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Abstract: Mesenchymal motion denotes a form of cell movement through tissue,
which can be observed for certain cancer metastasis. In [11], a mathematical model
for this form of movement was introduced. In the current paper we present a com-
prehensive analysis of the one dimensional mesenchymal motion model. We establish
the global existence of classical solutions and rigorously carry out the parabolic limit
of the model. We discuss the stationary solutions, prove the existence of travelling
wave solutions, and we use numerical simulations to illustrate the results. Finally,
we discuss the biological implications of the results.
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1 Introduction

Mesenchymal motion is a form of cellular movement through tissues which are formed from fiber
networks. An example is the invasion of tumor metastases through collagen networks [6]. Cells
migrate in fiber networks and change their directions according to the orientational distribution
of fibers. Moreover, cells actively remodel the matrix by excreting matrix degrading enzyme
(e.g. protease) to generate sufficient space to migrate in.

Mesenchymal motion regarding the movement of amoeboid cells in a tissue matrix is re-
ported in a review article by Friedl and Bröcker [6]. Mesoscopic and macroscopic models for
mesenchymal motion were derived by Hillen [11] in a timely varying network tissue. The meso-
scopic models are based on a transport equation for correlated random walk and consist of a
transport equation for the cell movement coupled to an ordinary differential equation for the
dynamics of tissue fibers. The macroscopic models have the form of a drift-diffusion equation
where the mean drift velocity is given by the mean orientation of the tissue, and the diffusion
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tensor is given by the variance-covariance matrix of the tissue orientation. The analysis in [11]
is divided into the case of undirected and directed tissues according to the distribution of fiber
orientation. In undirected tissues, the fibers are symmetrical along their axis and both fiber
directions are identical. For example, collagen fibers are undirected and they form the basis for
many human and animal tissues. For directed tissues, the fibers are unsymmetrical and the two
ends can be distinguished (such as microtubules and actin filaments). Branching collagen fiber
networks can also be considered directional if the branching points are of significance for the
movement of cells [11].

In this paper, the one dimensional mesenchymal motion model is fully analyzed. The global
existence of solutions, macroscopic limits, traveling waves, and stationary solutions are inves-
tigated. The one dimensional model is very instructive and we can gain much insight into the
mechanisms involved in the model. For example, we find the existence of traveling pulse solu-
tions for the cell population and identify some mechanisms for cell aggregation. We restrict our
attention to the model for directed tissue only and the analysis can be completely adopted to
the study for undirected tissue from the mathematical point of view. The paper is organized
as follows. In the rest of this section, we will present the one dimensional mesenchymal motion
model derived in [11] and discuss the stationary solutions based on the telegraph process anal-
ysis. In section 2, we classify the one dimensional model as degenerated hyperbolic system and
conclude that there is no shock solution. In section 3, the global existence of classical solutions
are obtained along the characteristics using a fixed point argument and general regularity results
for the semilnear hyperbolic system. In section 4, we rigorously carry out the parabolic limit
of the one dimensional mesenchymal transport model, where we show that solutions of the one
dimensional model converge to solutions of a corresponding diffusion equation. In section 5, we
study the traveling wave solutions and find traveling pulse solutions for the cell population and
travelling front waves for fiber orientations. In the final section 6, we summarize and compare
our results with the results obtained in [11]. Furthermore, we explain the findings in the context
of the biological application of cell movement in tissues.

1.1 Models for Mesenchymal Motion

Here we keep notational consistence with [11], we let Sn−1 denote the unit sphere in Rn and θ
the fiber orientation in Sn−1. Let Ω be a domain in Rn. We denote the distribution of fiber
orientations at time t ≥ 0 and at location x ∈ Ω by q(t, x, θ), which naturally satisfies the
normalization condition for all t ≥ 0, x ∈ Ω∫

Sn−1

q(t, x, θ)dθ = 1. (1.1)

Let V denote the set of all possible velocities of moving cells and p(t, x, v) the population density
of cells that have velocity v at time t at location x. V is assumed to be radially symmetric and
can be written as

V = [s1, s2]× Sn−1, 0 < s1 ≤ s2 < ∞,



Mesenchymal motion models in one dimension 3

where [s1, s2] is the range of possible speeds. We define v̂ as the unit vector in direction of a
vector v ∈ V . That is

v̂ :=
v

‖v‖
.

In addition we define a weight parameter ω such that

ω =
∫

V
q(t, x, v̂)dv =

{ sn
2−sn

1
n , for s1 < s2,

sn−1, for s1 = s2 = s.
(1.2)

Then q/ω is a probability density on V and we will interpret the function q(t, x, θ)/ω as prob-
ability density for the newly chosen movement direction of cells. Let a constant µ ≥ 0 denote
the turning rate and a constant κ ≥ 0 the cutting efficiency (rate of fiber degradation). Then
the model for mesenchymal motion of cells for directed tissues consists of a transport equation
for cell motion and an equation for the fiber distribution, which reads (see [11])

pt(t, x, v) + v · ∇p(t, x, v) = −µp(t, x, v) + µ
q(t, x, v̂)

ω
ρ(t, x),

qt(t, x, θ) = κ(Π(t, x, θ)−A(t, x))ρ(t, x)q(t, x, θ),
(1.3)

where ρ(t, x) denotes the macroscopic density of cells

ρ(t, x) =
∫

V
p(t, x, v)dv,

and Π(t, x, θ) denote the mean projection of cell movement direction into a given fiber orientation
θ

Π(t, x, θ) =
1

ρ(t, x)

∫
V

θ · v̂ p(t, x, v)dv,

and A(t, x, θ) represents the mean value of these mean projections over all fiber directions

A(t, x) =
∫

Sn−1

Π(t, x, θ)q(t, x, θ)dθ.

The function A(t, x) is a measure of the relative alignment of fibers and cells (see more details
in [11]). The transport term v · ∇p in (1.3) accounts for the cell migration in tissue with some
certain velocity v. The right hand side of the first equation accounts for the change of cell
movement in the field of fibers consisting of two processes. The first term on the right hand
side describes turning of cells away from their velosity v at a turning rate µ. The second term
indicates that cells choose a new direction v which is given through the underlying fiber network
q(t, x, v̄) and they choose the speed uniformly from the interval [s1, s2]. The second euation of
(1.3) describes the changes of the fibers in the tissue. When cells happen to migrate against the
fiber direction, they cut those fibers at rate κ. At the same time, cells leave fibers intact that
are parallel to their own movement direction.
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In [11], three scaling arguments, namely, moment closure, parabolic scaling and hydrody-
namic scaling, are used to study the macroscopic limits of system (1.3). The resulting macro-
scopic models have the form of drift-diffusion equations with the mean drift velocity given by the
mean orientation of the tissue and the diffusion tensor given by the variance-covariance matrix
of the tissue orientations. Some examples and applications are discussed in [11]. The numerical
schemes and pattern formation in two-dimension are elaborately investigated by Painter [22].

In case of chemotaxis, a system of a transport equation for the cell motion and a parabolic
equation for the chemical signal was studied by Alt [1], Chalub et al. [3] and Hwang et al.
[15, 16]. However, their arguments are based on L∞ estimates of the turning kernel. In case of
the mesenchymal motion model, the turning kernel is given by the fiber distribution q(t, x, θ)
which is a delta distribution q(θ) = δb(θ) for a totally aligned tissue in some certain direction of
b ∈ Rn (n ≥ 2). As a result the assumption (A0) in paper [3] does not apply and hence their
results cannot be applied directly to the case discussed here. The global existence analysis for
the higher dimensional model is technically involved and will be explored in a separate paper
[14], where we regard the solution as a measure.

