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Abstract. This note is a nonstandard analysis version of the paper “When are ultra-
powers of normed lattices discrete or continuous?” by W. Wnuk and B. Wiatrowski.

In Functional Analysis, the ultrapower and the nonstandard analysis approaches are

equivalent: results obtained by one of these two methods can usually be translated into

the other. In this short note, we present nonstandard analysis versions of the main

results of [WW06], where they were originally presented in the ultrapower language. We

believe that in this new form the ideas of the proofs are more transparent.

Suppose that E is a Archimedean vector lattice. Recall that an element 0 < e ∈ E is

said to be discrete if 0 6 x 6 e implies that x is a scalar multiple of e or, equivalently, the

interval [0, e] doesn’t contain two non-zero disjoint vectors (see [LZ71, Theorem 26.4]).

We say that E is continuous if it contains no discrete elements and discrete if every

non-zero positive vector dominates a discrete element or, equivalently, E has a complete

disjoint system consisting of discrete elements (see [AB03, p. 40]).

If E is a normed space. We will write ∗E for the nonstandard extension of E and Ê

for the nonstandard hull of E. We refer the reader to [Em00, Wol97] for terminology

and details on nonstandard hulls of normed spaces and normed lattices. We will use the

following standard fact (see, e.g., [Tr04, Remark 4]).

Lemma 1. Suppose that E is a normed lattice and a, x, b ∈ ∗E such that a 6 b and

â 6 x̂ 6 b̂. Then there exists y ∈ ∗E such that y ≈ x and a 6 y 6 b.

The following is a variant of Theorem 2.2 of [WW06]:

Theorem 2. Let E be a normed lattice. Then the following are equivalent.

(i) Ê is continuous;

(ii) ∃ε > 0 ∀x ∈ E+ ∃a, b ∈ [0, x] a ⊥ b and ‖a‖ ∧ ‖b‖ > ε‖x‖.

Proof. (i)⇒(ii) Suppose that E fails (ii). Let ε be a positive infinitesimal. Then there

exists a vector x ∈ ∗E+ such that for all a, b ∈ ∗[0, x] with a ⊥ b we have ‖a‖∧‖b‖ < ε‖x‖.
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Without loss of generality, ‖x‖ = 1. Let â, b̂ ∈ [0, x̂] and â ⊥ b̂. By Lemma 1, we may

assume that a, b ∈ ∗[0, x]. Furthermore, â ⊥ b̂ implies that a ∧ b ≈ 0. Let u = a− a ∧ b
and v = b − a ∧ b, then u, v ∈ ∗[0, x] and u ⊥ v, so that ‖u‖ ∧ ‖v‖ < ε. It follows that

either ‖u‖ or ‖v‖ is infinitesimal. Say, u ≈ 0. Then a = u+ a∧ b is infinitesimal as well,

so that â = 0. Thus, x̂ is discrete in Ê.

(ii)⇒(i) Suppose that (ii) holds for some (standard) ε > 0. Let x̂ ∈ Ê+, show that

x̂ is not discrete. Without loss of generality, x ∈ ∗E+ and ‖x‖ = 1. By (ii), we can

find a, b ∈ ∗[0, x] such that a ⊥ b and ‖a‖ ∧ ‖b‖ > ε. It follows that neither a nor b

is infinitesimal, so that â, b̂ are two non-zero disjoint elements of [0, x̂]. Hence, x̂ is not

discrete. �

Recall that a normed lattice satisfies the Fatou property if 0 6 xα ↑ x implies

‖xα‖ → ‖x‖, and the σ-Fatou property if 0 6 xn ↑ x implies ‖xn‖ → ‖x‖, see,

e.g., [AB03]. We will use the following simple lemma.

Lemma 3. Suppose that E is a normed lattice with the Fatou property and S ⊆ E+

such that x = supS exists. Then for every ε > 0 there is a finite subset γ of S such that

‖sup γ‖ > (1− ε)‖x‖. The same is true for countable families if E satisfies the σ-Fatou

property.

Proof. Let Λ be the collection of all finite subsets of S, ordered by inclusion. Clearly,

supα∈Λ supα = x. Let xα = supα, then (xα)α∈Λ is an increasing net and 0 6 xα ↑ x.

