KRIVINE'S FUNCTION CALCULUS AND BOCHNER INTEGRATION

V.G. TROITSKY AND M.S. TÜRER

Abstract

We prove that Krivine's Function Calculus is compatible with integration. Let (Ω, Σ, μ) be a finite measure space, X a Banach lattice, $\boldsymbol{x} \in X^{n}$, and $f: \mathbb{R}^{n} \times \Omega \rightarrow \mathbb{R}$ a function such that $f(\cdot, \omega)$ is continuous and positively homogeneous for every $\omega \in \Omega$, and $f(s, \cdot)$ is integrable for every $s \in \mathbb{R}^{n}$. Put $F(\boldsymbol{s})=\int f(\boldsymbol{s}, \omega) d \mu(\omega)$ and define $F(\boldsymbol{x})$ and $f(\boldsymbol{x}, \omega)$ via Krivine's Function Calculus. We prove that under certain natural assumptions $F(\boldsymbol{x})=\int f(\boldsymbol{x}, \omega) d \mu(\omega)$, where the right hand side is a Bochner integral.

1. Motivation

In Kal12], the author defines a real-valued function of two real or complex variable via $F(s, t)=\int_{0}^{2 \pi}\left|s+e^{i \theta} t\right| d \theta$. This is a positively homogeneous continuous function. Therefore, given two vectors u and v in a Banach lattice X, one may apply Krivine's Function Calculus to F and consider $F(u, v)$ as an element of X. The author then claims that

$$
\begin{equation*}
F(u, v)=\int_{0}^{2 \pi}\left|u+e^{i \theta} v\right| d \theta \tag{1}
\end{equation*}
$$

where the right hand side here is understood as a Bochner integral; this is used later in Kal12] to conclude that $\|F(u, v)\| \leqslant \int_{0}^{2 \pi}\left\|u+e^{i \theta} v\right\| d \theta$ because Bochner integrals have this property: $\left\|\int f\right\| \leqslant \int\|f\|$. A similar exposition is also found in DGTJ84, p. 146]. Unfortunately, neither [Kal12] nor [DGTJ84] includes a proof of (1). In this note, we prove a general theorem which implies (1) as a special case.

2. Preliminaries

We start by reviewing the construction of Krivine's Function Calculus on Banach lattices; see [LT79, Theorem 1.d.1] for details. For Banach lattice terminology, we refer the reader to AA02, AB06.

Date: September 4, 2018.
2010 Mathematics Subject Classification. Primary: 46B42. Secondary: 46A40.
Key words and phrases. Banach lattice, Function Calculus, Bochner integral.
The first author was supported by an NSERC grant.

Fix $n \in \mathbb{N}$. A function $F: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is said to be positively homogeneous if

$$
F\left(\lambda t_{1}, \ldots, \lambda t_{n}\right)=\lambda F\left(t_{1}, \ldots, t_{n}\right) \text { for all } t_{1}, \ldots, t_{n} \in \mathbb{R} \text { and } \lambda \geqslant 0
$$

Let H_{n} be the set of all continuous positively homogeneous functions from \mathbb{R}^{n} to \mathbb{R}. Let S_{∞}^{n} be the unit sphere of ℓ_{∞}^{n}, that is,

$$
S_{\infty}^{n}=\left\{\left(t_{1}, \ldots, t_{n}\right) \in \mathbb{R}^{n}: \max _{i=1, \ldots, n}\left|t_{i}\right|=1\right\}
$$

It can be easily verified that the restriction map $F \mapsto F_{\mid S_{\infty}^{n}}$ is a lattice isomorphism from H_{n} onto $C\left(S_{\infty}^{n}\right)$. Hence, we can identify H_{n} with $C\left(S_{\infty}^{n}\right)$. For each $i=1, \ldots, n$, the i-th coordinate projection $\pi_{i}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ clearly belongs to H_{n}.