The one-dimensional mesenchymal motion model corresponds to the case where the fiber are
totaly aligned in the tissue. Below we present the one dimensional model derived in [11]. We
fix speed to |v| = s, i.e., v = ±s. In a one-dimensional domain, cells can only move to the right
or the left. For notational convenience, we denote

p+(t, x) = p(t, x, +s), p−(t, x) = p(t, x,−s),

respectively. In one dimension, S0 = {+1,−1} and hence θ = ±1, and we denote

q+(t, x) = q(t, x, +1), q−(t, x) = q(t, x,−1).

Then it follows from (1.1) that
q+(x, t) + q−(x, t) = 1. (1.4)

The projection operator Π(t, x, θ) can be explicitly obtained in one dimension as

Π(t, x, θ) =
1

p+ + p−
(θp+ − θp−),

which gives the following projection for right and left direction, respectively,

Π± = Π(t, x,±1) =
p± − p∓

p+ + p−

Then the mean projection A is obtained as

A(t, x) = Π+q+ + Π−q− =
p+ − p−

p+ + p−
(q+ − q−).
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Substituting all these results into the model (1.3), we obtain the one-dimensional mesenchymal
transport model for the directed case (see [11])

p+
t + sp+

x = −µp+ + µq+(p+ + p−),
p−t − sp−x = −µp− + µq−(p+ + p−),

q+
t = κ(p+ − p−)(q− − q+ + 1)q+,

q−t = κ(p+ − p−)(q− − q+ − 1)q−.

(1.5)

All above derivations are taken from paper [11] where more details are presented. It is worthwhile
to point out that the model for undirected tissue can be regarded as a special case of (1.5) for
κ = 0 (see also [11]). In this paper, we focus on the model of directed tissue and most of reusults
can be taken over to the case of undirected tissue. The significant difference, when it comes,
will be emphasized.

Now we investigate the connections between the one dimensional mesenchymal motion model
and the well known Goldstein-Kac model [7, 18] which describes the correlated random walk
in one space dimension. We use condition (1.4) to substitute q− = 1 − q+ into the first two
equations of (1.5) and obtain

p+
t + sp+

x = −µ(1− q+)p+ + µq+p−,

p−t − sp−x = µ(1− q+)p+ − µq+p−.
(1.6)

The model for the case of undirected tissue (κ = 0) possesses some very interesting phenomena.
Undirected tisue fibers are symmetrical along their axis and both fiber directions are identical,
which indicates that q+ = q− = 1

2 . Then the model (1.6) becomes the Goldstein-Kac model
[7, 18]

p+
t + sp+

x =
µ

2
(p− − p+),

p−t − sp−x = −µ

2
(p− − p+).

(1.7)

The parabolic scaling for the Goldstein-Kac model, which leads to a parabolic equation, has
been discussed in [8] and references therein.

For directed tissues, we define λ+ = µ(1− q+), λ− = µq+, then (1.6) is converted into

p+
t + sp+

x = −λ+p+ + λ−p−,

p−t − sp−x = λ+p+ − λ−p−,
(1.8)

which is a modification of the Goldstein-Kac model. Extensions of the Goldstein-Kac model and
local and global existence of the solution to the extended model has been extensively investigated
in the literature [12, 13, 17]. The telegraph process of (1.8) has been briefly discussed by Erban
and Othmer [4] recently.The results obtained in [12, 13, 17] can be applied to system (1.8) if the
turning rates λ±(t, x) are given functions. The theory does, however, not apply to (1.5), since
the turning rates are coupled with the q± equations.
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In the next subsection, we will discuss stationary solutions for (1.5) based on the telegraph
process examined in [11].

We supply the system (1.5) with initial condition

p±(0, x) = p±I (x), q±(0, x) = q±I (x), x ∈ Ω. (1.9)

Due to the biological interest and condition (1.4), we make the following assumptions for the
initial data and boundary conditions.

(ic) p±I ≥ 0, 0 ≤ q+
I , q−I ≤ 1 and q+

I + q−I = 1. For undirected tissues, we assume the initial
data is symmetrical, i.e., q+

I = q−I = 1
2 .

Here we consider two types of boundary conditions.
(bc1) Ω = R and p±I (x), q±I (x) have compact support in Ω.
(bc2) Ω = [−l, l] and zero flux boundary condition, namely,

p+(t,±l) = p−(t,±l).

1.2 Stationary Solutions

In this section we discuss stationary solutions of the mesenchymal transport model (1.5) using
a similar argument as used in [5]. We first present a second-order telegraph equation which is
derived from system (1.5). To this end, we add and subtract the first two equations of (1.5) and
obtain equations for the total population p = p+ + p− and the population flux j = s(p+ − p−)

pt + jx = 0,

jt + s2px = −µj + µ(q+ − q−)sp.
(1.10)

with initial conditions p(0, x) = pI(x) and j(0, x) = jI(x), where pI and jI are determined from
the initial condition (1.9) of p+ and p−. We differentiate the first equation of (1.10) with respect
to t and the second equation with respect to x. After that, we subtract the resulting equations
and end up with a damped wave equation with drift term (see [11])

ptt + µpt + µ(sξqp)x = s2pxx, (1.11)

where the drift velocity is given by the expectation of q denoted by ξq = q+− q−. The equation
(1.11) is a form of telegraph equation which describes electrical transmission in a telegraph cable
when current leaks to the ground. A drift-diffusion equation can be approximated by taking the
limit µ → ∞, s → ∞ with diffusivity D = s2/µ < ∞ and drift velocity sξq < ∞. The same
drift-diffusion equation also can be obtained by multiscale methods (see [11]).

Suppose that equations (1.10) are defined in the interval Ω = [−l, l] and satisfies the bound-
ary condition (bc2). In terms of cell population density, the zero flux boundary condition is
equivalent to p+(±l) = p−(±l) = 1

2p(±l). We want to know under what conditions, if any,
these equations have time-independent, nonconstant solutions for p±. The steady state condi-
tion jx = 0 of the first equation of (1.10) implies that j is a constant and zero flux boundary
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condition j(±l) = 0 furthermore gives that j = 0. Consequently the second equation of (1.10)
becomes

px =
µ

s
(q+ − q−)p.

This is a first order equation for p whose solution can be easily found

p(x) = p(−l) exp
(

µ

s

∫ x

−l
(q+(y)− q−(y))dy

)
. (1.12)

The vanishing flux j = 0 gives that p+ = p− and hence

p±(x) =
p(−l)

2
exp

(
µ

s

∫ x

−l
(q+(y)− q−(y))dy

)
. (1.13)

Here the above integrals are bounded since q+ and q− are bounded by 1 which will be proven
later. From the above equations, one can see how the distribution of fiber orientations q± affect
the distribution of cell population p and p±. In particular, if µ 6= 0 and q+ 6= q−, then p and p±

are nonconstants which correspond to the stationary solutions of the system (1.10).
Particulary in undirected tissues, q+ = q− = 1

2 due to symmetry, then p and p± are constants
and p+ = p− = p(−l)

2 , which means that there is no aggregation of cells.
If q+ = 1, q− = 0, then

p±(x) =
p(−l)

2
exp

(µ

s
(x + l)

)
.

The cells accumulate at the end x = l. This is not unexpected since all cells bias movement to
the right and eventually accumulate at the right end due to zero-flux boundary condition.

Similarly, if q+ = 0, q− = 1, then

p±(x) =
p(−l)

2
exp

(
−µ

s
(x + l)

)
,

and p± attains the maximum at x = −l.
Therefore here we identify a mechanism which can lead to aggregation, namely, µ 6= 0 and

the tissue are directed.

