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Abstract

The normal tissue complication probability (NTCP) is a measure for the estimated
side effects of a given radiation treatment schedule. Here we use a stochastic logistic
birth death process to define an organ specific and patient specific NTCP. We empha-
size an asymptotic simplification which relates the NTCP to the solution of a logistic
differential equation. This framework is based on simple modelling assumptions and it
prepares a framework for the use of the NTCP model in clinical practice. As example,
we consider side effects of prostate cancer brachytherapy such as increase in urinal
frequency, urinal retention, and acute rectal dysfunction.
Key words: normal tissue complication probability, logistic birth death process, tu-
mor control probability, radiation treatment, side effects, TCP, NTCP, brachytherapy,
prostate cancer

1 Introduction

The goal of radiotherapy is to deliver a sufficient radiation dose to the tumor to provide
a high probability of cure while the surrounding healthy tissue is minimally damaged
and left functionally and structurally competent. To achieve this goal, it is necessary to
have a method of estimating the probability of normal tissue complication. Quantitative
measures for the expected negative side effects on healthy tissue are called Normal Tissue
Complication Probabilities (NTCP) ([18, 22, 28, 11]). One such model was introduced
recently by Hanin and Zaider [11]. Their NTCP model is based on a logistic competition
model and it is applied to urethral toxicity of radiation therapy of prostate cancer. The
model of [11] is based on an ordinary differential approach, where the model parameters
are patient specific. There it is argued that a deterministic model is appropriate, since the
relevant population sizes are large and stochastic events are negligible. We confirm this
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observation, using different methods. We develop the NTCP from a stochastic logistic
birth-death process and we consider the limit of large cell populations. In this limit, we
find that the mean field equation is a good model for practical use in NTCP calculations.
We develop a framework which allows NTCP calculations based on a few parameters of
healthy tissue that should be easily obtained. We show how this method can be used
to analyze side effects of brachytherapy of prostate cancer. However, several parameters,
related to radiosensitivities of the urethra, the bladder and the rectum, have not yet been
measured in the literature and we base our modelling on plausible assumptions. We hope
that in the future these parameters can be obtained.

The mathematical formulation of a NTCP is similar to the formulation of the tumor
control probability (TCP), which represents the probability that, after a radiation treat-
ment, no cancer cell has survived in the irradiated domain. The aim of treatment is to
achieve a TCP value that is close to one. While the TCP measures the damage to can-
cerous tissue, the damage of surrounding healthy tissue is not included in a TCP model.
Hence here we develop a cousin model, the NTCP, and we use the existing TCP models
as guidelines for the development of NTCP models for healthy tissue. Hanin and Zaider
[11] argue that a stochastic modelling is not actually needed and an ordinary differential
equation (ODE) approach is sufficient. They base this assessment on a calculation of a
typical coefficient of variation, which is small. Here we use a stochastic approach, since
the clonogenic cells which drive cancer progression, the cancer stem cells, could arise in
small numbers. Nevertheless, based on asymptotic scaling methods we also find that an
ODE approach can be used for computing the NTCP.

The formulation of a useful NTCP model has many challenges. NTCP models must
be patient- and organ-specific. Details of the organ’s function, the microenvironment, the
biochemical pathways, the geometric structure, and the radio sensitivities are needed. For
each organ (and each patient), we need to estimate a critical size of the organ such that it
can still function. It is impossible to achieve this in an one-fits-all approach, since organs
and patients are different. Here we develop a mathematical framework in which organ
specific details can be included in an NTCP model. At the same time, we focus on a
model that is not over burdened with complicated mathematics, and rather allows for a
simple modelling and transparent presentation of the main results.

Radiation damage to healthy organs and possible organ failures are inherently stochas-
tic events. Furthermore, the organ stem cells, which are responsible for organ regeneration,
might occur in low numbers. Therefore, it is reasonable to use the language of stochastic
processes to define an NTCP. In this paper we show that

(i) Logistic birth-death models can be used to define a treatment-, patient-, and organ-
specific NTCP (see Section 3).