Let X be a (real) Banach lattice and $\boldsymbol{x}=\left(x_{1}, \ldots, x_{n}\right) \in X^{n}$. Let $e \in X_{+}$be such that x_{1}, \ldots, x_{n} belong to I_{e}, the principal order ideal of e. For example, one could take $e=\left|x_{1}\right| \vee \cdots \vee\left|x_{n}\right|$. By Kakutani's representation theorem, the ideal I_{e} equipped with the norm

$$
\|x\|_{e}=\inf \{\lambda>0:|x| \leqslant \lambda e\}
$$

is lattice isometric to $C(K)$ for some compact Hausdorff K. Let $F \in H_{n}$. Interpreting x_{1}, \ldots, x_{n} as elements of $C(K)$, we can define $F\left(x_{1}, \ldots, x_{n}\right)$ in $C(K)$ as a composition. We may view it as an element of I_{e} and, therefore, of X; we also denote it by \widetilde{F} or $\Phi(F)$. It may be shown that, as an element of X, it does not depend on the particular choice of e. This results in a (unique) lattice homomorphism $\Phi: H_{n} \rightarrow X$ such that $\Phi\left(\pi_{i}\right)=x_{i}$. The map Φ will be referred to as Krivine's function calculus. This construction allows one to define expressions like $\left(\sum_{i=1}^{n}\left|x_{i}\right|^{p}\right)^{\frac{1}{p}}$ for $0<p<\infty$ in every Banach lattice X; this expression is understood as $\Phi(F)$ where $F\left(t_{1}, \ldots, t_{n}\right)=$ $\left(\sum_{i=1}^{n}\left|t_{i}\right|^{p}\right)^{\frac{1}{p}}$. Furthermore,

$$
\begin{equation*}
\|F(\boldsymbol{x})\| \leqslant\|F\|_{C\left(S_{\infty}^{n}\right)} \cdot\left\|\bigvee_{i=1}^{n}\left|x_{i}\right|\right\| \tag{2}
\end{equation*}
$$

Let L_{n} be the sublattice of H_{n} or, equivalently, of $C\left(S_{\infty}^{n}\right)$, generated by the coordinate projections π_{i} as $i=1, \ldots, n$. It follows from the Stone-Weierstrass Theorem that L_{n} is dense in $C\left(S_{\infty}^{n}\right)$. It follows from $\Phi\left(\pi_{i}\right)=x_{i}$ that $\Phi\left(L_{n}\right)$ is the sublattice generated by x_{1}, \ldots, x_{n} in X, hence Range Φ is contained in the closed sublattice of X generated by x_{1}, \ldots, x_{n}. It follows from, e.g., Exercise 8 on AB06, p.204] that this sublattice is separable.

Let (Ω, Σ, μ) be a finite measure space and X a Banach space. A function $f: \Omega \rightarrow$ X is measurable if there is a sequence $\left(f_{n}\right)$ of simple functions from Ω to X such that $\lim _{n}\left\|f_{n}(\omega)-f(\omega)\right\|=0$ almost everywhere. If, in addition, $\int\left\|f_{n}(\omega)-f(\omega)\right\| d \mu(\omega) \rightarrow 0$
then f is Bochner integrable with $\int_{A} f d \mu=\lim _{n} \int_{A} f_{n} d \mu$ for every measurable set A. In the following theorem, we collect a few standard facts about Bochner integral for future reference; we refer the reader to [DU77, Chapter II] for proofs and further details.

Theorem 2.1. Let $f: \Omega \rightarrow X$.
(i) If f is the almost everywhere limit of a sequence of measurable functions then f is measurable.
(ii) If f is separable-valued and there is a norming set $\Gamma \subseteq X^{*}$ such that $x^{*} f$ is measurable for every $x^{*} \in \Gamma$ then f is measurable.
(iii) A measurable function f is Bochner integrable iff $\|f\|$ is integrable.
(iv) If $f(\omega)=u(\omega) x$ for some fixed $x \in X$ and $u \in L_{1}(\mu)$ and for all ω then f is measurable and Bochner integrable.
(v) If f is Bochner integrable and $T: X \rightarrow Y$ is a bounded operator from X to a Banach space Y then $T\left(\int f d \mu\right)=\int T f d \mu$.

3. Main theorem

Throughout the rest of the paper, we assume that (Ω, Σ, μ) is a finite measure space, $n \in \mathbb{N}$, and $f: \mathbb{R}^{n} \times \Omega \rightarrow \mathbb{R}$ is such that $f(\cdot, \omega)$ is in H_{n} for every $\omega \in \Omega$ and $f(\boldsymbol{s}, \cdot)$ is integrable for every $\boldsymbol{s} \in \mathbb{R}^{n}$. For every $\boldsymbol{s} \in \mathbb{R}^{n}$, put $F(\boldsymbol{s})=\int f(\boldsymbol{s}, \omega) d \mu(\omega)$. It is clear that F is positively homogeneous.

