WHEN ARE THE NONSTANDARD HULLS OF NORMED LATTICES DISCRETE OR CONTINUOUS?

VLADIMIR G. TROITSKY

Abstract

This note is a nonstandard analysis version of the paper "When are ultrapowers of normed lattices discrete or continuous?" by W. Wnuk and B. Wiatrowski.

In Functional Analysis, the ultrapower and the nonstandard analysis approaches are equivalent: results obtained by one of these two methods can usually be translated into the other. In this short note, we present nonstandard analysis versions of the main results of [WW06], where they were originally presented in the ultrapower language. We believe that in this new form the ideas of the proofs are more transparent.

Suppose that E is a Archimedean vector lattice. Recall that an element $0<e \in E$ is said to be discrete if $0 \leqslant x \leqslant e$ implies that x is a scalar multiple of e or, equivalently, the interval $[0, e]$ doesn't contain two non-zero disjoint vectors (see [LZ71, Theorem 26.4]). We say that E is continuous if it contains no discrete elements and discrete if every non-zero positive vector dominates a discrete element or, equivalently, E has a complete disjoint system consisting of discrete elements (see [AB03, p. 40]).

If E is a normed space. We will write ${ }^{*} E$ for the nonstandard extension of E and \widehat{E} for the nonstandard hull of E. We refer the reader to [Em00, Wol97] for terminology and details on nonstandard hulls of normed spaces and normed lattices. We will use the following standard fact (see, e.g., [Tr04, Remark 4]).

Lemma 1. Suppose that E is a normed lattice and $a, x, b \in{ }^{*} E$ such that $a \leqslant b$ and $\hat{a} \leqslant \hat{x} \leqslant \hat{b}$. Then there exists $y \in{ }^{*} E$ such that $y \approx x$ and $a \leqslant y \leqslant b$.

The following is a variant of Theorem 2.2 of [WW06]:
Theorem 2. Let E be a normed lattice. Then the following are equivalent.
(i) \widehat{E} is continuous;
(ii) $\exists \varepsilon>0 \forall x \in E_{+} \exists a, b \in[0, x] \quad a \perp b$ and $\|a\| \wedge\|b\| \geqslant \varepsilon\|x\|$.

Proof. (i) \Rightarrow (ii) Suppose that E fails (ii). Let ε be a positive infinitesimal. Then there exists a vector $x \in{ }^{*} E_{+}$such that for all $a, b \in{ }^{*}[0, x]$ with $a \perp b$ we have $\|a\| \wedge\|b\|<\varepsilon\|x\|$.

Without loss of generality, $\|x\|=1$. Let $\hat{a}, \hat{b} \in[0, \hat{x}]$ and $\hat{a} \perp \hat{b}$. By Lemma 1 , we may assume that $a, b \in{ }^{*}[0, x]$. Furthermore, $\hat{a} \perp \hat{b}$ implies that $a \wedge b \approx 0$. Let $u=a-a \wedge b$ and $v=b-a \wedge b$, then $u, v \in{ }^{*}[0, x]$ and $u \perp v$, so that $\|u\| \wedge\|v\|<\varepsilon$. It follows that either $\|u\|$ or $\|v\|$ is infinitesimal. Say, $u \approx 0$. Then $a=u+a \wedge b$ is infinitesimal as well, so that $\hat{a}=0$. Thus, \hat{x} is discrete in \widehat{E}.
(ii) \Rightarrow (i) Suppose that (ii) holds for some (standard) $\varepsilon>0$. Let $\hat{x} \in \widehat{E}_{+}$, show that \hat{x} is not discrete. Without loss of generality, $x \in{ }^{*} E_{+}$and $\|x\|=1$. By (ii), we can find $a, b \in{ }^{*}[0, x]$ such that $a \perp b$ and $\|a\| \wedge\|b\| \geqslant \varepsilon$. It follows that neither a nor b is infinitesimal, so that \hat{a}, \hat{b} are two non-zero disjoint elements of $[0, \hat{x}]$. Hence, \hat{x} is not discrete.