2 Classification as Hyperbolic System

We show that the system (1.5) is hyperbolic and we discuss shock solutions in this section. To
this end, we rewrite (1.5) in a matrix form

ut + Θux = H(u), (2.1)

where u, Θ and H(u) are defined as follows

u =


p+

p−

q+

q−

 ,Θ =


s 0 0 0
0 −s 0 0
0 0 0 0
0 0 0 0

 ,H(u) =


−µp+ + µq+(p+ + p−)
−µp− + µq−(p+ + p−)

κ(p+ − p−)(q− − q+ + 1)q+

κ(p+ − p−)(q− − q+ − 1)q−

 .
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The drift term is linear and hence the system (2.1) cannot create shock solutions. The 4 × 4
matrix Θ has eigenvalues λ1 = −s < 0, λ2 = λ3 = 0, λ4 = s satisfying λ1 < λ2 = λ3 < λ4

provided that s > 0. This implies the system (2.1) and hence (1.5) is hyperbolic but not strictly
hyperbolic. The eigenvectors ri corresponding to eigenvalues λi, i = 1, 2, 3, 4 are

r1 =


0
1
0
0

 , r2 =


0
0
1
0

 , r3 =


0
0
0
1

 , r4 =


1
0
0
0

 .

It can be verified that ∇λi(u) · ri(u) = 0 for i = 1, 2, 3, 4, where ∇λi(u) · ri(u) means the
directional derivative of the eigenvalues λi in the direction of the eigenfunction ri. Hence all
characteristic field (λi, ri) are linearly degenerated [2, 20]. Thus a shock which separates in-
tersecting characteristics defining a discontinuity does not exist. However the solution might
contain a contact discontinuity if data are discontinuous (see [2]).

The characteristic slopes are determined from the eigenvalues of the 4 × 4 matrix Θ in the

equation (2.1) by
dx

dt
= λi, which is never infinite, so the line t = 0 is nowhere tangent to

a characteristics. Therefore if initial data for p+, p−, q+, q− is given along the line t = 0, the
resulting Cauchy problem should be well-posed as verified in the next section.

3 Global Existence

In this section, we will prove the global existence of solutions to the system (1.5) subject to the
initial condition (ic) and boundary condition (bc1). For bounded domain, the analysis for global
existence will be a little bit more complicated than unbounded domain by taking into boundary
conditions and is left open here.

The system (1.5) is a coupled system of two partial differential equations and two ordinary
differential equations. To prove the global existence of solutions to the system (1.5), we first
prove the nonnegativity of solutions.

Lemma 3.1. Let p±I ≥ 0 and q±I ≥ 0 with q+
I + q−I = 1. Assume that p±, q± ∈ L∞(0, T ;L∞(R))

is a solution to system (1.5) for some T > 0, then p± ≥ 0 and 0 ≤ q±(t, x) ≤ 1 with q++q− = 1.

Proof. We first show that q+ + q− = 1. Toward this end, we define two new quantities:
q = q+ + q−, ξ = q+− q−. Then we add and subtract the third and fourth equations of (1.5) to
obtain equations for q and ξ as follows

qt = −κ(p+ − p−)(q − 1)ξ,
ξt = κ(p+ − p−)(q − ξ2),

(3.1)

which can be rewritten as a vector form

Qt = −κ(p+ − p−)F (Q), (3.2)
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where

Q =
(

q
ξ

)
, F (Q) =

(
(q − 1)ξ
ξ2 − q

)
The initial data of the system (3.1) is given by

qI = q+
I + q−I = 1, ξI = q+

I − q−I . (3.3)

It is straightforward to verify that the vector field F (Q) ∈ C1(R2) and hence is locally Lipschitz
continuous with respect to Q for given p± ∈ L∞(0, T ;L∞(R)). Then the Cauchy problem (3.1),
(3.3) has a unique solution by the fundamental existence-uniqueness theorem. On the other
hand, it is trivial to check that q = 1 is a solution of the first equation (3.1) stasifying initial
condition (3.3). Hence the system (3.1) and (3.3) has a unique solution (q = 1, ξ) where ξ is
determined by the equation

ξt = κ(q+ − q−)(1− ξ2), ξI = q+
I − q−I .

It is worthwhile to point out that we provide an idea here to prove that q = 1 and the existence
(local) of q and ξ given that p± ∈ L∞(0, T ;L∞(R)), which will be used later again without
repeating this procedure.

We proceed to show that solutions q± preserve the positivity. Substituting q− = 1− q+ into
the third equation of (1.5), we have

q+
t = 2κ(p+ − p−)(1− q+)q+. (3.4)

There are three cases to consider:
Case 1: q+

I = 1. Then we conclude that q+ = 1 is a solution to equation (3.4) with initial
condition q+

I = 1. Since the right hand side of equation (3.4) is locally Lipschitz continuous
with respect to q+, the solution of the equation (3.4) is unique. Hence q+(t, x) = 1 for all t, x.

Case 2: q+
I = 0. Using the similar argument as in Case 1 we can show that q+(t, x) = 0 is

a unique solution to the equation (3.4).
Case 3: 0 < q+

I < 1. Then integrating the equation (3.4) with respect to t from 0 to t, one
has

q+

1− q+
=

q+
I

1− q+
I

exp
( ∫ t

0
2κ(p+(τ, ·)− p−(τ, ·))dτ

)
.

Note that 0 < q+
I < 1. Then we have

q+

1− q+
≥ 0

It follows immediately from the above equality that 0 ≤ q+ ≤ 1. Combining Case 1, Case 2 and
Case 3, we get that 0 ≤ q+ ≤ 1 for 0 ≤ q+

I ≤ 1. Applying q+ = 1− q− into the fourth equation
of (1.5) and using the same approach we can show that 0 ≤ q− ≤ 1.
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Finally we show the positivity of cell density p±(t, x). We use a theory of invariant principle
in paper [10] for the hyperbolic random walk system to achieve this goal. To this end, we write
the first two equations of the system (1.5) in a matrix form

φt = Gφ + Bφ + F(φ), (3.5)

where

φ =
(

p+

p−

)
, G =

 −s
∂

∂x
0

0 s
∂

∂x

 , B =
(
−µ µ
µ −µ

)
,

and

F(φ) =
(

µq+(p+ + p−)− µp−

µq−(p+ + p−)− µp+

)
.

Let Λ = [0,∞) ⊂ R. Then Λ is convex and for each z ∈ ∂Λ, Λ has on outward normal vector.
Moreover, define Σ = Λ×Λ. Let φ ∈ ∂Σ and without loss of generality we assume that φ = (ϑ, 0)
with ϑ ≥ 0. Then for the outward normal vector η(φ) = (0,−1) of φ, we have

η(φ) · (Bφ + F(φ)) = −µq−ϑ ≤ 0,

where we have used the positivity of q−. Then by the theory in [10] (Theorem 2), the set
Σ is positively invariant for the system (3.5), which shows the positivity of p±. The proof is
completed.

By the Lemma 3.1, we obtain the following theorem.

Theorem 3.1. The set { (p+, p−, q+, q−) | p± ≥ 0, q± ≥ 0, q+ + q− = 1} is invariant to the sys-
tem (1.5) provided that p±, q± ∈ L∞(0,∞;L∞(R)).

Remark 3.1. For p+ > p−, the term p+ − p− > 0 and q+ will increase while q− decreases.
Hence directionality is enhanced by the last two equations of (1.5).

Next, we are devoted to prove the global existence of solutions to system (1.5) subject to
initial condition (ic). Due to Theorem 3.1, we can reformulate the system (1.5) as

p+
t + sp+

x = −µp+ + µq+(p+ + p−),
p−t − sp−x = −µp− + µq−(p+ + p−),

ξt = κ(p+ − p−)(1− ξ2),

(3.6)

where q+ and q− are given by

q+ =
1 + ξ

2
, q− =

1− ξ

2
. (3.7)
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It is worthwhile to note that here ξ represents the expectation of fiber orientation in one dimen-
sion subject to the initial condition ξI := ξ(0) = q+

I − q−I . Furthermore from initial condition
(ic), we have

−1 ≤ ξI ≤ 1.

We seek the global solutions of the system (3.6) in the following space

X(0, T ) := {(p+, p−, ξ)| p±, ξ ∈ L∞(0, T ;L1 ∩ L∞(R))}

We first give the local existence of solutions for the system (3.6).