Suppose, in addition, that F is continuous. Let X be a Banach lattice, $\boldsymbol{x} \in X^{n}$, and $\Phi: H_{n} \rightarrow X$ the corresponding function calculus. Since $F \in H_{n}, \widetilde{F}=F(\boldsymbol{x})=$ $\Phi(F)$ is defined as an element of X. On the other hand, for every ω, the function $\boldsymbol{s} \in \mathbb{R}^{n} \mapsto f(\boldsymbol{s}, \omega)$ is in H_{n}, hence we may apply Φ to it. We denote the resulting vector by $\tilde{f}(\omega)$ or $f(\boldsymbol{x}, \omega)$. This produces a function $\omega \in \Omega \mapsto f(\boldsymbol{x}, \omega) \in X$.

Theorem 3.1. Suppose that F is continuous and the function $M(\omega):=\|f(\cdot, \omega)\|_{C\left(S_{\infty}^{n}\right)}$ is integrable. Then $f(\boldsymbol{x}, \omega)$ is Bochner integrable as a function of ω and $F(\boldsymbol{x})=$ $\int f(\boldsymbol{x}, \omega) d \mu(\omega)$, where the right hand side is a Bochner integral.

Proof. Special case: $X=C(K)$ for some compact Hausdorff K. By uniqueness of function calculus, Krivine's function calculus Φ agrees with "point-wise" function calculus. In particular,

$$
\widetilde{F}(k)=F\left(x_{1}(k), \ldots, x_{n}(k)\right) \text { and }(\tilde{f}(\omega))(k)=f\left(x_{1}(k), \ldots, x_{n}(k), \omega\right)
$$

for all $k \in K$ and $\omega \in \Omega$. We view \tilde{f} as a function from Ω to $C(K)$.

We are going to show that \tilde{f} is Bochner integrable. It follows from $\tilde{f}(\omega) \in \operatorname{Range} \Phi$ that \tilde{f} a separable-valued function. For every $k \in K$, consider the point-evaluation functional $\varphi_{k} \in C(K)^{*}$ given by $\varphi_{k}(x)=x(k)$. Then

$$
\varphi_{k}(\tilde{f}(\omega))=(\tilde{f}(\omega))(k)=f\left(x_{1}(k), \ldots, x_{n}(k), \omega\right)
$$

for every $k \in K$. By assumptions, this function is integrable; in particular, it is measurable. Since the set $\left\{\varphi_{k}: k \in K\right\}$ is norming in $C(K)^{*}$, Theorem 2.1(iii) yields that \tilde{f} is measurable.

Clearly, $|(\tilde{f}(\omega))(k)| \leqslant M(\omega)$ for every $k \in K$ and $\omega \in \Omega$, so that $\|\tilde{f}(\omega)\|_{C(K)} \leqslant$ $M(\omega)$ for every ω. It follows that $\int\|\tilde{f}(\omega)\|_{C(K)} d \mu(\omega)$ exists and, therefore, \tilde{f} is Bochner integrable by Theorem 2.1(iii).

Put $h:=\int \tilde{f}(\omega) d \mu(\omega)$, where the right hand side is a Bochner integral. Applying Theorem 2.1(v), we get

$$
\begin{aligned}
h(k)=\varphi_{k}(h)=\int \varphi_{k}(\tilde{f}(\omega)) d \mu(\omega)=\int f\left(x_{1}(k)\right. & \left.\ldots, x_{n}(k), \omega\right) d \mu(\omega) \\
& =F\left(x_{1}(k), \ldots, x_{n}(k)\right)=\widetilde{F}(k) .
\end{aligned}
$$

for every $k \in K$. It follows that $\int \tilde{f}(\omega) d \omega=\widetilde{F}$.
General case. Let $e=\left|x_{1}\right| \vee \ldots\left|x_{n}\right|$. Then $\left(I_{e},\|\cdot\|_{e}\right)$ is lattice isometric to $C(K)$ for some compact Hausdorff K. Note also that $|x| \leqslant\|x\|_{e} e$ for every $x \in I_{e}$; this yields $\|x\| \leqslant\|x\|_{e}\|e\|$, hence the inclusion map $T:\left(I_{e},\|\cdot\|_{e}\right) \rightarrow X$ is bounded. Identifying I_{e} with $C(K)$, we may view T as a bounded lattice embedding from $C(K)$ into X.