Recall that a normed lattice satisfies the Fatou property if $0 \leqslant x_{\alpha} \uparrow x$ implies $\left\|x_{\alpha}\right\| \rightarrow\|x\|$, and the σ-Fatou property if $0 \leqslant x_{n} \uparrow x$ implies $\left\|x_{n}\right\| \rightarrow\|x\|$, see, e.g., [AB03]. We will use the following simple lemma.

Lemma 3. Suppose that E is a normed lattice with the Fatou property and $S \subseteq E_{+}$ such that $x=\sup S$ exists. Then for every $\varepsilon>0$ there is a finite subset γ of S such that $\|\sup \gamma\| \geqslant(1-\varepsilon)\|x\|$. The same is true for countable families if E satisfies the σ-Fatou property.

Proof. Let Λ be the collection of all finite subsets of S, ordered by inclusion. Clearly, $\sup _{\alpha \in \Lambda} \sup \alpha=x$. Let $x_{\alpha}=\sup \alpha$, then $\left(x_{\alpha}\right)_{\alpha \in \Lambda}$ is an increasing net and $0 \leqslant x_{\alpha} \uparrow x$. It follows from the Fatou property that $\left\|x_{\alpha}\right\| \rightarrow\|x\|$, so that there exists $\gamma \in \Lambda$ with $\left\|x_{\gamma}\right\| \geqslant(1-\varepsilon)\|x\|$.

Now suppose that E satisfies σ-Fatou property and $x=\bigvee_{i=1}^{\infty} x_{i}$. Let $z_{k}=\bigvee_{i=1}^{k} x_{i}$, then $x_{k} \leqslant z_{k} \leqslant x$, so that $x=\bigvee_{k=1}^{\infty} z_{k}$. Now σ-Fatou property guarantees that $\left\|z_{k}\right\| \rightarrow\|x\|$, so that $(1-\varepsilon)\|x\| \leqslant\left\|z_{m}\right\|=\left\|x_{1} \vee \cdots \vee x_{m}\right\|$ for some m.

The following is a variant of Theorem 3.2 of [WW06].
Theorem 4. Let E be a discrete normed lattice, and \mathcal{D} the set of all discrete elements of norm one in E. If E satisfies the Fatou property (or the σ-Fatou property if \mathcal{D} is countable) then the discrete elements of \widehat{E} are exactly the positive scalar multiples of the elements of $\left\{\hat{e}: e \in{ }^{*} \mathcal{D}\right\}$.

Proof. It suffices to show that given $x \in{ }^{*} E$ with $\|x\|=1$, then \hat{x} is discrete in \widehat{E} if and only if $\hat{x}=\hat{e}$ for some $e \in{ }^{*} \mathcal{D}$. Suppose that $\hat{x}=\hat{e}$ for some $e \in{ }^{*} \mathcal{D}$. Take any $a \in{ }^{*} E$ such that $0 \leqslant \hat{a} \leqslant \hat{x}$. By Lemma 1 , we may assume that $0 \leqslant a \leqslant e$. It follows that a is a scalar multiple of e, hence \hat{a} is a scalar multiple of \hat{x}.

Conversely, suppose that \hat{x} is discrete in \widehat{E}. Note that the set D is a complete disjoint system in E. By [AB03, Theorem 1.75], we have $x=\sup \left\{P_{e} x: e \in{ }^{*} \mathcal{D}\right\}$. For every $e \in{ }^{*} \mathcal{D}$, the vector $P_{e} x$ is a scalar multiple of e, and $0 \leqslant P_{e} x \leqslant x$, hence $0 \leqslant \widehat{P_{e} x} \leqslant \hat{x}$. Therefore, if $P_{e} x$ is not infinitesimal for some $e \in^{*} \mathcal{D}$ then \hat{x} is a scalar multiple of $\widehat{P_{e} x}$, hence of \hat{e}.