(ii) In the limit of large cell population numbers, the NTCP can be described through the
solution of the mean field equations. Furthermore, for small population numbers, the
mean field equations still give a good estimate of the transition where the NTCP, as
function of dose D, changes from 0 to 1. This allows for an estimation of a maximal
tolerable dose Dmax for each patient (see Section 4).
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(iii) The NTCP framework can be extended to include many mechanisms which are left
out here, for example, cancer stem cells, cell cycle dynamics, immune responses,
various treatment schedules etc. We will discuss these extensions in Section 6.

(iv) We apply the NTCP framework to brachytherapy of prostate cancer using realistic
parameters as much as they are available in Section 5. Several important parameters
are unknown as of today and a systematic parameter estimation exceeds the purpose
of the current paper. We show how the framework can be applied as soon as all
parameters are known, where, for now, we choose reasonable values.

(v) Organ- and patient-specific optimization problem for radiation treatment with side
effects can be formulated (see Section 6.3). We do not solve them here, but leave it
to future research to identify the necessary parameters for each organ/patient, and
to perform the optimization.

Since the TCP and NTCP are closely related, we first review some TCP models before
extending them to NTCP modelling. One important ingredient is an estimate for the
survival fraction S(d) of irradiated cells, given a radiation dose d. We review the corre-
sponding linear quadratic model (LQ-model) in Section 2, where we also review models for
the TCP. Section 3 is devoted to our derivation of a stochastic NTCP model based on a
stochastic logistic process [1, 6]. It turns out that the mean field equations of this process
play an important role in computing the NTCP. Firstly, the mean field equations are of the
form of a standard logistic differential equation plus a perturbation which depends on the
variance. If this perturbation is small, then the mean field is basically a logistic equation.
Secondly, we show that the region where the NTCP becomes critical (i.e. NTCP≈ 1) can
be approximated by a Heaviside function, where the location of the jump coincides with
the location where the solution of the logistic differential equation falls below a critical
level. This relation is surprising, since the NTCP is an intrinsic stochastic concept, but
it can actually be estimated from a deterministic differential equation. The same relation
arose in the computation of the TCP from Zaider and Minerbo. It was never spelled out
in [31], but it was shown in [10] that the Zaider-Minerbo TCP can be computed from
the solution of the mean field equations. In Section 4 we motivate the use of a maximal
tolerable dose, based on the organ at hand, the patient’s radio-sensitivities and the treat-
ment schedule used. In Section 5 we apply the methodology to brachytherapy of prostate
cancer. Brachytherapy is one of the best treatments for slow growing prostate carcinoma
and it has a success rate of about 94% for 5-year survival and 84% for 10-year survival
[20]. However, critical organs near the prostate are affected, leading to side effects that are
classified as sexual side effects (erectile dysfunction, reduced libido), urethral side effects
(increased urinal frequency, urinal retention, micturition pain, incontinence) and rectal
side effects (bleeding, diarrhea, acute and late effects, rectal fistula) [21, 15, 7, 30, 20].
Section 5 focuses on three of these side effects (i) urinary frequency, (ii) urinary reten-
tion, (iii) acute rectal dysfunction and we show how the NTCP models confirm the known
outcomes. We discuss model extensions in Section 6, which make the modelling approach
more realistic. Finally, we close with a conclusion section 7.
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2 Previous models of cell survival, TCP and NTCP

A very natural approach to compute normal tissue complication probabilities is a careful
statistical evaluation of patient data that are collected after treatment. Two most used
statistical approaches are the Lyman NTCP [18] and the critical volume NTCP [22]. In
this paper we take a different approach and we derive a mechanistic model that enables
us to predict the NTCP during the entire treatment process and beyond. The statistical
data mentioned above can then be used to validate the mechanistic predictions. In fact, in
[11] such an approach was taken. The authors derived a mechanistic model for radiation-
induced damage to healthy tissue and then compared the model to clinical data for prostate
cancer side effects. They noted, as we do here as well, that the available data are insufficient
to make either a good model validation or a good model prediction. Here we emphasize
the fact that the missing model parameters should be measurable in the clinic. We hope
that they will become available in the future.

