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Abstract. We prove that Krivine’s Function Calculus is compatible with inte-

gration. Let (Ω,Σ, µ) be a finite measure space, X a Banach lattice, x ∈ Xn,

and f : Rn × Ω → R a function such that f(·, ω) is continuous and positively

homogeneous for every ω ∈ Ω, and f(s, ·) is integrable for every s ∈ Rn. Put

F (s) =
∫
f(s, ω)dµ(ω) and define F (x) and f(x, ω) via Krivine’s Function Cal-

culus. We prove that under certain natural assumptions F (x) =
∫
f(x, ω)dµ(ω),

where the right hand side is a Bochner integral.

1. Motivation

In [Kal12], the author defines a real-valued function of two real or complex variable

via F (s, t) =
∫ 2π

0

∣∣s + eiθt
∣∣dθ. This is a positively homogeneous continuous function.

Therefore, given two vectors u and v in a Banach lattice X, one may apply Krivine’s

Function Calculus to F and consider F (u, v) as an element of X. The author then

claims that

(1) F (u, v) =

∫ 2π

0

∣∣u+ eiθv
∣∣dθ,

where the right hand side here is understood as a Bochner integral; this is used later

in [Kal12] to conclude that
∥∥F (u, v)

∥∥ 6 ∫ 2π

0

∥∥u + eiθv
∥∥dθ because Bochner integrals

have this property:
∥∥∫ f∥∥ 6 ∫ ‖f‖. A similar exposition is also found in [DGTJ84,

p. 146]. Unfortunately, neither [Kal12] nor [DGTJ84] includes a proof of (1). In this

note, we prove a general theorem which implies (1) as a special case.

2. Preliminaries

We start by reviewing the construction of Krivine’s Function Calculus on Banach

lattices; see [LT79, Theorem 1.d.1] for details. For Banach lattice terminology, we

refer the reader to [AA02, AB06].
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Fix n ∈ N. A function F : Rn → R is said to be positively homogeneous if

F (λt1, . . . , λtn) = λF (t1, . . . , tn) for all t1, . . . , tn ∈ R and λ > 0.

Let Hn be the set of all continuous positively homogeneous functions from Rn to R.

Let Sn∞ be the unit sphere of `n∞, that is,

Sn∞ =
{

(t1, . . . , tn) ∈ Rn : max
i=1,...,n

|ti| = 1
}
.

It can be easily verified that the restriction map F 7→ F|Sn
∞ is a lattice isomorphism

from Hn onto C(Sn∞). Hence, we can identify Hn with C(Sn∞). For each i = 1, . . . , n,

the i-th coordinate projection πi : Rn → R clearly belongs to Hn.

Let X be a (real) Banach lattice and x = (x1, . . . , xn) ∈ Xn. Let e ∈ X+ be such

that x1, . . . , xn belong to Ie, the principal order ideal of e. For example, one could

take e = |x1|∨· · ·∨|xn|. By Kakutani’s representation theorem, the ideal Ie equipped

with the norm

‖x‖e = inf
{
λ > 0 : |x| 6 λe

}
is lattice isometric to C(K) for some compact Hausdorff K. Let F ∈ Hn. Interpreting

x1, . . . , xn as elements of C(K), we can define F (x1, . . . , xn) in C(K) as a composition.

We may view it as an element of Ie and, therefore, of X; we also denote it by F̃ or

Φ(F ). It may be shown that, as an element of X, it does not depend on the particular

choice of e. This results in a (unique) lattice homomorphism Φ: Hn → X such that

Φ(πi) = xi. The map Φ will be referred to as Krivine’s function calculus . This

construction allows one to define expressions like
(∑n

i=1|xi|p
) 1

p
for 0 < p < ∞ in

every Banach lattice X; this expression is understood as Φ(F ) where F (t1, . . . , tn) =(∑n
i=1|ti|p

) 1
p
. Furthermore,

(2)
∥∥F (x)

∥∥ 6 ‖F‖C(Sn
∞) ·

∥∥∥ n∨
i=1

|xi|
∥∥∥.