By the construction on Krivine's Function Calculus, Φ actually acts into I_{e}, i.e., $\Phi=T \Phi_{0}$, where Φ_{0} is the $C(K)$-valued function calculus. By the special case, we know that $\int \tilde{f}(\omega) d \mu(\omega)=\widetilde{F}$ in $C(K)$. Applying T, we obtain the same identity in X by Theorem 2.1 v).

Finally, we analyze whether any of the assumptions may be removed. Clearly, one cannot remove the assumption that F is continuous; otherwise, \widetilde{F} would make no sense. The following example shows that, in general, F need not be continuous.

Example 3.2. Let $n=2$, let μ be a measure on \mathbb{N} given by $\mu(\{k\})=2^{-k}$. For each k, we define $f_{k}=f(\cdot, k)$ as follows. Note that it suffices to define f_{k} on S_{∞}^{2}. Let I_{k} be the straight line segment connecting $(1,0)$ and $\left(1,2^{-k+1}\right)$. Define f_{k} so that it vanishes on $S_{\infty}^{2} \backslash I_{k}, f_{k}(1,0)=f_{k}\left(1,2^{-k+1}\right)=0, f_{k}\left(1,2^{-k}\right)=2^{k}$, and is linear on each half of I_{k}. Then $f_{k} \in H_{2}$ and $F(\boldsymbol{s})$ is defined for every $s \in \mathbb{R}^{2}$. It follows from $F(\boldsymbol{s})=\sum_{k=1}^{\infty} 2^{-k} f_{k}(\boldsymbol{s})$ that $F(1,0)=0$ and $F\left(1,2^{-k}\right) \geqslant 2^{-k} f_{k}\left(1,2^{-k}\right)=1$, hence F is discontinuous at $(1,0)$.

The assumption that M is integrable cannot be removed as well. Indeed, consider the special case when $X=C\left(S_{\infty}^{n}\right)$ and $x_{i}=\pi_{i}$ as $i=1, \ldots, n$. In this case, Φ is the identity map and $\tilde{f}(\omega)=f(\cdot, \omega)$. It follows from Theorem 2.1(iii) that \tilde{f} is Bochner integrable iff $\|\tilde{f}\|$ is integrable iff M is integrable.

Finally, the assumption that $f(\cdot, \omega)$ is in H_{n} for every ω may clearly be relaxed to "for almost every ω ".

4. Direct proof

In the previous section, we presented a proof of Theorem 3.1 using representation theory. In this section, we present a direct proof. However, we impose an additional assumption: we assume that $f(\cdot, \omega)$ is continuous on S_{∞}^{n} uniformly on ω, that is,
(3) for every $\varepsilon>0$ there exists $\delta>0$ such that $|f(s, \omega)-f(\boldsymbol{t}, \omega)|<\varepsilon$

$$
\text { for all } \boldsymbol{s}, \boldsymbol{t} \in S_{\infty}^{n} \text { and all } \omega \in \Omega \text { provided that }\|\boldsymbol{s}-\boldsymbol{t}\|_{\infty}<\delta
$$

In Theorem 3.1, we assumed that F was continuous and M was integrable. Now these two conditions are satisfied automatically. In order to see that F to is continuous, fix $\varepsilon>0$; let δ be as in (3), then

$$
\begin{equation*}
|F(\boldsymbol{s})-F(\boldsymbol{t})| \leqslant \int|f(\boldsymbol{s}, \omega)-f(\boldsymbol{t}, \omega)| d \mu(\omega)<\varepsilon \mu(\Omega) \tag{4}
\end{equation*}
$$

whenever $\boldsymbol{s}, \boldsymbol{t} \in S_{\infty}^{n}$ with $\|\boldsymbol{s}-\boldsymbol{t}\|_{\infty}<\delta$. The proof of integrability of M will be included in the proof of the theorem.

Theorem 4.1. Suppose that $f(\cdot, \omega)$ is continuous on S_{∞}^{n} uniformly on ω. Then $f(\boldsymbol{x}, \omega)$ is Bochner integrable as a function of ω and $F(\boldsymbol{x})=\int f(\boldsymbol{x}, \omega) d \mu(\omega)$.