2.1 The linear quadratic model and the hazard function

In this paper we focus on brachytherapy of prostate cancer. We also include the case of
constant radiation, since it is the simplest case and it helps us to explain the methodology.
Let Ḋ(t) denote the dose rate of a radiation and D(t) the total radiation up until time t.
Then the surviving fraction S(D(t)) of irradiated cells is described by the linear quadratic
model ([8])

S(D(t)) = e−αD(t)−βG(t)D2(t),

where α (Gy−1) and β (Gy−2) are radiosensitivity parameters depending on the irradiated
tissue types and G(t) is the Lea-Catcheside protraction factor [17, 11]. If the treatment
begins at time t = 0 and there was no previous radiation, then the Lea-Catcheside pro-
traction factor is given as ([10])

G(t) =
2

D2(t)

∫ t

0
Ḋ(τ)

∫ τ

0
e−γ(τ−s)Ḋ(s)dsdτ, (2.1)

where γ > 0 is the repair rate for DNA single or double strand breaks. In the case of
brachytherapy, radioactive seeds are implanted into the prostate. We denote the initial
dose to be d0 and the decay rate to be σ. Explicit values for d0 and σ can be found in
Table 2. Then the dose rate is given by Ḋ(t) = d0e

−σt and the total dose up to time t is

D(t) =
d0

σ

(
1− e−σt

)
.

In this case the Lea-Catcheside (2.1) factor becomes

Gbrachy(t) =
σ

(γ − σ)(1− e−σt)2

(
1− e−2σt − 2σ

γ + σ

(
1− e−(γ+σ)t

))
1 (2.2)

1Notice that this formula is identical to the formulation used in the literature, for example equation
(16) in [11].
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For constant radiation Ḋ(t) = d̃, we find the Lea-Catcheside factor to be

Gconst(t) =
2

γt
+

2

(γt)2

(
e−γt − 1

)
.

For a given surviving fraction, we can define a corresponding hazard function as

h(t) = − 1

S(t)
Ṡ(t), (2.3)

which, in the case of brachytherapy above, gives

hbrachy(t) = αd0e
−σt +

2βd2
0e
−σt

γ − σ
(
e−σt − e−γt

)
, (2.4)

and for constant radiation gives

hconst(t) =

(
α+

2βd̃

γ

)
d̃.

In Section 6 we discuss other treatment modalities as well as an elegant way to compute
the hazard function for any kind of treatment from a differential equation approach, as
developed in [10].

2.2 TCP by Zaider and Minerbo

To motivate the TCP model of Zaider and Minerbo [31] we consider a simple ordinary
differential equation for the cancer cell number n(t):

dn(t)

dt
= (b− r(t))n(t), n(0) = n0, (2.5)

with b a constant mitosis rate and r(t) the removal rate. The removal rate can be written
as the sum of the natural death rate ρ, which is assumed to be constant here and the
radiation dependent hazard function h(t) giving r(t) = ρ+ h(t). The solution of this cell
population model is given by

n(t) = n0 exp
(
bt−

∫ t

0
r(s)ds

)
, (2.6)

with n0 indicating the initial number of tumor cells.

For a large initial number of clonogenic cancer cells, deterministic models might be ap-
propriate, because with the law of large numbers stochastic events can be neglected and
the number of cells converges to the mean number of cells. However, successful therapy
aims to diminish the number of cancer cells and for low cell numbers the deterministic
formulation no longer applies. Hence we extend the model to include stochastic events via
a birth-death process.
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Following Zaider and Minerbo [31] we let Pi(t) be the probability that i cells are alive at
time t with i ∈ N. The corresponding Master equation for Pi(t) that describes the change
in the number of cells is then given as:

dPi(t)

dt
= (i− 1)bPi−1(t) + (i+ 1)r(t)Pi+1(t)− i(b+ r(t))Pi(t), (2.7)

with P−1(t) = 0 and with initial values Pn0(0) = 1 and Pi(0) = 0 for i 6= n0. It can
be easily checked that the expected number of tumor cells n(t) =

∑∞
i=0 iPi(t) satisfies

the above equation (2.5) [31]. Hence (2.5) appears as mean field model for the stochastic
birth-death process (2.7).
To obtain the TCP we calculate P0(t). This can be done by the method of generating
functions (see [31]). Hence we obtain the TCP formula of Zaider-Minerbo as

TCPZM (t) = P0(t) =

[
1− n(t)

n0 + bn0n(t)
∫ t

0
dr
n(r)

]n0

(2.8)

with birth rate b ≥ 0 and removal rate r(t). Here n(t) is the solution (2.6) of the mean
field equation (2.5).