Let Ln be the sublattice of Hn or, equivalently, of C(Sn∞), generated by the coor-

dinate projections πi as i = 1, . . . , n. It follows from the Stone-Weierstrass Theorem

that Ln is dense in C(Sn∞). It follows from Φ(πi) = xi that Φ(Ln) is the sublattice

generated by x1, . . . , xn in X, hence Range Φ is contained in the closed sublattice of

X generated by x1, . . . , xn. It follows from, e.g., Exercise 8 on [AB06, p.204] that this

sublattice is separable.

Let (Ω,Σ, µ) be a finite measure space and X a Banach space. A function f : Ω→
X is measurable if there is a sequence (fn) of simple functions from Ω to X such that

limn‖fn(ω)−f(ω)‖ = 0 almost everywhere. If, in addition,
∫
‖fn(ω)−f(ω)‖dµ(ω)→ 0
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then f is Bochner integrable with
∫
A
f dµ = limn

∫
A
fn dµ for every measurable

set A. In the following theorem, we collect a few standard facts about Bochner

integral for future reference; we refer the reader to [DU77, Chapter II] for proofs and

further details.

Theorem 2.1. Let f : Ω→ X.

(i) If f is the almost everywhere limit of a sequence of measurable functions then

f is measurable.

(ii) If f is separable-valued and there is a norming set Γ ⊆ X∗ such that x∗f is

measurable for every x∗ ∈ Γ then f is measurable.

(iii) A measurable function f is Bochner integrable iff ‖f‖ is integrable.

(iv) If f(ω) = u(ω)x for some fixed x ∈ X and u ∈ L1(µ) and for all ω then f is

measurable and Bochner integrable.

(v) If f is Bochner integrable and T : X → Y is a bounded operator from X to a

Banach space Y then T
(∫

f dµ
)

=
∫
Tf dµ.

3. Main theorem

Throughout the rest of the paper, we assume that (Ω,Σ, µ) is a finite measure

space, n ∈ N, and f : Rn × Ω → R is such that f(·, ω) is in Hn for every ω ∈ Ω and

f(s, ·) is integrable for every s ∈ Rn. For every s ∈ Rn, put F (s) =
∫
f(s, ω)dµ(ω).

It is clear that F is positively homogeneous.

Suppose, in addition, that F is continuous. Let X be a Banach lattice, x ∈ Xn,

and Φ: Hn → X the corresponding function calculus. Since F ∈ Hn, F̃ = F (x) =

Φ(F ) is defined as an element of X. On the other hand, for every ω, the function

s ∈ Rn 7→ f(s, ω) is in Hn, hence we may apply Φ to it. We denote the resulting

vector by f̃(ω) or f(x, ω). This produces a function ω ∈ Ω 7→ f(x, ω) ∈ X.

Theorem 3.1. Suppose that F is continuous and the function M(ω) :=
∥∥f(·, ω)

∥∥
C(Sn

∞)

is integrable. Then f(x, ω) is Bochner integrable as a function of ω and F (x) =∫
f(x, ω)dµ(ω), where the right hand side is a Bochner integral.

Proof. Special case: X = C(K) for some compact Hausdorff K. By uniqueness of

function calculus, Krivine’s function calculus Φ agrees with “point-wise” function

calculus. In particular,

F̃ (k) = F
(
x1(k), . . . , xn(k)

)
and

(
f̃(ω))(k) = f

(
x1(k), . . . , xn(k), ω

)
for all k ∈ K and ω ∈ Ω. We view f̃ as a function from Ω to C(K).
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We are going to show that f̃ is Bochner integrable. It follows from f̃(ω) ∈ Range Φ

that f̃ a separable-valued function. For every k ∈ K, consider the point-evaluation

functional ϕk ∈ C(K)∗ given by ϕk(x) = x(k). Then

ϕk
(
f̃(ω)

)
=
(
f̃(ω))(k) = f

(
x1(k), . . . , xn(k), ω

)
.

for every k ∈ K. By assumptions, this function is integrable; in particular, it is

measurable. Since the set
{
ϕk : k ∈ K

}
is norming in C(K)∗, Theorem 2.1(ii) yields

that f̃ is measurable.

