
SIMPLE CONSTRUCTIONS OF FBL(A) AND FBL[E]

V.G. TROITSKY

Abstract. We show that the free Banach lattice FBL(A) may

be constructed as the completion of FVL(A) with respect to the

maximal lattice seminorm ν on FVL(A) with ν(a) 6 1 for all

a ∈ A. We present a similar construction for the free Banach

lattice FBL[E] generated by a Banach space E.

1. Preliminaries

The free vector lattice over a set A, denoted by FVL(A), goes back

to [Bir42]. More recently, a free Banach lattice FBL(A) has been in-

troduced and investigated; see [dPW15, ART18]. It has been folklore

knowledge (and was implicitly mentioned in [dPW15, ART18]) that

the norm of FBL(A) is, in some sense, the greatest lattice norm one

can put on FVL(A). In this note, we make this idea into a formal

statement and provide a direct proof. This yields an alternative way

of constructing FBL(A) and FBL[E].

Let A be a subset of a vector lattice X. We say that X is a free vector

lattice over A if every function ϕ : A → Y , where Y is an arbitrary

vector lattice, extends uniquely to a lattice homomorphism ϕ̃ : X → Y .

For every set A there is a vector lattice X which contains A and is free

over A. It is easy to see that if X1 and X2 are both free over A then

there exists a lattice isomorphism between X1 and X2 which fixes A.

So a free vector lattice over X is determined uniquely up to a lattice

isomorphism; we denote it by FVL(A).

We outline below a construction of FVL(A) and some of its basic

properties; we refer the reader to [Ble73, dPW15] for further details on
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free vector lattices. Given a set A. For every a ∈ A, we write δa for the

“evaluation functional” of a in the following sense: δa : RA → R with

δa(x) = x(a) for x : A→ R. Then FVL(A) may be identified with the

sublattice of RRA
generated by {δa : a ∈ A}. Identifying a with δa,

one may view A as a subset of FVL(A). Since FVL(A) is a sublattice

RRA
, and the latter is Archimedean, FVL(A) is also Archimedean.

It is easy to see that if a1, . . . , an ∈ A then FVL
(
{a1, . . . , an}

)
may be

identified with the sublattice of FVL(A) generated by a1, . . . , an. For

every f ∈ FVL(A) there exists a finite subset {a1, . . . , an} of A such

that f belongs to the sublattice of FVL(A) generated by a1, . . . , an.

Furthermore, if A itself is finite, say, A = {a1, . . . , an}, then
∨n
k=1|ak|

is a strong unit in FVL(A).

By a lattice-linear expression, we mean an expression formed by

finitely many variables and linear and lattice operations. For example,

F (t1, t2, t3) = t1∧ t2 + t1∨ (2t3) is a lattice-linear expression. Clearly, a

lattice-linear expression F (t1, . . . , tn) induces a positively homogeneous

function from Rn to R. On the other hand, if X is an Archimedean

vector lattice and x1, . . . , xn ∈ X, plugging x1, . . . , xn into F instead

of t1, . . . , tn, we can define F (x1, . . . , xn) as an element of X in a nat-

ural way. We say that F (x1, . . . , xn) is a lattice-linear combination of

x1, . . . , xn. If two lattice-linear expressions F and G agree as func-

tions from Rn to R then F (x1, . . . , xn) = G(x1, . . . , xn). Actually, the

calculus of lattice-linear expressions in X is a restriction of Krivine’s

function calculus; see, e.g., [BdPvR91, Proposition 3.6]. Observe that

the sublattice of X generated by x1, . . . , xn is exactly the set of all

lattice-linear combinations of x1, . . . , xn. FVL(A) may be interpreted

as the set of all formal lattice-linear expressions of elements of A, where

we identify two expressions if they agree as functions from Rn to R.

For example, we identify a1 + (a2 ∨ a3) and (a1 + a2) ∨ (a1 + a3). For-

mally speaking, FVL(A) consists of equivalence classes of lattice-linear

expressions.

In [dPW15], the concept of a free Banach lattice was introduced.

Let A be a subset of a Banach lattice X. We say that X is a free

Banach lattice over a set A if every function ϕ : A → Y , where Y

is an arbitrary Banach lattice, satisfying supa∈A
∥∥ϕ(a)

∥∥ 6 1 extends
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uniquely to a lattice homomorphism ϕ̃ : X → Y with ‖ϕ̃‖ 6 1. It was

shown in [dPW15] that for every set A there is a Banach lattice X

which contains A and is free over A. Again, it is easy to see that such

a Banach lattice is unique up to a lattice isometry which fixes A; we

denote it by FBL(A). It is easy to see that A is a subset of the unit

sphere of FBL(A).