This framework has been extended to more general linear birth and death Markov
processes by Hanin [13, 12], to include active and quiescent cell compartments by Dawson
and Hillen [4], non-exponential cell cycle times by Maler and Lutscher [19], and cancer stem
cells by Gong [9]. These models follow the same basic principle of stochastic processes, but
the resulting TCP formulas are much more complicated. In this paper we base the NTCP-
formulation on the Zaider- Minerbo approach, being aware that further generalizations to
include cell cycle and stem cells might be needed in the future [29] (see also Section 6).

The description of the TCP by Zaider and Minerbo allows the inclusion of any time-
dependent treatment schedule and the parameters are given from a birth-death process
of tumor growth. However, so far, there was no cousin model for the NTCP, which is
based on an equally detailed description as the Zaider-Minerbo TCP. The model which
we develop next, will enable us to compare TCP and NTCP on equal grounds.

3 NTCP based on a stochastic logistic birth-death process

In this section we derive a NTCP model from a stochastic logistic birth-death process.
These are well known stochastic processes and detailed expositions can be found in the
textbooks of Allen [1] and Nisbet and Gurney [23]. It should be made very clear that
here we use the simplest possible model that has non-trivial assumptions. We believe
that these assumptions are sufficient to explain the method for deriving an NTCP model.
After this has been established, we can extend the model to include stem cells, damaged
cells, functional subunits, immune responses, and many other details. We discuss these
extensions in detail in Section 6.

Here we make the following assumptions:
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1. All healthy tissue cells in the irradiated domain are identical and independent
throughout the organ. Here we will not distinguish between organ stem cells and
functional cells and we will not consider larger entities such as functional subunits
([22, 28]). These and other extensions will be discussed in Section 6 and they are
topic of further research [29].

2. An organ works properly if more than L cells are functionally active.

3. For a small time increment ∆t, the expression µ∆t denotes the probability of mitosis
in a time interval [t, t+∆t], where µ > 0 is the mitosis rate. We will assume that the
cell growth is limited by space and nutrition supply so the mitosis rate is dependent
on an organ-specific carrying capacity M . An increasing number of cells therefore
leads to a decreasing mitosis rate. Mathematically speaking we choose the mitosis
rate as follows:

µi =

{
µ(1− i

M ), if i = 1, 2, ...,M
0, otherwise

(3.9)

The carrying capacity M refers to the organ size. If we count cell numbers then M
is usually a very large number (≈ 109). If we consider organ stem cells, then the
carrying capacity will be much smaller (depending on the organ at hand).

4. The term r(t) = ρ + h(t) denotes the net cell death rate, where ρ ≥ 0 denotes
natural death of cells and the hazard function h(t) in (2.3) describes death due to
radiation. Here we employ the simplifying assumption that dead cells do no longer
use nutrients and that their space becomes available for new growth quickly. In [11]
a compartment for damaged cells was used to more accurately describe the volume
constraint that results from non-functional cells that still linger around.

We denote Pi(t) as the probability that i ∈ N normal cells are alive at time t. To define a
NTCP we consider the probability that L or less cells are functionally operational, i.e.

Definition 3.1 (NTCP birth-death) The Normal Tissue Complication Probability based
on a birth-death process is defined as

NTCPbd(t) =

L∑
i=0

Pi(t). (3.10)

The master equation for the probabilities Pi(t) of the number of cells X is given by

dPi(t)

dt
= (i− 1)µi−1Pi−1(t) + (i+ 1)r(t)Pi+1(t)− i(µi + r(t))Pi(t), (3.11)

with initial values Pn0(0) = 1 and Pi(0) = 0 for i 6= n0, [6, 1]. For the TCP we were only
interested in the solution of P0(t). In contrast to that we are now interested in solving the
system for Pi(t) with i = 0, ..., L.