Lemma 3.2 (Local Existence). Let p±I , q±I (x) ≥ 0 and q+
I + q−I = 1. Assume p±I ∈ L1 ∩ L∞(R)

and ξI ∈ L1(R). Then there exists a time T0 > 0 such that the problem (3.6) with boundary
condition (bc1) has a unique solution (p+, p−, ξ) ∈ X(0, T0) satisfying −1 ≤ ξ ≤ 1.

Proof. For short we denote η = (p+, p−, ξ)T . The norm of the vector η is defined as

‖η‖L∞(R) = max{‖p+‖L∞(R), ‖p−‖L∞(R), ‖ξ‖L∞(R)},
‖η‖L1(R) = max{‖p+‖L1(R), ‖p−‖L1(R), ‖ξ‖L1(R)},

Moreover for the convenience of presentation we denote

f1(p+, p−, ξ) = −µp+ +
µ

2
(1 + ξ)(p+ + p−),

f2(p+, p−, ξ) = −µp− +
µ

2
(1− ξ)(p+ + p−),

f3(p+, p−, ξ) = κ(p+ − p−)(1− ξ2).

Clearly the function fi(i = 1, 2, 3) is differentiable with repsect to its arguments and hence is
locally Lipschitz continuous in any bounded subset of L1 ∩ L∞(R).

It is straightforward to show that system (3.6) is strictly hyperbolic with three distinct
uniform bounded eigenvalues λ1, λ2 satisfying −s = λ1 < λ3 = 0 < λ2 = s. Then for each
i = 1, 2, 3 and each point (t, x) in the t− x plane, the characteristic equation of (3.6) defined by

dxi

dτ
= λi, xi(t) = x,

has a unique solution defined for all t > 0, describing the i − th characteristic through point
(t, x). We denote such a solution by t 7→ xi(τ ; t, x), where xi(τ ; t, x) = x + λi(τ − t) and in
particular x3(τ ; t, x) = x due to λ3 = 0. Following the argument in [2], we define

D = { (t, x) | 0 ≤ t < `/s,−` + st ≤ x ≤ l − st} .

Note that ` can be arbitrarily large since the domain is unbounded. Then for every (t, x) ∈ D
and every i ∈ {1, 2}, the characteristic curve {(t, xi(τ ; t, x))| 0 ≤ τ ≤ t} is entirely contained
inside D with xi(0; t, x) ∈ [−`, `]. Such a set D is called a domain of determinacy (see [2]).
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The system (3.6) has two independent characteristics. We integrate the first equation of
(3.6) along the second characteristic curve x2(τ ; t, x), the second equation of (3.6) along the first
characteristic x1(τ ; t, x) and the third equation along x3(τ ; t, x) = x, (3.6) can be rewritten as
an ODE system

p+
τ = −µp+(τ,x2(τ)) + µq+(τ,x2(τ))(p+(t,x2(τ) + p−(τ,x2(τ))),

p−τ = −µp+(τ,x1(τ)) + µq−(τ,x1(τ))(p+(τ,x1(τ)) + p−(τ,x1(τ))),

ξτ = κ(p+(τ, x)− p−(τ, x))(1− ξ2(τ, x)),

(3.8)

where xi(τ) =: xi(τ ; t, x) for i = 1, 2 and x3(τ) = x.
In a vector form, (3.8) can be reformulated as

uτ = f(u), u ∈ R3

where

f(u) =

 f1(u(τ,x2(τ)))
f2(u(τ,x1(τ)))

f3(u(τ, x))


Note that xi(τ) ∈ R for (i = 1, 2). Then f(u) is locally Lipschitz continuous in any bounded
subset of L1 ∩ L∞(R) and hence the local existence follows by the fundamental theorem of
existence and uniqueness theorem(e.g., see [23]). Due to Theorem 3.1 and the definition of ξ, it
has that −1 ≤ ξ ≤ 1. Then the proof is finished.

We proceed to derive a priori extimates in order to get global existence.

Lemma 3.3 (A priori extimates). Let the assumptions in Lemma 3.2 hold and (p+, p−, ξ) be
the solution obtained in Lemma 3.2. Then for any 0 < t ≤ T0, there exist constants C > 0 and
C̃ > 0 such that

‖p+(t)‖L1∩L∞(R) + ‖p−(t)‖L1∩L∞(R) + ‖ξ(t)‖L1∩L∞(R) ≤ C exp(C̃T ),

and −1 ≤ ξ ≤ 1, where ‖ · ‖L1∩L∞(R) = ‖ · ‖L1(R) + ‖ · ‖L∞(R).

Proof. For each (t, x) ∈ D and xi(0; t, x) ∈ [−`, `], we integrate the first two equations of
(3.8) with respect to τ over [0, t] and obtain that

p+(t, x) = p+(x2(0)) +
∫ t

0
f1

(
p+(τ,x2(τ)), p−(τ,x2(τ)), ξ(τ,x2(τ))

)
dτ,

p−(t, x) = p−(x1(0)) +
∫ t

0
f2

(
p+(τ,x1(τ)), p−(τ,x1(τ)), ξ(τ,x1(τ))

)
dτ,

ξ(t, ξ) = ξI +
∫ t

0
(p+(τ, x)− p−(τ, x))(1− ξ2(τ, x))dτ.

(3.9)
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Note that we call (p+, p−, ξ) a broad solution (see [2]) from the domain of determinacy D into
R2 for Cauchy problem of (3.8) if (p+, p−, ξ) satisfies (3.9), at almost every point (t, x) ∈ D.
Taking L∞-norm on both sides of of (3.9), using the fact that fi is Lipschitz continuous, and
tanking into account fi(0, 0, ξ) = 0 for i = 1, 2, we infer that

‖p+(t)‖L∞(R) + ‖p−(t)‖L∞(R) + ‖ξ(t)‖L∞(R)

≤ C1 + C2

∫ t

0
(‖p+(τ)‖L∞(R) + ‖p−(τ)‖L∞(R) + ‖ξ(τ)‖L∞(R))dτ.

where C1 is a constant such that ‖p+
I ‖L∞(R) + ‖p−I ‖L∞(R) + ‖ξI‖L∞(R) ≤ C1 and C2 depends on

the Lipschitz contants of function fi(i = 1, 2, 3) and the turing rate µ.
The application of Gronwall’s inequality to the above inequality gives

‖p+(t)‖L∞(R) + ‖p−(t)‖L∞(R) + ‖ξ(t)‖L∞(R) ≤ C1 exp(C2t).

Similarly, one can deduce that there exist constants C3, C4 > 0 such that

‖p+(t)‖L1(R) + ‖p−(t)‖L1(R) + ‖ξ(t)‖L1(R) ≤ C3 exp(C4t).

The last two inequalities imply the first conclusion of the Lemma. The second conclusion follows
from Theorem 3.1 and the definition of ξ.

By Lemma 3.2 and Lemma 3.3, the existence theorem of global solutions is obtained.

Theorem 3.2 (Global Existence). Let q±I (x) ≥ 0 and q+
I +q−I = 1. Assume p±I , ξI ∈ L1∩L∞(R).

Then the problem (3.6) with boundary condition (bc1) has a unique global solution (p+, p−, ξ) ∈
X(0,∞) satisfying −1 ≤ ξ ≤ 1.

Proof. We suppose that the maximal time Tmax of existence for the solution of (3.6) is finite,
namely, Tmax < ∞. From Lemma 3.3, we know that −1 ≤ ξ ≤ 1 for any 0 ≤ t ≤ Tmax. Hence
according to the well known alternative results (for example, see [21, 23]), one has that

lim
t→Tmax

‖p+(t)‖L1∩L∞(R) = ∞ or lim
t→Tmax

‖p−(t)‖L1∩L∞(R) = ∞. (3.10)

On the other hand, when −1 ≤ ξ ≤ 1, we have proven in Lemma 3.3 that for any t ≤ Tmax, it
holds that

‖p+(t)‖L1∩L∞(R) + ‖p−(t)‖L1∩L∞(R) ≤ C exp(C̃Tmax), 0 ≤ t ≤ T,

which is contradictive to (3.10) for 0 < Tmax < ∞. This contradiction, in turn confirms that
Tmax = ∞ and hence the global solution follows.

