Ω))

for some inner regular Borel measure µ on Ω. Let suppµ be the support of µ, de�ned as

in [7, Exercise 24, pp. 351�352]. If suppµ = ∅, then ϕ = 0, so we can take c = 0 and

any point t0 ∈ Ω. Otherwise the result will follow provided that we can show that suppµ

consists of a single point. Assume the contrary, so that suppµ contains two distinct points,

say t1 and t2. Since Ω is locally compact and Hausdor�, there are disjoint open, relatively

compact subsets U1 and U2 of Ω such that ti ∈ Ui for i ∈ {1, 2}. By Urysohn's Lemma,

we can �nd continuous functions f1, f2 : Ω → [0, 1] such that fi(ti) = 1 and fi vanishes

on Ω\Ui for i ∈ {1, 2}. Note that f1, f2 ∈ Cc(Ω) because U1 and U2 are relatively compact.

Hence, on the one hand, we have

ϕ(f1) ∧ ϕ(f2) =

∫
f1 dµ ∧

∫
f2 dµ > 0

because t1, t2 ∈ suppµ. On the other, f1∧f2 = 0 implies that ϕ(f1)∧ϕ(f2) = ϕ(f1∧f2) = 0,

which is clearly absurd. �

Example 3.4. Endow the vector space X = R2 with the lexicographic order:

(s1, s2) 6 (t1, t2) ⇐⇒ (s1 < t1) or (s1 = t1 and s2 6 t2) (s1, s2, t1, t2 ∈ R), (3.10)

and set

x1 = (1, 0) ∈ X+, x2 = (0, 1) ∈ X+ and x = (x1, x2) ∈ X2. (3.11)

Then X is a vector lattice which is not Archimedean because nx2 6 x1 for each n ∈ N.
We claim that X does not admit any positively homogeneous continuous function cal-

culus. More precisely, we shall show that for the particular choice of x given by (3.11), no

vector lattice homomorphism Φx : H2 → X with Φx(π
(2)
i ) = xi for i ∈ {1, 2} exists.

Assume the contrary, and set ϕi = π
(2)
i ◦Φx : H2 → R for i ∈ {1, 2}. The de�nition (3.10)

implies that the �rst coordinate projection π
(2)
1 : X → R is a vector lattice homomorphism,

and consequently ϕ1 is a vector lattice homomorphism. Recalling the identi�cation (2.2)
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of H2 with C(S`2∞) and using Lemma 3.3, we deduce that ϕ1 = c1 εs for some c1 ∈ [0,∞)

and s ∈ S`2∞ . Equation (2.3) in the case n = 2 implies that

c1 = ϕ1(1) = π
(2)
1 ◦ Φx

(
|π(2)

1 | ∨ |π
(2)
2 |
)

= π
(2)
1

(∣∣Φx(π
(2)
1 )
∣∣ ∨ ∣∣Φx(π

(2)
2 )
∣∣) = π

(2)
1

(
|x1| ∨ |x2|

)
= π

(2)
1 (x1) = 1.

Now the calculation

π
(2)
i (s) = ϕ1(π

(2)
i ) = π

(2)
1

(
Φx(π

(2)
i )
)

= π
(2)
1 (xi) = δi,1 (i ∈ {1, 2})

shows that s = (1, 0) = x1, and consequently ϕ1 = εx1 .

Although π
(2)
2 is not a vector lattice homomorphism, the restriction of ϕ2 to kerϕ1 is a

vector lattice homomorphism because

ϕ2(f ∨ g) = π
(2)
2

(
Φx(f) ∨ Φx(g)

)
= π

(2)
2

(
(0, ϕ2(f)) ∨ (0, ϕ2(g))

)
= ϕ2(f) ∨ ϕ2(g)

for every f, g ∈ kerϕ1. Since we can identify kerϕ1 = {f ∈ C(S`2∞) : f(x1) = 0} with

C0

(
S`2∞ \ {x1}

)
, Lemma 3.3 implies that ϕ2 �kerϕ1= c2 εt for some c2 ∈ [0,∞) and t =

(t1, t2) ∈ S`2∞ \ {x1}. We have π
(2)
2 ∈ kerϕ1 because π

(2)
2 (x1) = 0, and therefore

c2t2 = ϕ2(π
(2)
2 ) = π

(2)
2

(
Φx(π

(2)
2 )
)

= π
(2)
2 (x2) = 1,

so that c2, t2 > 0. Take λ ∈ (t1/t2,∞) and de�ne f = π
(2)
1 ∨ (λπ

(2)
2 )− π(2)

1 ∈ C(S`2∞). Then

on the one hand we have

ϕ2(f) = π
(2)
2

(
Φx(f)

)
= π

(2)
2

(
x1 ∨ (λx2)− x1

)
= 0,

while on the other f ∈ kerϕ1 because f(x1) = 0, and hence

ϕ2(f) = c2f(t) = c2(t1 ∨ (λt2)− t1) = c2(λt2 − t1) > 0.

This is clearly absurd, and this contradiction completes the proof of our claim that X does

not admit a positively homogeneous continuous function calculus.
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