Hanin [13] found an explicit formula for the above sum (3.10) in the setting of a general
linear birth and death Markov process, which includes the case of the Zaider-Minerbo TCP,
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equation (2.7). This formula has been modified for faster computation in Gong’s thesis
[9]. We cannot use this formula here, since in our case the mitosis rate, µi, is not constant
in i. However, the mitosis rate as defined above guarantees that the number of normal
tissue cells stays below or equal to the carrying capacity M .

Lemma 3.1 ([6, 1]) Assume µi is given by (3.9). If Pi(0) = 0 for i > M , then Pi(t) = 0
for i > M , ∀t > 0, i.e. the system (3.11) is finite.

Another interesting result shows that the mean field function E(X(t)) (with X(t) denoting
the random variable which describes the number of healthy tissue cells at time t) obeys a
logistic differential equation with a perturbation that depends on the variance.

Lemma 3.2 ([1] Formula (6.28), p. 246)) Assume µi is given by (3.9) and Pi(0) = 0 for
i > M . The series

N(t) = E(X(t)) =
M∑
i=0

iPi(t) (3.12)

is the mean field function of system (3.11) and satisfies a differential equation

dN(t)

dt
= µN(t)

(
1− N(t)

M

)
− r(t)N(t)− µ

M
Var(X(t)), (3.13)

where Var(X(t)) is the variance of the normal tissue cell number and is defined as usual
by Var(X(t)) = E((X(t)−N(t))2).

Let us provide some remarks on Lemma 3.2:

1. It is interesting to note that for small perturbation term µ
MVar(X(t)) we obtain

the standard logistic differential equation for the expected number of cells N(t). It
should also be noted that under the conditions of Lemma 3.1 the variance is always
finite.

2. One could derive an equation for the variance, which then would involve a third
moment of X. An equation for the third moment contains the fourth moment and
so on. We obtain an infinite hierarchy of models and we are faced with a closure
problem. We are not discussing moment closure methods here.

3. Since the variance is non negative, the mean field equation (3.13) is dominated by
the logistic equation

dZ

dt
= µZ(t)

(
1− Z(t)

M

)
− r(t)Z(t), (3.14)

i.e. N(t) ≤ Z(t) whenever they have the same initial condition N(0) = Z(0). This
fact was already mentioned by Feller in 1939 [6].

8



4. We rescale the mean field equation (3.13) into a relative occupancy y(t) := N(t)
M .

Then y(t) satisfies
dy

dt
= µy(1− y)− r(t)y − µ VarY (t), (3.15)

where the stochastic process Y is defined as Y (t) = X(t)/M .

These two previous results give us tools to compute the NTCP for the two comple-
mentary cases of M is small and M is large. If M is small (say less than 1000), then
we benefit from Lemma 3.1; the system of equations (3.11) is of finite and manageable
size, and we can use a direct numerical computation to solve it. This is done in the next
Section 3.1. On the other hand, if M is large (larger than 1000, say), then we can use an
asymptotic method for M →∞ to approximate the NTCP as done in Section 3.2. We see
that in this case the NTCP is basically given by the logistic differential equation (3.14).
If we compare these two methods (for M = 500, M = 5000 and M → ∞), we find that
they coincide surprisingly well, suggesting that the logistic differential equation (3.14) is
appropriate in computing the NTCP in all cases. We outline how it can be used in clinical
practice in Sections 4 and 5, where we consider side effects of prostate cancer treatments
and introduce the organ specific maximal tolerable dose Dmax.

3.1 Numerical results for small M

After we have seen that the system of ODEs with µi is finite, we can now calculate the
result numerically. We define P (t) = (P0(t), P1(t), ..., PM (t))T with Pi(t) from (3.11) and
obtain a corresponding forward Kolmogoroff equation [1]

dP

dt
= AP (3.16)

with the transition matrix A

A =


0 r(t) 0 ... 0 0
0 −(µ1 + r(t)) 2r(t) ...
...

. . .

0 0 0 ... (M − 1)µM−1 −M(µM + r(t))

 .