An alternative way of constructing FBL(A) was recently obtained

in [ART18]. In [ART18], the authors also prove that for every Banach

space E there exists a Banach lattice FBL[E] such that E is a closed

subspace of FBL[E] and every bounded operator T : E → Y , where Y

is an arbitrary Banach lattice, extends uniquely to a lattice homomor-

phism T̃ : FBL[E]→ Y with ‖T̃‖ = ‖T‖. It is easy to see that FBL[E]

is unique up to a lattice isometry preserving E. Furthermore, it can

be easily verified that FBL(A) = FBL
[
`1(A)]

]
for any set A.

In this note, we present constructions of FBL(A) and FBL[E] that

are somewhat easier than those in [dPW15, ART18].

2. A construction of FBL(A)

Theorem 2.1. There exists a maximal lattice seminorm ν on FVL(A)

with ν(a) 6 1 for all a ∈ A. It is a lattice norm, and the completion of

FVL(A) with respect to it is FBL(A).

Proof. As before, we identify FVL(A) with the sublattice of RRA
gen-

erated by {δa : a ∈ A}; by identifying a ∈ A with δa ∈ FVL(A), we

may view A as a subset of FVL(A). Let N be the set of all lattice

seminorms ν on FVL(A) such that ν(δa) 6 1 for every a ∈ A.

Let x ∈ RA such that |x(a)| 6 1 for all a ∈ A. For f ∈ FVL(A), put

νx(f) =
∣∣f(x)

∣∣. It can be easily verified that νx ∈ N .

For f ∈ FVL(A), put ‖f‖ = sup
ν∈N

ν(f). We claim that this is a lattice

norm on FVL(A).

First, observe that ‖f‖ is finite. Find a1, . . . , an ∈ A such that

f ∈ FVL
(
{a1, . . . , an}

)
. Since |δa1| + · · · + |δan| is a strong unit in

FVL
(
{a1, . . . , an}

)
, there exists λ ∈ R+ such that

|f | 6 λ
(
|δa1|+ · · ·+ |δan|

)
.
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It follows that ν(f) 6 λn for every ν ∈ N , hence ‖f‖ 6 λn <∞.

It is straightforward that ‖·‖ is positively homogeneous. To verify

the triangle inequality, let f, g ∈ FVL(A) and fix ε > 0. There exists

ν ∈ N such that

‖f + g‖ − ε < ν(f + g) 6 ν(f) + ν(g) 6 ‖f‖+ ‖g‖.

It follows that ‖f + g‖ 6 ‖f‖+ ‖g‖.
Suppose that f 6= 0. Find a1, . . . , an ∈ A such that f ∈ FVL

(
{a1, . . . , an}

)
.

It follows that there is x ∈ RA such that f(x) 6= 0 and supp x ⊆
{a1, . . . , an}. Without loss of generality, scaling x if necessary, |x(a)| 6
1 for all a ∈ A. Then νx(f) =

∣∣f(x)
∣∣ > 0, hence ‖f‖ 6= 0.

If |f | 6 |g| in FVL(A) then ν(f) 6 ν(g) for every ν ∈ N , hence

‖f‖ 6 ‖g‖. Thus, ‖·‖ is a lattice norm on FVL(A).

Let X be the completion of
(
FVL(A), ‖·‖

)
. We claim that X is a

free Banach lattice over A.

Let ϕ : A→ Y , where Y is a Banach lattice and supa∈A‖ϕ(a)‖ 6 1.

Then ϕ extends to a lattice homomorphism ϕ̂ : FVL(A) → Y . It

suffices to show that ‖ϕ̂‖ 6 1; it would follow that ϕ̂ extends to a

contractive lattice homomorphism ϕ̃ from X to Y . For f ∈ FVL(A),

put ν(f) =
∥∥ϕ̂(f)

∥∥. It is easy to see that ν ∈ N , hence
∥∥ϕ̂(f)

∥∥ =

ν(f) 6 ‖f‖.
Uniqueness of the extension follows from the fact that any lattice

homomorphism extension of ϕ to X has to agree with ϕ̂ on FVL(A),

hence with ϕ̃ on X as FVL(A) is dense in X. �

It follows that the FBL norm is the greatest norm on FVL(A) such

that ‖a‖ 6 1 for every a ∈ A.

3. A construction of FBL[E]

For a Banach lattice E and a vector x ∈ E, the evaluation functional

x̂ ∈ E∗∗ is defined by x̂(x∗) = x∗(x) for x∗ ∈ X∗. In particular, x̂ is a

function from E∗ to R, i.e., an element of RE∗
.

Theorem 3.1. Let E be a Banach space; let L be the sublattice of RE∗

generated by {x̂ : x ∈ E}. There is a maximal lattice seminorm ν
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on L satisfying ν(x̂) 6 ‖x‖ for all x ∈ E. It is a lattice norm; the

completion of L with respect to it is FBL[E].