Remark 3.2. Mathematically when cutting efficiency κ = 0, the system (1.5) becomes the one
dimensional mesenchymal motion model for undirected tissue (see [11]). Due to the assumption
q+(t, x) = q−(t, x) for undirected tissues, we obtain the following global theorem for the model
associated with undirected tissue.
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Theorem 3.3. Let κ = 0 and q+
I = q−I = 1/2. Assume p±I ∈ L1 ∩ L∞(R). Then there exists a

unique global solution to system (3.6) such that (p+, p−, ξ) ∈ X(0,∞) satisfying ξ = 0.

Since the functions on the right hand side of (1.5) are continuously differentiable with respect
to p+, p−, q+ and q−, by a theory for semilinear hyperbolic system in [2] (see Theorem 3.6 in
[2]), the broad solution of Cauchy problem (1.5) obtained in Theorem 3.2 is indeed a classical
solution provided that the initial data (1.9) is continuously differentiable, namely, we have the
following results.

Theorem 3.4. Let the assumptions in Theorem 3.2 hold. In addition, we assume that the initial
data in (1.9) are continuously differentiable. Then the broad solution u : D → R2 obtained in
Theorem 3.2 provides a classical solution. Moreover, if initial data in (1.9) are nonnegative,
the solution is nonnegative. Its partial derivatives ut, ux are broad solutions of the following
semilinear system, respectively,

(ut)t = Huut −Θ · (ut)x,

(ux)t = Huux −Θ · (ux)x,

where u, H and Θ are defined as in section 2 and Hu denotes the derivative of H with respect
to u.

Proof. The proof is similar to the argument in [2]. We omit the details.

4 Macroscopic Limits

For the given fiber distribution q±(t, x), formal parabolic and hydrodynamic limits were derived
in [11] for the mesenchymal motion models (1.5) in n(n ≥ 1) dimensions. In this section we
rigorously carry out the parabolic limits for system (1.5) under some suitable assumptions.

To derive a limiting diffusion model for (1.5), we use the parabolic scaling of space and time
by x̄ = εx denoting a macroscopic space scale and t̄ = ε2t a long time scale. Substituting
these transformations into (3.6) (or equivalently (1.5)) and dropping the bar for convenience,
we obtain the following equations with initidal data

ε2∂tp
+
ε + εs∂xp+

ε = −µp+
ε + µq+

ε (p+
ε + p−ε ), (4.1)

ε2∂tp
−
ε − εs∂xp−ε = −µp−ε + µq−ε (p+

ε + p−ε ), (4.2)
ε2∂tξ

+
ε = κ(p+

ε − p−ε )(1− ξ2
ε ), (4.3)

p±ε (0, ·) = p±I (·), ξε(0, ·) = q+
I − q−I , (4.4)

where

q+
ε =

1 + ξε

2
, q−ε =

1− ξε

2
.



Mesenchymal motion models in one dimension 15

Note that the global existence of classical solutions to the above system for ε = 1 has been
established in section 4 and furthermore it holds that

0 ≤ q+
ε , q−ε ≤ 1,−1 ≤ ξε ≤ 1. (4.5)

Indeed the global existence of solutions to (4.1)-(4.4) and assertion (4.5) for each ε > 0 can be
obtained by directly adopting the argument for ε = 1. Using (4.5) and denoting Jε = p+

ε − p−ε ,
we obtain by adding and subtracting (4.2) from (4.1)

ε2∂tpε + εs∂xJε = 0, (4.6)
ε2∂tJε + εs∂xpε = µξεpε − µJε, (4.7)

with initial data pε(0) = pI = p+
I + p−I , Jε(0t) = JI = p+

I − p−I . The system (4.6), (4.7) is
equivalent to the following second order damped hyperbolic equation (see also [11])

ε4

µ
∂2

t pε + ε2∂tpε + ε∂x(sξεpε) = ε2 s2

µ
∂2

xpε, (4.8)

which indicates that the drift term is the dominating term for ε small. As in [11], we assume
that the expectation of fiber directions is small such that

ξq(t, x) = lim
ε→0

1
ε
ξε

(
t

ε2
,
x

ε

)
= lim

ε→0

1
ε

[
q+

(
t

ε2
,
x

ε

)
− q−

(
t

ε2
,
x

ε

)]
< ∞. (4.9)

Under the above assumption, we formally obtain a drift-diffusion model with diffusion coefficient
s2

µ and drift velocity sξq from (4.8) by sending ε → 0 (see [11])

∂tp + ∂x(sξqp) =
s2

µ
∂2

xp, (4.10)

where p is the limit of pε as ε → 0. The aim of this section is to show that the solution of
equation (4.8) is convergent to the solution of equation (4.10) in the weak sense as ε → 0 . To
proceed we give the definition of weak solutions we address here.

Definition 4.1. We say that a function P ∈ L2([0, T ];H1(R)) is a weak solution of (4.10) if
P (t, x) satisfies the following

(a) For any test function φ ∈ C∞0 ([0, T )× R), it holds that

−
∫ T

0

∫
R

P∂tφdxdt−
∫ T

0

∫
R
(sξqP )∂xφdxdt =

s2

µ

∫ T

0

∫
R

P∂2
xφdxdt +

∫
R

PIφ(0)dx.

(b) P (0) = pI = p+
I + p−I .
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Next we establish the convergence properties of the solution pε and Jε as ε → 0. It suffices
to derive uniform estimates for the solutions of system (4.6) and (4.7), which is given in the
following Lemma.

Lemma 4.1. Let p±I ∈ H1(R) and the assumption (4.9) hold. Assume further that there exists
a constant C1 > 0, independent of ε, such that

|ξε|, |∂xξε| ≤ C1ε. (4.11)

Then there is a constant C2, independent of ε, such that the solution (pε, qε) of system (4.1)-(4.4)
satisfies for any 0 ≤ t ≤ T

‖pε(t)‖H1(R) + ‖Jε(t)‖H1(R) + ‖ε∂tpε‖L2(R)

≤ C2(C1, µ, T )(‖pI‖H1(R) + ‖JI‖H1(R)),
(4.12)

where the constant C2 depends on C1, µ and T .

Proof. We use the energy method to prove the Lemma. First note that pε(0) = pI =
p+

I + p−I ∈ H1(R) and Jε(0) = JI = p+
I − p−I ∈ H1(R). Multiplying the equation (4.6) by pε and

the equation (4.7) by Jε, adding the resultant equations and integrating it over [0, t) × R, we
end up with the following inequality

1
2

∫
R
(|pε|2 + |Jε|2)dx +

∫ t

0

∫
R

µε−2|Jε|2dxdτ

=
1
2

∫
R
(|pI |2 + |JI |2)dx +

∫ t

0

∫
R

µε−2ξεpεJεdxdτ

≤ 1
2

∫
R
(|pI |2 + |JI |2)dx +

∫ t

0

∫
R

µC1|ε−1pεJε|dxdτ,

(4.13)

where we have used the assumption (4.11). Applying Young’s inequality |C1ε
−1pεJε| ≤ 1

2(ε−2|Jε|2+
C2

1 |pε|2) in (4.13), we have∫
R
(|pε|2 + |Jε|2)dx +

∫ t

0

∫
R

µε−2|Jε|2dxdτ

≤
∫

R
(|pI |2 + |JI |2)dx + µC2

1

∫ t

0

∫
R
|pε|2dxdτ.