For the initial values of the ODE system (3.16) we chose a completely healthy organ at
the beginning of treatment, i.e. PM (0) = 1 and Pi(0) = 0 ∀i 6= M . Alternatively we can
also consider partially damaged organs such that Pn0(0) = 1 with n0 < M . We consider
a brachytherapy treatment with 125I and constant radiation. The death rate in the case
of brachytherapy is the hazard function (2.4) and is given by

rbrachy(t) = αd0e
−σt +

2βd2
0e
−σt

γ − σ
(
e−σt − e−γt

)
. (3.17)

In the case of constant radiation we have

rconst(t) =

(
α+

2βd̃

γ

)
d̃.
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Case Color Description d̃ α β d0 γ µ M l = L
M

Units Gy/day Gy−1 Gy−2 Gy day−1 day−1

I blue Base case 1.16 0.02 0.01 1.68 8.35 0.017 500 1/3
II magenta Higher sensitivity 1.16 0.025 0.01 1.68 8.35 0.017 500 1/3
III green Slow DNA repair 1.16 0.02 0.01 1.68 2.27 0.017 500 1/3
IV red Fast tissue repair 1.16 0.02 0.01 1.68 8.35 0.0346 500 1/3
V blue, dotted Larger M 1.16 0.02 0.01 1.68 8.35 0.017 5000 1/3

Table 1: Parameter values for healthy tissues.

Protocol init. dose d0 decay rate σ total days half times total dose
Gy day−1 days Gy

103Pd 5.71 0.0408 47.63 16.99 120
125I 1.68 0.0117 207.8 59.4 145

Table 2: Parameter values for the radioactive seeds of 125I and 103Pd [21].

The model parameters are given in Table 1 and they have been chosen for the following
reasons:

• Instead of using two variables µ and ρ to denote natural mitosis and death rates, we
combine both effects in an effective mitosis rate µ−ρ, which we call µ for simplicity.

• The effective growth rate µ = 0.017 for healthy tissue corresponds to an effective
doubling time of 40 days. In case IV (Table 1) we consider faster regrowth with
µ = 0.0346 and a doubling time of 20 days.

• The ratio α/β was chosen to by 2 for healthy tissue [26, 30].

• DNA repair happens between 2 and 6 h. If we use T1/2 = 2h then γ = 8.35. For
T1/2 = 6h we have γ = 2.27, i.e. case III in Table 1.

• A typical fractionated treatment gives a total dose of about 70Gy over 60 days. That
is an average dose rate per day of d̃ = 1.16 Gy/day, which we chose for the case of
constant radiation.

• In Table 2 we list the parameter values for the two isotopes that are used in
brachytherapy, 125I and 103Pd. The number of “total days” as reported in Table 2
is the standard way to report brachytherapy treatment duration, see [21], although
it is clear that radioactive decay will never reach zero in finite time.

For the solution of the ODE-system (3.16) we used the built-in MATLAB solver ’ode45’.
Fig. 1 shows the simulated NTCP-curves for the five cases listed in Table 1. For cases I,
II, III, and V we see that the NTCP starts at zero and, after a while, rises in a relatively
short time span to 1. The base case (case I in Table 1) starts to grow significantly at
around 55 days. NTCP ≈ 1 indicates a large probability of side effects.
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Figure 1: NTCP curves for the five cases listed in Table 1. The left figure shows the case of
constant radiation and the right for brachytherapy. The solid lines are the NTCP curves
as computed from equation (3.16). The dash-dot blue line corresponds to the fifth case of
larger M -value. The dashed lines show the approximation of the jump from 0 to 1 from
the asymptotic analysis for large M .

3.2 Asymptotics for large carrying capacity M

As mentioned before, for most cases, the carrying capacity M will be large (∼ 109) and in
that case a direct numerical solution of the system of ODEs (3.16) is no longer feasible.
Hence it is useful to consider the asymptotic limit of M → ∞. We will use a rescaling
argument to identify the location where the NTCP transfers from 0 to 1. It turns out that
the mean field equation (3.14) plays an important role for this transition.