Proof. It is easy to see that the map x ∈ E 7→ x̂ ∈ L is a linear

embedding, so that we may view E as a linear subspace of L. Let M
be the set of all lattice seminorms ν on L such that ν(x̂) 6 ‖x‖ for all

x ∈ E.

For every x∗ ∈ BE∗ , define νx∗(f) =
∣∣f(x∗)

∣∣ for f ∈ L. It is

easy to see that νx∗ is a seminorm on L. Note that νx∗ is a lattice

seminorm because |f |(x∗) =
∣∣f(x∗)

∣∣. Furthermore, if x ∈ E then

νx∗(x̂) =
∣∣x̂(x∗)

∣∣ =
∣∣x∗(x)

∣∣ 6 ‖x‖, so that νx∗ ∈M.

For f ∈ L, define |||f ||| = supν∈M ν(f). We claim that |||·||| is a

lattice norm on L. First, we will show that it is finite. Let f ∈ L.

Then f is a lattice-linear expression of x̂1, . . . , x̂n for some x1, . . . , xn
in E. Since lattice-linear functions are positively homogeneous, we

may assume without loss of generality that x1, . . . , xn ∈ BE. Clearly,

|x̂1| + · · · + |x̂n| is a strong unit in the sublattice of L generated by

x̂1, . . . , x̂n. It follows that |f | 6 λ
(
|x̂1|+ · · ·+ |x̂n|

)
for some λ > 0, so

that ν(f) 6 λn for every ν ∈M, hence |||f ||| 6 λn <∞.

It is straightforward that |||·||| is a lattice seminorm on L. Suppose

that 0 6= f ∈ L. Then f(x∗) 6= 0 for some x∗ ∈ E∗. Since f is positively

homogeneous, we may assume without loss of generality that x∗ ∈ BE∗ .

Then |||f ||| > νx∗(f) =
∣∣f(x∗)

∣∣ > 0. Thus, |||·||| is a lattice norm on L.

Note also that |||x̂||| = ‖x‖ for all x ∈ E, so that we may view |||·|||
as an extension of ‖·‖ from E to L. Indeed, ν(x̂) 6 ‖x‖ for every

ν ∈M, hence |||x̂||| 6 ‖x‖. On the other hand, let x∗ ∈ BE∗ such that

x∗(x) = ‖x‖; then |||x̂||| > νx∗(x̂) =
∣∣x̂(x∗)

∣∣ = ‖x‖.
Let X be the completion of

(
L, |||·|||

)
. We claim that X = FBL[E].

Let T : E → Y be a linear operator from E to an arbitrary Ba-

nach lattice Y with ‖T‖ = 1. We define T̂ : L → Y as follows. Let

f ∈ L. Then f is a lattice-linear combination of x̂1, . . . , x̂n for some

x1, . . . , xn ∈ E. Without loss of generality, x1, . . . , xn are linearly in-

dependent in E. We define T̂ f to be the same lattice-linear combina-

tion of Tx1, . . . , Txn in Y . That is, suppose that f = F (x̂1, . . . , x̂n)

for some formal lattice-linear expression F (t1, . . . , tn); we then put
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T̂ f = F (Tx1, . . . , Txn). Note that T̂ f is well-defined, i.e., does not

depend on a particular choice of a lattice-linear combination represent-

ing f . Indeed, suppose that f = G(x̂1, . . . , x̂n), where G(t1, . . . , tn)

is another formal lattice-linear expressions. Since L is a sublattice of

RE∗
, the lattice operations in L are point-wise, hence

f(x∗) = F
(
x̂1(x

∗), . . . , x̂n(x∗)
)

= F
(
x∗(x1), . . . , x

∗(xn)
)

in R for every x∗ ∈ X∗. Similarly, f(x∗) = G
(
x∗(x1), . . . , x

∗(xn)
)
. Since

x1, . . . , xn are linearly independent, this means that F (t1, . . . , tn) =

G(t1, . . . , tn) for all t1, . . . , tn ∈ R. Therefore, T̂ is well-defined.

The definition of T̂ immediately yields that it is a lattice homomor-

phism. Clearly, T̂ extends T in the sense that T̂ x̂ = Tx for every

x ∈ E. It follows that ‖T̂‖ > 1. We claim that that ‖T̂‖ = 1. Indeed,

for f ∈ L, define ν(f) = ‖T̂ f‖ in Y . It is easy to see that ν is a lattice

seminorm on L. For every x ∈ X, one has ν(x̂) = ‖T̂ x̂‖ = ‖Tx‖ 6 ‖x‖.
It follows that ν ∈ M, so that ‖T̂ f‖ = ν(f) 6 |||f ||| , so that ‖T̂‖ 6
1. It follows that T̂ extends to a contractive lattice homomorphism

T̃ : X → Y .

Again, uniqueness of the extension follows from the fact that any

contractive lattice homomorphism that extends T to X has to agree

with T̂ on L and, therefore, with T̃ on X. �
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