Clearly,
∣∣(f̃(ω)

)
(k)
∣∣ 6 M(ω) for every k ∈ K and ω ∈ Ω, so that ‖f̃(ω)‖C(K) 6

M(ω) for every ω. It follows that
∫
‖f̃(ω)‖C(K) dµ(ω) exists and, therefore, f̃ is

Bochner integrable by Theorem 2.1(iii).

Put h :=
∫
f̃(ω) dµ(ω), where the right hand side is a Bochner integral. Applying

Theorem 2.1(v), we get

h(k) = ϕk(h) =

∫
ϕk
(
f̃(ω)

)
dµ(ω) =

∫
f
(
x1(k), . . . , xn(k), ω

)
dµ(ω)

= F
(
x1(k), . . . , xn(k)

)
= F̃ (k).

for every k ∈ K. It follows that
∫
f̃(ω) dω = F̃ .

General case. Let e = |x1|∨ . . . |xn|. Then
(
Ie, ‖·‖e

)
is lattice isometric to C(K) for

some compact Hausdorff K. Note also that |x| 6 ‖x‖ee for every x ∈ Ie; this yields

‖x‖ 6 ‖x‖e‖e‖, hence the inclusion map T :
(
Ie, ‖·‖e

)
→ X is bounded. Identifying

Ie with C(K), we may view T as a bounded lattice embedding from C(K) into X.

By the construction on Krivine’s Function Calculus, Φ actually acts into Ie, i.e.,

Φ = TΦ0, where Φ0 is the C(K)-valued function calculus. By the special case, we

know that
∫
f̃(ω) dµ(ω) = F̃ in C(K). Applying T , we obtain the same identity in

X by Theorem 2.1(v). �

Finally, we analyze whether any of the assumptions may be removed. Clearly, one

cannot remove the assumption that F is continuous; otherwise, F̃ would make no

sense. The following example shows that, in general, F need not be continuous.

Example 3.2. Let n = 2, let µ be a measure on N given by µ
(
{k}
)

= 2−k. For

each k, we define fk = f(·, k) as follows. Note that it suffices to define fk on S2
∞.

Let Ik be the straight line segment connecting (1, 0) and (1, 2−k+1). Define fk so that

it vanishes on S2
∞ \ Ik, fk(1, 0) = fk(1, 2

−k+1) = 0, fk(1, 2
−k) = 2k, and is linear on

each half of Ik. Then fk ∈ H2 and F (s) is defined for every s ∈ R2. It follows from

F (s) =
∑∞

k=1 2−kfk(s) that F (1, 0) = 0 and F (1, 2−k) > 2−kfk(1, 2
−k) = 1, hence F

is discontinuous at (1, 0).
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The assumption that M is integrable cannot be removed as well. Indeed, consider

the special case when X = C(Sn∞) and xi = πi as i = 1, . . . , n. In this case, Φ is the

identity map and f̃(ω) = f(·, ω). It follows from Theorem 2.1(iii) that f̃ is Bochner

integrable iff ‖f̃‖ is integrable iff M is integrable.

Finally, the assumption that f(·, ω) is in Hn for every ω may clearly be relaxed to

“for almost every ω”.

4. Direct proof

In the previous section, we presented a proof of Theorem 3.1 using representation

theory. In this section, we present a direct proof. However, we impose an additional

assumption: we assume that f(·, ω) is continuous on Sn∞ uniformly on ω, that is,

(3) for every ε > 0 there exists δ > 0 such that
∣∣f(s, ω)− f(t, ω)

∣∣ < ε

for all s, t ∈ Sn∞ and all ω ∈ Ω provided that ‖s− t‖∞ < δ.