(4.14)

By Gronwall’s inequality, we immediately get a L2-estimate of pε and Jε independent of ε such
that for 0 ≤ t < T

‖pε‖2L2(R) + ‖Jε‖2L2(R) ≤ (‖pI‖2L2(R) + ‖JI‖2L2(R)) exp(µC2
1T ). (4.15)

Next we go to the higher order estimates. To this end, we multiply the equation (4.6) by −∂2
xpε

and the equation (4.7) by −∂2
xJε. Then we end up with the following estimates using the same
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procedure as deriving (4.13)

1
2

∫
R
(|∂xpε|2 + |∂xJε|2)dx +

∫ t

0

∫
R

µε−2|∂xJε|2dxdτ

=
1
2

∫
R
(|∂xpI |2 + |∂xJI |2)dx +

∫ t

0

∫
R

µε−2∂x(ξεpε)∂xJεdxdτ

≤ 1
2

∫
R
(|∂xpI |2 + |∂xJI |2)dx +

∫ t

0

∫
R

µC1ε
−1(|pε|+ |∂xpε|)|∂xJε|dxdτ.

(4.16)

Using Young inequality and the fact (a + b)2 ≤ 2(a2 + b2) for a, b ∈ R, we deduce that∫ t

0

∫
R

µC1ε
−1(|pε|+ ∂xpε|)|∂xJε|dxdτ

≤ 1
2

∫ t

0

∫
R

µε−2|∂xJε|2dxdτ +
C2

1

2

∫ t

0

∫
R

µ(|pε|+ |∂xpε|)2dxdτ

≤ 1
2

∫ t

0

∫
R

µε−2|∂xJε|2dxdτ + C2
1

∫ t

0

∫
R

µ|∂xpε|2dxdτ + C(T, pI , JI),

(4.17)

where (4.15) has been used and

C(T, pI , JI) = µC2
1T (‖pI‖2L2(R) + ‖JI‖2L2(R)) exp(µC2

1T )

Now substituting (4.17) into (4.13) and applying Gronwall’s inequality into the resulting in-
equality, we infer that

‖∂xpε‖2L2(R) + ‖∂xJε‖2L2(R)

≤ C(T, pI , JI)(‖∂xpI‖2L2(R) + ‖∂xJI‖2L2(R)) exp(µC2
1T )

≤ µC2
1T (‖pI‖H1(R) + ‖JI‖H1(R))

2 exp(2µC2
1T )

(4.18)

Furthermore by (4.6) we have

‖ε∂tpε‖L2(R) = ‖∂xJε‖L2(R). (4.19)

Then the combination of (4.15), (4.18) and (4.19) gives (4.12) and completes the proof.

Theorem 4.1. Let the assumptions in Lemma 4.1 hold and pε(0) = pI = p+
I + p−I . Then as

ε → 0, the solutions pε of the equation (4.8) converge to a limit function p0, which is a weak
solution of the equation (4.10) such that p0(t = 0) = pI .

Proof. According to the energy estimates (4.12), we see that the solution sequence pε is
uniformly bounded in L2

loc([0,∞);H2(R)) and ε∂tpε is uniformly bounded in L2
loc([0,∞);L2(R))

for every ε > 0.
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As a consequence of the RELLICH-KONDRACHOV compactness theorem, there exist a
subsequence of pε and ε∂tpε, still denoted by pε and ε∂tpε, and function p0 ∈ L2

loc([0,∞);H2(R))
and p1 ∈ L2

loc([0,∞);L2(R)) such that{
pε ⇀ p0 weakly in L2

loc([0,∞);H1(R))
ε∂tpε ⇀ p1 weakly in L2

loc([0,∞);L2(R))
(4.20)

Next we show that the p0 is a weak solution of the equation (4.10) subject to the given initial
data. To this end we multiply the equation (4.8) by a test function φ ∈ C∞0 ([0, T ] × R) with
φ(T ) = ∂tφ(T ) = 0 and integrate the resultant equation to get

ε2

µ

∫ T

0

∫
R

p∂2
t φdxdt +

ε2

µ

∫
R
[pε(T )∂tφ(T )− ∂tpε(0)φ(0)]dx

− ε2

µ

∫
R
[∂tpε(T )φ(T )− pε(0)∂tφ(0)]dx +

∫ T

0

∫
R

pε∂tφdxdt +
∫

R
pε(T )φ(T )dx

− 1
ε

∫ T

0

∫
R
(sξεpε)∂xφdxdt =

∫
R

pε(0)φ(0)dx +
s2

µ

∫ T

0

∫
R

pε∂
2
xφdxdt

(4.21)

Note that pε(0) = pI = p+
I + p−I ∈ H1(R). Hence Jε(0) = JI = p+

I − p−I ∈ H1(R) and
ε∂tpε(0) = ∂xJε(0) ∈ L2(R) from equation (4.6). Thus the second and third and fourth terms
in (4.21) vanish as ε → 0 by (4.20). Using assumption (4.9) and sending ε → 0 in (4.21), we
obtain from (4.20) that ∫ T

0

∫
R

p0∂tφdxdt−
∫ T

0

∫
R
(sξqp0)∂xφdxdt

=
∫

R
pIφ(0)dx +

s2

µ

∫ T

0

∫
R

p0∂
2
xφdxdt,

(4.22)

which shows that p0 is a weak solution of the equation (4.10) satisfying the initial condition.

Remark 4.2. It is worthwhile to note that the assumption (4.11) and (4.9) is automatically
satisfied for the case of undirected tissue where ξε = 0 (see also Remark 4.2). Then the limit
equation for the case of undirected tissue is a pure diffusion equation without a drift term.

5 Traveling Waves

Since the system (1.5) models the invasion of cells through tissues, it is of interest to look for
the traveling wave solutions for (1.5) and see what kinds of movement patterns are used by cells
for invasion. To this end, we first use the invariant motion q+ + q− = 1 to rewrite system (1.5)
as follows

pt + jx = 0,

jt + s2px = −µj + µs(2q+ − 1)p,

q+
t =

2κ

s
j(1− q+)q+,

(5.1)
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where p = p+ + p−, j = s(p+ − p−), as usual.
We introduce the wave variable

z = x− ct,

where c ≥ 0 denotes the wave speed. Then we can define the wave profile by

p(z) = p(t, x) = p(x− ct),
j(z) = j(t, x) = j(x− ct),

q+(z) = q+(t, x) = q+(x− ct).
(5.2)

Substituting (5.2) into (5.1), we convert (5.1) into an ODE system as follows

−cpz + jz = 0,

−cjz + s2pz = −µj + µs(2q+ − 1)p,

−cq+
z =

2κ

s
j(1− q+)q+.

(5.3)

We prescribe the boundary conditions by

p(−∞) = p(+∞) = 0,
j(−∞) = j(+∞) = 0,

q+(−∞) = q+
l , q+(+∞) = q+

r ,
(5.4)

where q+
l and q+

r are constants and satisfy 0 ≤ q+
l , q+

r ≤ 1 and q−l > q+
r . That is, we look for

the traveling pulse wave for p and decreasing traveling front wave for q+.
From equation (5.3) and the boundary conditions (5.4), we obtain an invariant of motion for

j and p

j = cp. (5.5)

Then the system (5.3) is reduced to the following two dimensional system by the substitution
of (5.5) into (5.3)

(c2 − s2)pz = µp[c− s(2q+ − 1)],

q+
z = −2κ

s
p(1− q+)q+.

(5.6)

It is clear that (5.6) becomes a singular problem when c = s and that this singular problem
has no solution satisfying the boundary conditions (5.4). Indeed if c = s, then q+ = 1 due to
µ 6= 0, which biologically means cells continuously move to the right without changing movement
direction. Also, q+ = 1 does not agree with the boundary conditions (5.4). Thus we assume
c 6= s hereafter. Consequently the system (5.6) can be rewritten as

pz = −αp[c− s(2q+ − 1)],
q+
z = −βp(1− q+)q+,

(5.7)
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where α = − µ

c2 − s2
, β =

2κ

s
> 0. Due to the biological interest, we only consider nonnegative

solutions where p ≥ 0 and 0 ≤ q± ≤ 1. In fact, the nonnegativity of solutions to the system
(5.7) with boundary conditions (5.4) can be analogously obtained by following the argument
as used in section 3. Therefore we are only interested in those heteroclinic orbits that remain
nonnegative.