It follows from the Fatou property that ‖xα‖ → ‖x‖, so that there exists γ ∈ Λ with

‖xγ‖ > (1− ε)‖x‖.
Now suppose that E satisfies σ-Fatou property and x =

∨∞
i=1 xi. Let zk =

∨k
i=1 xi, then

xk 6 zk 6 x, so that x =
∨∞
k=1 zk. Now σ-Fatou property guarantees that ‖zk‖ → ‖x‖,

so that (1− ε)‖x‖ 6 ‖zm‖ = ‖x1 ∨ · · · ∨ xm‖ for some m. �

The following is a variant of Theorem 3.2 of [WW06].

Theorem 4. Let E be a discrete normed lattice, and D the set of all discrete elements

of norm one in E. If E satisfies the Fatou property (or the σ-Fatou property if D is

countable) then the discrete elements of Ê are exactly the positive scalar multiples of the

elements of {ê : e ∈ ∗D}.

Proof. It suffices to show that given x ∈ ∗E with ‖x‖ = 1, then x̂ is discrete in Ê if and

only if x̂ = ê for some e ∈ ∗D. Suppose that x̂ = ê for some e ∈ ∗D. Take any a ∈ ∗E
such that 0 6 â 6 x̂. By Lemma 1, we may assume that 0 6 a 6 e. It follows that a is

a scalar multiple of e, hence â is a scalar multiple of x̂.
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Conversely, suppose that x̂ is discrete in Ê. Note that the set D is a complete disjoint

system in E. By [AB03, Theorem 1.75], we have x = sup{Pex : e ∈ ∗D}. For every

e ∈ ∗D, the vector Pex is a scalar multiple of e, and 0 6 Pex 6 x, hence 0 6 P̂ex 6 x̂.

Therefore, if Pex is not infinitesimal for some e ∈ ∗D then x̂ is a scalar multiple of P̂ex,

hence of ê.

Suppose now that Pex is infinitesimal for every e ∈ ∗D. It follows from x = sup{Pex :

e ∈ ∗D} and Lemma 3 that there exist n ∈ ∗N and e1, . . . , en ∈ ∗D such that ‖z‖ > 3
4
,

where z =
∥∥Pe1x ∨ · · · ∨ Penx

∥∥. Choose k 6 n in ∗N so that
∥∥Pe1x ∨ · · · ∨ Pek−1

x
∥∥ < 1

4
,

while
∥∥Pe1x ∨ · · · ∨ Pek

x
∥∥ > 1

4
. Put u = Pe1x ∨ · · · ∨ Pek

x = Pe1x+ · · ·+ Pek
x. Then

1
4
6 ‖u‖ 6

∥∥Pe1x ∨ · · · ∨ Pek−1
x
∥∥+ ‖Pek

x‖ . 1
4
,

hence ‖u‖ ≈ 1
4
. Put v = z − u, then u ⊥ v, 0 6 u, v 6 z, and ‖u‖, ‖v‖ > 1

4
. Therefore,

û and v̂ are non-zero and disjoint elements of [0, x̂]; a contradiction. �

Corollary 5. Suppose that E is an AM-space with a strong unit, and H is a discrete

regular sublattice of E. Then Ĥ is discrete.

Proof. Let D be a complete disjoint system of discrete elements of norm one in H.

Suppose that x̂ ∈ Ĥ+. We will show that x̂ majorizes a discrete vector. Without

loss of generality, x ∈ ∗H+ with ‖x‖ = 1. Then x = sup{Pex : e ∈ ∗D} by [AB03,

Theorem 1.75]. Since E is an AM-space, we can apply Lemma 3 with ε ≈ 0 and find

n ∈ ∗N and e1, . . . , en ∈ ∗D such that
∥∥Pe1x ∨ · · · ∨ Penx

∥∥ > (1 − ε)‖x‖ ≈ 1. Again,

since E is an AM-space, we have
∥∥Pe1x ∨ · · · ∨ Penx

∥∥ = ‖Pe1x‖ ∨ · · · ∨ ‖Penx‖, so that

‖Pek
x‖ ≈ 1 for some k 6 n. Then P̂ek

x is non-zero. It is discrete by Theorem 4 because

Pek
x is a multiple of ek. Finally, notice that P̂ek

x 6 x̂. �
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