In Theorem 3.1, we assumed that F was continuous and M was integrable. Now

these two conditions are satisfied automatically. In order to see that F to is continu-

ous, fix ε > 0; let δ be as in (3), then

(4)
∣∣F (s)− F (t)

∣∣ 6 ∫ ∣∣f(s, ω)− f(t, ω)
∣∣dµ(ω) < εµ(Ω)

whenever s, t ∈ Sn∞ with ‖s − t‖∞ < δ. The proof of integrability of M will be

included in the proof of the theorem.

Theorem 4.1. Suppose that f(·, ω) is continuous on Sn∞ uniformly on ω. Then

f(x, ω) is Bochner integrable as a function of ω and F (x) =
∫
f(x, ω)dµ(ω).

Proof. Without loss of generality, by scaling µ and x, we may assume that µ is a

probability measure and
∥∥∥∨n

i=1|xi|
∥∥∥ = 1; this will simplify computations. In particu-

lar, (2) becomes ‖H(x)‖ 6 ‖H‖C(Sn
∞) for every H ∈ C(Sn∞). Note also that x in the

theorem is a “fake” variable as x is fixed. It may be more accurate to write F̃ and

f̃(ω) instead of F (x) and f(x, ω), respectively. Hence, we need to prove that f̃ as a

function from Ω to X is Bochner integrable and its Bochner integral is F̃ .

Fix ε > 0. Let δ be as in (3). It follows from (4) that

(5)
∣∣F (s)− F (t)

∣∣ < ε whenever s, t ∈ Sn∞ with ‖s− t‖∞ < δ.

Each of the 2n faces of Sn∞ is a translate of the (n− 1)-dimensional unit cube Bn−1
∞ .

Partition each of these faces into (n − 1)-dimensional cubes of diameter less than δ,

where the diameter is computed with respect to the ‖·‖∞-metric. Partition each
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of these cubes into simplices. Therefore, there exists a partition of the entire Sn∞
into finitely many simplices of diameter less than δ. Denote the vertices of these

simplices by s1, . . . , sm. Thus, we have produced a triangularization of Sn∞ with

nodes s1, . . . , sm.

Let a ∈ Rm. Define a function L : Sn∞ → R by setting L(sj) = aj as j = 1, . . . ,m

and then extending it to each of the simplices linearly; this can be done because

every point in a simplex can be written in a unique way as a convex combination of

the vertices of the simplex. We write L = Ta. This gives rise to a linear operator

T : Rm → C(Sn∞). For each j = 1, . . . ,m, let ej be the j-th unit vector in Rm; put

dj = Tej. Clearly,

(6) Ta =
m∑
j=1

ajdj for every a ∈ Rm.

Let H ∈ C(Sn∞). Let L = Ta where aj = H(sj). Then L agrees with H at

s1, . . . , sm. We write L = SH; this defines a linear operator S : C(Sn∞) → C(Sn∞).

Clearly, this is a linear contraction.

Suppose that H ∈ C(Sn∞) is such that
∣∣H(s)−H(t)

∣∣ < ε whenever ‖s− t‖∞ < δ.

Let L = SH. We claim that
∥∥L−H∥∥

C(Sn
∞)
< ε. Indeed, fix s ∈ Sn∞. Let sj1 , . . . , sjn

be the vertices of a simplex in the triangularization of Sn∞ that contains s. Then s

can be written as a convex combination s =
∑n

k=1 λksjk . Note that ‖s − sjk‖∞ < δ

for all j = 1, . . . , n. It follows that∣∣L(s)−H(s)
∣∣ =

∣∣∣ n∑
k=1

λkL(sjk)−
n∑
k=1

λkH(s)
∣∣∣ 6 n∑

j=1

λk
∣∣H(sjk)−H(s)

∣∣ < ε.

This proves the claim.

Let G = SF . It follows from (5) and the preceding observation ‖G−F‖C(Sn
∞) < ε,

so that

(7)
∥∥G(x)− F (x)

∥∥ < ε.

Similarly, for every ω ∈ Ω, apply S to f(·, ω) and denote the resulting function g(·, ω).