Suppose now that $P_{e} x$ is infinitesimal for every $e \in{ }^{*} \mathcal{D}$. It follows from $x=\sup \left\{P_{e} x\right.$: $\left.e \in{ }^{*} \mathcal{D}\right\}$ and Lemma 3 that there exist $n \in{ }^{*} \mathbb{N}$ and $e_{1}, \ldots, e_{n} \in{ }^{*} \mathcal{D}$ such that $\|z\| \geqslant \frac{3}{4}$, where $z=\left\|P_{e_{1}} x \vee \cdots \vee P_{e_{n}} x\right\|$. Choose $k \leqslant n$ in ${ }^{*} \mathbb{N}$ so that $\left\|P_{e_{1}} x \vee \cdots \vee P_{e_{k-1}} x\right\|<\frac{1}{4}$, while $\left\|P_{e_{1}} x \vee \cdots \vee P_{e_{k}} x\right\| \geqslant \frac{1}{4}$. Put $u=P_{e_{1}} x \vee \cdots \vee P_{e_{k}} x=P_{e_{1}} x+\cdots+P_{e_{k}} x$. Then

$$
\frac{1}{4} \leqslant\|u\| \leqslant\left\|P_{e_{1}} x \vee \cdots \vee P_{e_{k-1}} x\right\|+\left\|P_{e_{k}} x\right\| \lesssim \frac{1}{4}
$$

hence $\|u\| \approx \frac{1}{4}$. Put $v=z-u$, then $u \perp v, 0 \leqslant u, v \leqslant z$, and $\|u\|,\|v\| \geqslant \frac{1}{4}$. Therefore, \hat{u} and \hat{v} are non-zero and disjoint elements of $[0, \hat{x}]$; a contradiction.

Corollary 5. Suppose that E is an AM-space with a strong unit, and H is a discrete regular sublattice of E. Then \widehat{H} is discrete.

Proof. Let \mathcal{D} be a complete disjoint system of discrete elements of norm one in H. Suppose that $\hat{x} \in \widehat{H}_{+}$. We will show that \hat{x} majorizes a discrete vector. Without loss of generality, $x \in{ }^{*} H_{+}$with $\|x\|=1$. Then $x=\sup \left\{P_{e} x: e \in{ }^{*} \mathcal{D}\right\}$ by [AB03, Theorem 1.75]. Since E is an AM-space, we can apply Lemma 3 with $\varepsilon \approx 0$ and find $n \in{ }^{*} \mathbb{N}$ and $e_{1}, \ldots, e_{n} \in{ }^{*} \mathcal{D}$ such that $\left\|P_{e_{1}} x \vee \cdots \vee P_{e_{n}} x\right\| \geqslant(1-\varepsilon)\|x\| \approx 1$. Again, since E is an AM-space, we have $\left\|P_{e_{1}} x \vee \cdots \vee P_{e_{n}} x\right\|=\left\|P_{e_{1}} x\right\| \vee \cdots \vee\left\|P_{e_{n}} x\right\|$, so that $\left\|P_{e_{k}} x\right\| \approx 1$ for some $k \leqslant n$. Then $\widehat{P_{e_{k}} x}$ is non-zero. It is discrete by Theorem 4 because $P_{e_{k}} x$ is a multiple of e_{k}. Finally, notice that $\widehat{P_{e_{k}} x} \leqslant \hat{x}$.

References

[AB03] C.D. Aliprantis and O. Burkinshaw, Locally solid Riesz spaces with applications to economics, second ed., Mathematical Surveys and Monographs, vol. 105, AMS, Providence, RI, 2003.
[Em00] E. Yu. Emel'yanov, Infinitesimals in vector lattices, in Nonstandard analysis and vector lattices, Math. Appl., vol. 525 (2000), Kluwer, Dordrecht, 161-230.
[LZ71] W.A.J. Luxemburg and A.C. Zaanen, Riesz spaces. Vol. I. North-Holland Publishing Co., Amsterdam-London, 1971.
[Tr04] V.G. Troitsky, Measures on non-compactness of operators on Banach lattices, Positivity 8 (2004), no. 2, 165-178.
[WW06] W. Wnuk and B. Wiatrowski, When are ultrapowers of normed lattices discrete or continuous? Positivity IV-theory and applications, 173-182, Tech. Univ. Dresden, Dresden, 2006.
[Wol97] M.P.H. Wolff, An introduction to nonstandard functional analysis, in: Nonstandard analysis (Edinburgh, 1996), Kluwer Acad. Publ., Dordrecht, 1997, pp. 121-151.

Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, AB, T6G 2G1. Canada.

E-mail address: vtroitsky@math.ualberta.ca