The question we find ourselves confronted with now is if there is an asymptotic limit
such that the system of equations becomes independent of the size of the carrying capacity.
In this case, the computational limitations would not affect the simulations any longer
and we could make capacity-independent predictions. To achieve this aim we will re-
parameterize the system of ODEs (3.11). As in the earlier numerical simulations we assume
that the initial number of cells is n0 = M . Therefore we get the initial values of the system
PM (0) = 1 and Pi(0) = 0 for i 6= M . For the parameterization we introduce a function
ΦM (x, t), x ∈ [0, 1] which is a smooth interpolation of the points xi = i

M , i = 0, . . . ,M as

ΦM (xi, t) := MPi(t), i = 0, . . . ,M. (3.18)

The function ΦM is an approximate probability density, since ΦM ≥ 0 and∫ 1

0
ΦM (x, t)dx ≈

M∑
i=0

1

M
ΦM

(
i

M
, t

)
=

M∑
i=0

Pi(t) = 1.
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The NTCP and mean field N(t) can be expressed in ΦM as

NTCPM (t) =

∫ l

0
ΦM (x, t)dx (3.19)

N(t) = M

∫ 1

0
xΦM (x, t)dx.

with l = L
M ∈ [0, 1]. We now introduce the rescaling into the master equation (3.11),

where we use

i

M
= x, ∆x =

1

M
, i+ 1 = (x+ ∆x)M, i− 1 = (x−∆x)M

and for the rescaled mitosis rate (3.9) we obtain

µ̃(x) =

{
µ(1− x), if x ∈ [0, 1]

0, otherwise.
(3.20)

Using this and (3.18) for (3.11) we obtain by Taylor-expansion with increment ∆x = 1
M

(see also [23] eq. (6.2.18) on page 173) that

∂

∂t
ΦM (x, t) =− ∂

∂x

[(
µx(1− x)− r(t)x

)
ΦM (x, t)

]
− ∆x

2

∂2

∂x2

[(
µx(1− x)− r(t)x

)
ΦM (x, t)

]
+O(∆x2),

with initial values

ΦM (1, 0) = ΦM

(M
M
, 0
)

= MPM (0) = M.

ΦM (x, 0) = ΦM

( i

M
, 0
)

= MPi(0) = 0 for x ∈ [0, 1).

If ∆x is small enough, i.e. M → ∞, then we can consider the leading order term
Φ(x, t) of the above expansion. We obtain a hyperbolic partial differential equation for
Φ(x, t):

∂

∂t
Φ(x, t) = − ∂

∂x

[(
µx(1− x)− r(t)x

)
Φ(x, t)

]
(3.21)

with a singular initial condition

Φ(1, 0) =∞
Φ(x, 0) = 0 for x ∈ [0, 1).
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These initial conditions appear as a Dirac delta distribution

Φ(x, 0) = δ1(x).

In this scaling the NTCP from (3.19) becomes

NTCPΦ(t) =

∫ l

0
Φ(x, t)dx (3.22)

We solve the PDE (3.21) analytically using the method of characteristics. Expanding
the spatial derivative we obtain

∂

∂t
Φ(x, t) +

[
µx(1− x)− r(t)x

] ∂
∂x

Φ(x, t) + (µ(1− 2x)− r(t))Φ(x, t) = 0.

This hyperbolic PDE has the characteristic equations

dx

dt
= µx(1− x)− r(t)x x(0) = x0 (3.23)

dΦ

dt
= −(µ(1− 2x)− r(t))Φ, Φ(x, 0) = δ1(x). (3.24)

With the initial value of Φ being a Dirac delta distribution and (3.24) being linear in Φ,
we expect that Φ(x, t) = δx(t) is a weak solution of (3.21). Here x(t) is the solution of
(3.23) with the initial value x0 = 1. See [5] for a definition of a weak solution.

Definition 3.2 Φ(., t) ∈ D(Ω) = C∞∗0 (Ω) with Ω = [0, 1] is a weak solution of (3.21), if

d

dt

〈
ζ(x),Φ(x, t)

〉
=
〈

(µx(1− x)− r(t)x)
d

dx
ζ(x),Φ(x, t)

〉
for all ζ ∈ C∞0 (Ω).