Proof. Without loss of generality, by scaling μ and \boldsymbol{x}, we may assume that μ is a probability measure and $\left\|\bigvee_{i=1}^{n}\left|x_{i}\right|\right\|=1$; this will simplify computations. In particular, (2) becomes $\|H(\boldsymbol{x})\| \leqslant\|H\|_{C\left(S_{\infty}^{n}\right)}$ for every $H \in C\left(S_{\infty}^{n}\right)$. Note also that \boldsymbol{x} in the theorem is a "fake" variable as \boldsymbol{x} is fixed. It may be more accurate to write \widetilde{F} and $\tilde{f}(\omega)$ instead of $F(\boldsymbol{x})$ and $f(\boldsymbol{x}, \omega)$, respectively. Hence, we need to prove that \tilde{f} as a function from Ω to X is Bochner integrable and its Bochner integral is \widetilde{F}.

Fix $\varepsilon>0$. Let δ be as in (3). It follows from (4) that

$$
\begin{equation*}
|F(\boldsymbol{s})-F(\boldsymbol{t})|<\varepsilon \text { whenever } \boldsymbol{s}, \boldsymbol{t} \in S_{\infty}^{n} \text { with }\|\boldsymbol{s}-\boldsymbol{t}\|_{\infty}<\delta \tag{5}
\end{equation*}
$$

Each of the $2 n$ faces of S_{∞}^{n} is a translate of the $(n-1)$-dimensional unit cube B_{∞}^{n-1}. Partition each of these faces into $(n-1)$-dimensional cubes of diameter less than δ, where the diameter is computed with respect to the $\|\cdot\|_{\infty}$-metric. Partition each
of these cubes into simplices. Therefore, there exists a partition of the entire S_{∞}^{n} into finitely many simplices of diameter less than δ. Denote the vertices of these simplices by $\boldsymbol{s}_{1}, \ldots, \boldsymbol{s}_{\boldsymbol{m}}$. Thus, we have produced a triangularization of S_{∞}^{n} with nodes $\boldsymbol{s}_{1}, \ldots, \boldsymbol{s}_{\boldsymbol{m}}$.

Let $\boldsymbol{a} \in \mathbb{R}^{m}$. Define a function $L: S_{\infty}^{n} \rightarrow \mathbb{R}$ by setting $L\left(\boldsymbol{s}_{\boldsymbol{j}}\right)=a_{j}$ as $j=1, \ldots, m$ and then extending it to each of the simplices linearly; this can be done because every point in a simplex can be written in a unique way as a convex combination of the vertices of the simplex. We write $L=T \boldsymbol{a}$. This gives rise to a linear operator $T: \mathbb{R}^{m} \rightarrow C\left(S_{\infty}^{n}\right)$. For each $j=1, \ldots, m$, let e_{j} be the j-th unit vector in \mathbb{R}^{m}; put $d_{j}=T e_{j}$. Clearly,

$$
\begin{equation*}
T \boldsymbol{a}=\sum_{j=1}^{m} a_{j} d_{j} \text { for every } \boldsymbol{a} \in \mathbb{R}^{m} \tag{6}
\end{equation*}
$$

Let $H \in C\left(S_{\infty}^{n}\right)$. Let $L=T \boldsymbol{a}$ where $a_{j}=H\left(\boldsymbol{s}_{\boldsymbol{j}}\right)$. Then L agrees with H at $\boldsymbol{s}_{1}, \ldots, \boldsymbol{s}_{m}$. We write $L=S H$; this defines a linear operator $S: C\left(S_{\infty}^{n}\right) \rightarrow C\left(S_{\infty}^{n}\right)$. Clearly, this is a linear contraction.

Suppose that $H \in C\left(S_{\infty}^{n}\right)$ is such that $|H(\boldsymbol{s})-H(\boldsymbol{t})|<\varepsilon$ whenever $\|\boldsymbol{s}-\boldsymbol{t}\|_{\infty}<\delta$. Let $L=S H$. We claim that $\|L-H\|_{C\left(S_{\infty}^{n}\right)}<\varepsilon$. Indeed, fix $\boldsymbol{s} \in S_{\infty}^{n}$. Let $\boldsymbol{s}_{j_{1}}, \ldots, \boldsymbol{s}_{j_{n}}$ be the vertices of a simplex in the triangularization of S_{∞}^{n} that contains \boldsymbol{s}. Then \boldsymbol{s} can be written as a convex combination $\boldsymbol{s}=\sum_{k=1}^{n} \lambda_{k} \boldsymbol{s}_{j_{k}}$. Note that $\left\|\boldsymbol{s}-\boldsymbol{s}_{j_{k}}\right\|_{\infty}<\delta$ for all $j=1, \ldots, n$. It follows that

$$
|L(\boldsymbol{s})-H(\boldsymbol{s})|=\left|\sum_{k=1}^{n} \lambda_{k} L\left(\boldsymbol{s}_{j_{k}}\right)-\sum_{k=1}^{n} \lambda_{k} H(\boldsymbol{s})\right| \leqslant \sum_{j=1}^{n} \lambda_{k}\left|H\left(\boldsymbol{s}_{j_{k}}\right)-H(\boldsymbol{s})\right|<\varepsilon
$$