5.1 Phase Plane Analysis

System (5.7) has a continuum of steady states (0, θ) with 0 ≤ θ ≤ 1. The Jacobian matrix
linearized about the steady state (0, θ) is

Js =
[
−α

(
c− s(2θ − 1)

)
0

−β(1− θ)θ 0

]
.

The eigenvalues of Js are easily solved

λ1 = −α
(
c− s(2θ − 1)

)
, λ2 = 0. (5.8)

The corresponding eigenvectors are

r1 =
[

λ1

−β(1− θ)θ

]
, r2 =

[
0
1

]
. (5.9)

When c 6= s, we have two cases to consider corresponding to the sign of eigenvalue λ1.
Case 1. If c > s > 0, then α < 0. It is straightforward to check that λ1 > 0 which indicates

every steady state (0, θ) with 0 ≤ θ ≤ 1 is unstable and consequently there is no nonnegative
heteroclinic connection due to the lack of the stable manifold. We thus claim that 0 ≤ c < s
is a necessary condition for the existence of a traveling wave and s is then a critical traveling
speed. Thus we assume that c < s here and hereafter.

Case 2. If 0 ≤ c < s, then α > 0. We first fix traveling speed c and solve c− s(2θ∗ − 1) = 0
to get θ∗ = c+s

2s . Clearly we have that 0 < θ∗ < 1. Furthermore the following arguments hold

θ < θ∗ ⇒ λ1 < 0,
θ = θ∗ ⇒ λ1 = 0,
θ > θ∗ ⇒ λ1 > 0.

(5.10)

Next, we show that there exists a pair of equilibria which produce a heteroclinic connection
for each fixed c satisfying 0 ≤ c < s. From (5.8), we see that every steady state (0, θ) of
the system (5.7) with 0 ≤ θ ≤ 1 has two manifolds one of which is a one dimensional center
manifold corresponding to zero eigenvalue λ2. Since each center manifold is invariant under the
flow of the system (5.7) and the set {(p, q+) : p = 0, 0 ≤ q+ ≤ 1} consists of steady states
only and hence is invariant, the center manifold acts in the direction of the q+ axis where
0 ≤ q+ ≤ 1. So the heteroclinic connection is only determined by the stable and unstable
manifolds corresponding to positive and negative eigenvalue λ1, respectively. The existence of a
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heteroclinic orbit connecting the unstable manifold of one fixed point with the stable manifold
of another fixed point, corresponds to the existence of a traveling wave (heteroclinic orbit). We
are going to rigorously prove the existence of such a heteroclinic connections below. Beyond
this, we also shall prove the existence of a family of travelling waves since a continuum of steady
state exists for the system (5.7). Before proceeding, we give a remark as follows.

Remark 5.1. The constants q+ = 0 or q+ = 1 are solutions of the second equation of (5.7) and
furthermore it holds that

(a) If q+ = 0, then p → +∞ as z → −∞.
(b) If q+ = 1, then p → +∞ as z → +∞.

Therefore, neither the orbit q+ = 0 nor q+ = 1 can form a heteroclinic connection although
{q+ = 1} is the unstable manifold of the equilibrium (0, 1) and {q+ = 0} is the stable manifold
of the equilibrium (0, 0). So hereafter we assume that 0 < q+ < 1 in order to study the existence
of travelling waves.

5.2 Existence of Travelling Waves

To show that an unstable manifold can be connected by a stable manifold, we need to investigate
the global structure of the original nonlinear system. Below we shall apply LaSalle’s invariant
principle (see [9, 19]) to study the asymptotics of solutions of the system (5.7). The asymptotic
behavior of solutions to the system (5.7) can be described in the following Lemma.

Lemma 5.1. Assume 0 ≤ c < s. Let (p, q+) be a solution of (5.7) with initial conditions pI > 0
and 0 < q+

I < 1. Then the ω-limit set is contained in the following set

N = {(p, q+)| p = 0, 0 ≤ q+ < θ∗}, (5.11)

and the α-limit set is contained in the set

G = {(p, q+)| p = 0, θ∗ < q+ ≤ 1}, (5.12)

where θ∗ = c+s
2s .

Proof. Define a function V (p, q+) by V (p, q+) = q+. Then in the set {(p, q+)| p ≥ 0, 0 ≤
q+ ≤ 1}, V (p(z), q+(z)) ≥ 0 and dV

dz ≤ 0 thanks to the second equation of (5.7). Given a number
L > 0, we now define a set

ΩL = {(p, q+) : V (p, q+) ≤ L, p > 0, 0 < q+ < 1}.

Since we restrict our attention to the case of 0 < q+ < 1, we let 0 < L < 1. Hence it holds that

ΩL = {(p, q+) : p > 0, 0 < q+ < 1}.

We now proceed to justify that the set ΩL is bounded for given 0 < L < 1. Toward this end,
we divide the first equation of (5.7) by the second equation to obtain that

dp

dq+
= −α(c + s)

β

1
(1− q+)q+

+
2αs

β

1
1− q+

. (5.13)
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Integrating (5.13) and recovering α and β yield a first integral

p(q+) =
µs

2κ

[
ln(1− q+)

c + s
− ln q+

c− s

]
+ C, (5.14)

where C is a constant of integration determined by the initial data of q+ given in (5.4).
Then for any q+ = V (p, q+) < L, p is bounded as a function of q+ from (5.14). As a result,

the set ΩL define above is bounded.
We now define another set

N1 =
{

(p, q+)
∣∣∣∣dV

dz
= 0, 0 < q+ < 1

}
From the second equation of (5.7), we know that

dV

dz
= 0 ⇐⇒ p = 0 or q+ = 0 or q+ = 1.

Therefore, N1 = {(p, q+)| p = 0, 0 < q+ < 1} and is invariant since it is comprised of steady
states only. With the help of LaSalle’s invariant principle, the ω-limits set of any trajectories
of the system staring in the set ΩL for 0 < L < 1 is contained in the set N1. Indeed we can
describe the asymptotic behavior of the solution more precisely. From (5.10), we know that
λ1 > 0 for all θ∗ < θ < 1. Then the equilibrium (0, θ) with θ∗ < θ < 1 is unstable. If we define
N2 = {(p, q+)| p = 0, θ∗ < q+ < 1}, then all solutions of the system (5.7) converge to the set as
z → +∞

N = N1 \ N2 = {(p, q+)| p = 0, 0 ≤ q+ ≤ 1}.
In a similar fashion, if we study the problem (5.7) backward on variable z, we can prove all
solutions of (5.7) converge to the set G when z → −∞, which completes the proof.

The Lemma 5.1 shows that any trajectory of the system (5.7) starting in a neighborhood of
an equilibrium (0, θ) with θ∗ < θ < 1 converges, as z → +∞, to another equilibrium (0, θ) with
0 < θ < θ∗, which gives a nonnegative heteroclinic orbit (traveling wave) connecting these two
equilibria. This heteroclinic orbit can be explicitly given by a level curve equation (5.14). It is
worthwhile to point out that the travelling speed c can be 0 from our analysis, which corresponds
to a standing wave.

Theorem 5.1. Let us consider the system (5.7). For each traveling speed c with 0 ≤ c < s, and
any θ∗ < c1 < 1 there exists a bounded, nonnegative heteroclinic orbit connecting an equilibrium
(0, c1) to the another equilibrium (0, c2), where 0 < c2 < θ∗ with θ∗ = c+s

2s . That is, there exists
a traveling solution (p, q+) of the system (5.7) connecting (0, c1) and (0, c2). Particularly, the
system (5.7) admits a standing wave for c = 0.