In particular, g(sj, ω) = f(sj, ω) for every ω ∈ Ω and every j = 1, . . . ,m. It follows

also that

(8)
∥∥f(·, ω)− g(·, ω)

∥∥
C(Sn

∞)
< ε

for every ω, and, therefore

(9)
∥∥f̃(ω)− g̃(ω)

∥∥ =
∥∥f(x, ω)− g(x, ω)

∥∥ < ε,
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where g̃(ω) = g(x, ω) is the image under Φ of the function s ∈ Sn∞ 7→ g(s, ω). Note

that

(10) G(sj) = F (sj) =

∫
f(sj, ω)dµ(ω) =

∫
g(sj, ω)dµ(ω)

for every j = 1, . . . ,m. Since G = SF = Ta where aj = F (sj) = G(sj) as j =

1, . . . ,m, it follows from (6) that

(11) G =
m∑
j=1

G(sj)dj.

Similarly, for every ω ∈ Ω, we have

(12) g(·, ω) =
m∑
j=1

g(sj, ω)dj.

Applying Φ to (11) and (12), we obtain G̃ = G(x) =
∑

j=1G(sj)dj(x) and

g̃(ω) = g(x, ω) =
m∑
j=1

g(sj, ω)dj(x) =
m∑
j=1

f(sj, ω)dj(x).

Together with Theorem 2.1(iv), this yields that g̃ is measurable and Bochner inte-

grable. It now follows from (10) and (11) that

(13) G(x) =
∑
j=1

G(sj)dj(x) =
m∑
j=1

(∫
g(sj, ω)dµ(ω)

)
dj(x)

=

∫ ( m∑
j=1

g(sj, ω)dj(x)
)
dµ(ω) =

∫
g(x, ω)dµ(ω).

We will show next that f̃ is Bochner integrable. It follows from (9) and the fact that

ε is arbitrary that f̃ can be approximated almost everywhere (actually, everywhere)

by measurable functions; hence f̃ is measurable by Theorem 2.1(i). Next, we claim

that there exists λ ∈ R+ such that
∣∣f(s, ω) − f(1, ω)

∣∣ 6 λ for all s ∈ Sn∞ and all

ω ∈ Ω. Here 1 = (1, . . . , 1). Indeed, let s ∈ Sn∞ and ω ∈ Ω. Find j1, . . . , jl such that

sj1 = 1, sjk and sjk+1
belong to the same simplex as k = 1, . . . , l − 1, and sjl is a

vertex of a simplex containing s. It follows that∣∣f(s, ω)− f(1, ω)
∣∣ 6 ∣∣f(s, ω)− f(sjl , ω)

∣∣+
l−1∑
k=1

∣∣f(sjk+1
, ω)− f(sjk , ω)

∣∣ 6 lε 6 mε.

This proves the claim with λ = mε. It follows that∥∥f̃(ω)
∥∥ 6 ∥∥f(·, ω)

∥∥
C(Sn

∞)
= sup

s∈Sn
∞

∣∣f(s, ω)
∣∣ 6 ∣∣f(1, ω)

∣∣+ λ.
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Since
∣∣f(1, ω)

∣∣+ λ is an integrable function of ω, we conclude that ‖f̃‖ is integrable,

hence f̃ is Bochner integrable by Theorem 2.1(iii). It now follows from (9) that

(14)
∥∥∥∫ f(x, ω)dµ(ω)−

∫
g(x, ω)dµ(ω)

∥∥∥ 6 ∫ ∥∥f(x, ω)− g(x, ω)
∥∥dµ(ω) < ε

Finally, combining (7), (13), and (14), we get∥∥∥F (x)−
∫
f(x, ω)dµ(ω)

∥∥∥ < 2ε.

Since ε > 0 is arbitrary, this proves the theorem. �

Some of the work on this paper was done during a visit of the second author to the

University of Alberta. We would like to thank the referee whose helpful remarks and

suggestions considerably improved this paper.
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