This proves the claim.
Let $G=S F$. It follows from (5) and the preceding observation $\|G-F\|_{C\left(S_{\infty}^{n}\right)}<\varepsilon$, so that

$$
\begin{equation*}
\|G(\boldsymbol{x})-F(\boldsymbol{x})\|<\varepsilon \tag{7}
\end{equation*}
$$

Similarly, for every $\omega \in \Omega$, apply S to $f(\cdot, \omega)$ and denote the resulting function $g(\cdot, \omega)$. In particular, $g\left(s_{j}, \omega\right)=f\left(s_{j}, \omega\right)$ for every $\omega \in \Omega$ and every $j=1, \ldots, m$. It follows also that

$$
\begin{equation*}
\|f(\cdot, \omega)-g(\cdot, \omega)\|_{C\left(S_{\infty}^{n}\right)}<\varepsilon \tag{8}
\end{equation*}
$$

for every ω, and, therefore

$$
\begin{equation*}
\|\tilde{f}(\omega)-\tilde{g}(\omega)\|=\|f(\boldsymbol{x}, \omega)-g(\boldsymbol{x}, \omega)\|<\varepsilon \tag{9}
\end{equation*}
$$

where $\tilde{g}(\omega)=g(\boldsymbol{x}, \omega)$ is the image under Φ of the function $\boldsymbol{s} \in S_{\infty}^{n} \mapsto g(\boldsymbol{s}, \omega)$. Note that

$$
\begin{equation*}
G\left(\boldsymbol{s}_{j}\right)=F\left(\boldsymbol{s}_{j}\right)=\int f\left(\boldsymbol{s}_{j}, \omega\right) d \mu(\omega)=\int g\left(\boldsymbol{s}_{j}, \omega\right) d \mu(\omega) \tag{10}
\end{equation*}
$$

for every $j=1, \ldots, m$. Since $G=S F=T \boldsymbol{a}$ where $a_{j}=F\left(\boldsymbol{s}_{j}\right)=G\left(\boldsymbol{s}_{j}\right)$ as $j=$ $1, \ldots, m$, it follows from (6) that

$$
\begin{equation*}
G=\sum_{j=1}^{m} G\left(s_{j}\right) d_{j} \tag{11}
\end{equation*}
$$

Similarly, for every $\omega \in \Omega$, we have

$$
\begin{equation*}
g(\cdot, \omega)=\sum_{j=1}^{m} g\left(s_{j}, \omega\right) d_{j} \tag{12}
\end{equation*}
$$

Applying Φ to (11) and (12), we obtain $\widetilde{G}=G(\boldsymbol{x})=\sum_{j=1} G\left(\boldsymbol{s}_{j}\right) d_{j}(\boldsymbol{x})$ and

$$
\tilde{g}(\omega)=g(\boldsymbol{x}, \omega)=\sum_{j=1}^{m} g\left(\boldsymbol{s}_{j}, \omega\right) d_{j}(\boldsymbol{x})=\sum_{j=1}^{m} f\left(\boldsymbol{s}_{j}, \omega\right) d_{j}(\boldsymbol{x})
$$

Together with Theorem 2.1(iv), this yields that \tilde{g} is measurable and Bochner integrable. It now follows from (10) and (11) that

$$
\begin{align*}
G(\boldsymbol{x})=\sum_{j=1} G\left(\boldsymbol{s}_{j}\right) d_{j}(\boldsymbol{x})= & \sum_{j=1}^{m}\left(\int g\left(\boldsymbol{s}_{j}, \omega\right) d \mu(\omega)\right) d_{j}(\boldsymbol{x}) \tag{13}\\
& =\int\left(\sum_{j=1}^{m} g\left(\boldsymbol{s}_{j}, \omega\right) d_{j}(\boldsymbol{x})\right) d \mu(\omega)=\int g(\boldsymbol{x}, \omega) d \mu(\omega)
\end{align*}
$$