An example of traveling solution (p, q+) for system (5.7) is numerically plotted in Figure 1.
From the definition of p and the relation (5.5), we can derive that

p+ =
s + c

2s
p, p− =

s− c

2s
p. (5.15)
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Figure 1: The traveling wave for the system (5.7), where c = 1, s = 2, µ = 2, κ = 1. The waves
travel from the left to the right and c denotes the traveling speed and z = 0, 5, 10, 15, 20.

In addition to the relation

q− = 1− q+, j = cp, (5.16)

we find the traveling waves for p+, p−, q− and j in terms of p and q+, as given above. The plot
of the traveling structures of these quantities are given in Figure 2. A plot of all these quantities
in a coordinate system is given in Figure 3 from which the transition properties between cell
movement direction and fiber orinetation are clearly indicated.

From the equation of (5.1), we know that total mass of cells is conserved and so travelling
pulse wave is expected as we found analytically and numerically above. The numerical simulation
for p in Figure 1 indicates that individual cells can move to the left or the right, but the whole
cell group will move to right continuously. However, when the waves travel through, the fiber
orientations are modified by cells and alignment to cell movement direction is enhanced, which
is indicated by the numerical simulation for q+ in Figure 3.

5.3 Family of Travelling Waves

Note that for each left state q+
l with θ∗ < q+

l < 1 we find a corresponding right state (0, q+
r )

which is connected to (0, q+
l ) be a travelling wave with speed c. Here we give an explicit formula

which related q+
l and q+

r .

Lemma 5.2. Given a speed 0 ≤ c < s. The left and right equilibria (0, q+
l ) and (0, q+

r ) are
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Figure 2: The numerical illustration of traveling waves for p+, p−, j and q−, where c = 1, s =
2, µ = 2, κ = 1. The waves shift from the left to the right and c denotes the traveling speed and
z = 0, 5, 10, 15, 20.
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Figure 3: A plot of travelling solutions of system (1.5) in a coordinate system, where c = 1, s =
2, µ = 2, κ = 1 and z = 0, 5, 10, 15, 20.

related as (
1− q+

r

1− q+
l

)s−c

=
(

q+
l

q+
r

)s+c

, 0 ≤ c < s, (5.17)

Proof. An explicit heteroclinic connection has been given by (5.14). By the Lemma 5.1, we
infer that p(q+

l ) = p(q+
r ) = 0. Applying this condition into (5.14), one has that

ln(1− q+
l )

c + s
−

ln q+
l

c− s
=

ln(1− q+
r )

c + s
− ln q+

r

c− s
.

Rearranging the above identity yields equation (5.17).

Hence we observe a family of heteroclinic orbits as shown in Figure 4.
From (5.14) we see that p is bounded as a function of q+ if 0 < q+ < 1. It would be also of

interest to find the upper bound for each orbit and see how the upper bound varies with respect
to the right/left states of q+. Indeed, by (5.13), we get a unique critical point q+ = θ∗ such that
dp

dq+ |q+=θ∗ = 0. The second derivative of p with respect to q+ is

d2p

dq+2 = −µs

2κ

[
1

(c + s)(1− q+)2
+

1
(s− c)q+2

]
, (5.18)
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Figure 4: The illustration of a family of heteroclinic orbits for the system (5.7), where c = 1, s =
2, µ = 2, κ = 1 and θ∗ = 0.75. The arrow denotes the orientation of trajectories of the system
(5.7).

Noting that 0 ≤ c < s. It is easy to verify that d2p

dq+2 < 0 at q+ = θ∗. Moreover we know that

p(q+
l ) = p(q+

r ) = 0. Hence p attains the maximal value at q+ = θ∗ given by

pmax =
µs

2κ

[
ln(1− θ∗)

c + s
− ln θ∗

c− s

]
+ σ, (5.19)

where

σ = −µs

2κ

[
ln(1− q+

l )
c + s

−
ln q+

l

c− s

]
, θ∗ =

c + s

2s
. (5.20)

Remark 5.2. From the above equation, we know that the upper bound pmax of p depends on the
left states q+

l of q. Also, we can easily verify that upper bound pmax increases with respect to
q+
l > θ∗ (see Figure 4).

Remark 5.3. The results obtained above for traveling waves are only valid for the case of
directed tissues. For undirected tissues, travelling waves with c < s do not exist. Indeed, in the
undirected case, we know that q+ = q− = 1

2 and the system (5.7) is reduced to a scalar equation

pz =
µ2

c2 − s2
cp. (5.21)
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Clearly, the equation (5.21) has no solution satisfying boundary conditions (5.4).

6 Conclusions

In this paper, we analyze the one dimensional mesenchymal motion model proposed by Hillen
[11]. We establish the global existence of classical solutions for both case of directed and undi-
rected tissue. Particularly, we show that the model of undirected tissues (κ = 0) has a constant
solution for fiber orientation distribution such that q(t, x, +s) = q(t, x,−s) = 1

2 , which means
cells have no preference in choosing a particular movement direction and they have equal prob-
ability to move to the right or left. We discuss the existence of inhomogeneous steady sates
for the case of directed tissue. We rigorously show the convergence of macroscopic limits of the
model, i.e., the solutions of the mesoscopic model convergence to the corresponding macroscopic
continuum model. Moreover, we study the traveling wave solutions and establish the existence
of traveling pulse in total cell population p(t, x) and traveling front waves in fiber orientation
distribution q±(t, x). The standing wave (c = 0) is admitted in our analysis. This is not un-
expected since cells can move in two directions (left and right) and two traveling waves with
opposite direction can eliminate each other to result in a standing wave. All our results are
fairly consistent with the biological relevance discussed in paper [11].

The one-dimensional model appears artificial if compared to the real three-dimensional pro-
cess of cell movement in fiber tissues. The benefit of studying the one-dimensional model in
detail is twofold. First of all, this model and it’s properties give good intuition into mecha-
nisms that might be important in the higher dimensional case. For example the existence of
non-homogeneous steady states will also be expected for higher dimensional models. Also, the
model with directed fibers seems to have a richer behavior and admits traveling pulses, whereas
the undirected model does not have traveling pulses. The same might be true in higher dimen-
sions. Secondly, the model considered here describes cell movement in highly aligned tissue. In
fact, many tissues show a predominant orientation, for example the white matter tracks inside
brain tissue. The model studied here can be used to describe spread and propagation along
those aligned tissues. In that case, the traveling pulse waves from section 5 correspond to an
application of a “comb” to tissue that is aligned positively or negatively in a common direction.
If a brush is applied upstream, say, the fibers will be flipped and a higher alignment to the right
results (see simulations).

For the application of these models to cancer invasion through collagen tissue, the undi-
rected formalism is important. The result of no traveling pulses for that case does not preclude
invasions. It only precludes invasion in a self similar fashion. It is still possible that cells invade
new areas, in particular if non-linear proliferation terms are added. Traveling waves under in-
corporation of cell proliferation is an interesting open question that comes out of the research
done here.

Mathematically, the higher dimensional mesenchymal motion models show significant differ-
ences to the one dimensional case. In one dimension, fiber orientation q(t, x, θ) only has two
direction and hence is bounded due to the normalization condition (5.1). However, in higher di-
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mension, fibers have infinite many distributional directions and highly aligned tissue corresponds
to q(t, x, θ) being a Dirac delta function along that direction. Hence the function spaces have to
be chosen to include non-integrable distributions, and standard L2 or L∞ methods do not apply.
In a forthcoming paper [14], we will study the existence of solutions for the high dimensional
mesenchymal motion models in a Banach space of measurable functions using semigroup theory.
If the existence theory stands, we can look into the interesting network formation dynamics,
which were found numerically in Painter [22].
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