We will show next that \tilde{f} is Bochner integrable. It follows from (9) and the fact that ε is arbitrary that \tilde{f} can be approximated almost everywhere (actually, everywhere) by measurable functions; hence \tilde{f} is measurable by Theorem 2.1(i). Next, we claim that there exists $\lambda \in \mathbb{R}_{+}$such that $|f(s, \omega)-f(\mathbf{1}, \omega)| \leqslant \lambda$ for all $s \in S_{\infty}^{n}$ and all $\omega \in \Omega$. Here $\mathbf{1}=(1, \ldots, 1)$. Indeed, let $s \in S_{\infty}^{n}$ and $\omega \in \Omega$. Find j_{1}, \ldots, j_{l} such that $\boldsymbol{s}_{j_{1}}=\mathbf{1}, \boldsymbol{s}_{j_{k}}$ and $\boldsymbol{s}_{j_{k+1}}$ belong to the same simplex as $k=1, \ldots, l-1$, and $\boldsymbol{s}_{j_{l}}$ is a vertex of a simplex containing s. It follows that

$$
|f(\boldsymbol{s}, \omega)-f(\mathbf{1}, \omega)| \leqslant\left|f(s, \omega)-f\left(s_{j_{l}}, \omega\right)\right|+\sum_{k=1}^{l-1}\left|f\left(s_{j_{k+1}}, \omega\right)-f\left(s_{j_{k}}, \omega\right)\right| \leqslant l \varepsilon \leqslant m \varepsilon
$$

This proves the claim with $\lambda=m \varepsilon$. It follows that

$$
\|\tilde{f}(\omega)\| \leqslant\|f(\cdot, \omega)\|_{C\left(S_{\infty}^{n}\right)}=\sup _{s \in S_{\infty}^{n}}|f(\boldsymbol{s}, \omega)| \leqslant|f(\mathbf{1}, \omega)|+\lambda .
$$

Since $|f(\mathbf{1}, \omega)|+\lambda$ is an integrable function of ω, we conclude that $\|\tilde{f}\|$ is integrable, hence \tilde{f} is Bochner integrable by Theorem 2.1(iii). It now follows from (9) that

$$
\begin{equation*}
\left\|\int f(\boldsymbol{x}, \omega) d \mu(\omega)-\int g(\boldsymbol{x}, \omega) d \mu(\omega)\right\| \leqslant \int\|f(\boldsymbol{x}, \omega)-g(\boldsymbol{x}, \omega)\| d \mu(\omega)<\varepsilon \tag{14}
\end{equation*}
$$

Finally, combining (7), (13), and (14), we get

$$
\left\|F(\boldsymbol{x})-\int f(\boldsymbol{x}, \omega) d \mu(\omega)\right\|<2 \varepsilon
$$

Since $\varepsilon>0$ is arbitrary, this proves the theorem.
Some of the work on this paper was done during a visit of the second author to the University of Alberta. We would like to thank the referee whose helpful remarks and suggestions considerably improved this paper.

References

[AA02] Y.A. Abramovich and C.D. Aliprantis, An invitation to operator theory, Graduate Studies in Mathematics, vol. 50, American Mathematical Society, Providence, RI, 2002.
[AB06] C.D. Aliprantis and O. Burkinshaw, Positive operators, Springer, Dordrecht, 2006, Reprint of the 1985 original.
[DGTJ84] W.J. Davis, D.J.H. Garling, and N. Tomczak-Jaegermann, The complex convexity of quasinormed linear spaces, J. Funct. Anal. 55 (1984), no. 1, 110-150.
[DU77] J. Diestel and J.J. Uhl, Jr., Vector measures, American Mathematical Society, Providence, R.I., 1977, Mathematical Surveys, No. 15.
[Kal12] N.J. Kalton, Hermitian operators on complex Banach lattices and a problem of Garth Dales, J. Lond. Math. Soc. (2) 86 (2012), no. 3, 641-656.
[LT79] J. Lindenstrauss and L. Tzafriri, Classical Banach spaces. II, Springer-Verlag, Berlin, 1979, Function spaces.

Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, AB, T6G 2G1, Canada.

Email address: troitsky@ualberta.ca
Department of Mathematics and Computer Science, İstanbul Kültür University, Bakirköy 34156, İstanbul, Turkey

Email address: m.turer@iku.edu.tr