Here we use the standard notation for the action of a measure on functions:〈
ζ(x),Φ(x, t)

〉
=

∫
ζ(x) dΦ(x, t),

where the integration is with respect to x and t arises as a parameter. We obtain the
following theorem:

Theorem 3.3 Let x(t) be the solution of (3.23) with the initial value x(0) = 1. Then
Φ(x, t) = δx(t)(x) is a weak solution of the PDE system (3.21).

Proof. We compute directly for a test function ζ ∈ C∞0 (Ω) that

d

dt

〈
ζ(x), δx(t)(x)

〉
=

d

dt
ζ(x(t))

=
dζ(x(t))

dx
ẋ(t)

=
dζ(x(t))

dx
(µx(t)(1− x(t))− r(t)x(t))

=
〈

(µx(1− x)− r(t)x)
∂ζ(x)

∂x
, δx(t)(x)

〉
.
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3.3 Comparison of the two methods for small and large M

The asymptotic method above is particularly designed for the limit of large tumor popula-
tion, i.e. M →∞, it does not assume that Var(X)/M is small. We now want to compare
this asymptotic result with the numerical solution from the previous section, cp. Fig.1.
Using the solution of Theorem 3.3 we find

NTCPΦ(t) =

∫ l

0
δx(t)(z)dz

with l = L
M ∈ [0, 1]. This integral is 0 if x(t) > l, 1 if x(t) < l, and it is 0.5 if x(t) = l.

Hence the NTCPΦ function is a heaviside function that jumps at t = x−1(l) from 0 to
1. Notice that this value for t might not exist if the characteristic stays above l at all
times. The following Figure 2 shows the solutions of the characteristic ODE (3.23), x(t),
as function of time for the five cases of Table 1. The threshold value of l = 1/3 is indicated
as dashed line. As soon as the curves cross the threshold line, the NTCP jumps from 0
to 1. The jump locations have been added to the previous NTCP curves in Figure 1 as
dashed horizontal lines of the corresponding color. We see clearly that the jump occurs
right in the middle (NTCP ≈ 0.5) of the transition of NTCP from 0 to 1. Notice that the
case of fast tissue repair does not touch the threshold, hence the NTCP does not jump to
1 for that case.

For the base case we considered two choices of M : M = 500 (blue line in Figure 1)
and M = 5000 (blue dash-dot line in Figure 1). The NTCP for larger M value shows
the transition of NTCP from 0 to 1 at the same location, but the gradient of the curve
is steeper. For large M the NTCP becomes steeper and steeper, eventually approaching
the jump discontinuity. Hence the jump is an excellent indicator of the region where the
NTCP rises sharply. The jump was obtained by solving the simple characteristic equation
(3.23) instead of the large differential equation system (3.16). Hence (3.23) is a much
simpler and efficient model for our purpose.

Besides the parameters shown in Table 1, we tried many other combinations of pa-
rameters for fast and slow regenerating tissues, various choices of radio sensitivities, and
various choices for M (not shown) and the correspondence of the two NTCP methods was
always good.

4 Clinical significance and the maximal tolerable dose

For practical use of this NTCP, we propose an algorithm which is centered around the
logistic differential equation (3.14) which we rewrite for convenience:

dZ

dt
(t) = µZ(t)

(
1− Z(t)

M

)
− r(t)Z(t). (4.25)
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Figure 2: The solid lines show the characteristics x(t) for the five parameter choices from
Table 1 for constant treatment (left) and brachytherapy (right). The y-axis indicates the
suriving fraction of healthy cells in the irradiated organ. The characteristics start at a
fully intact organ x(0) = 1 and decrease until they intersect the horizontal line of x = l.
At that intersection the NTCP jumps from 0 to 1. Notice that the characteristics for
cases I and V coincide, since the characteristic equation is independent of M and all other
parameters are the same.

As we have seen in Lemma 3.2, this equation approximates the mean field equations (3.13)
for a small perturbation term µ

MVar(X). Moreover, if we consider the relative abundance
z(t) := Z(t)/M , then we obtain

dz

dt
(t) = µz(t)(1− z(t))− r(t)z(t), (4.26)

which coincides with the characteristic equation (3.23) that was used in the asymptotic
method for large M . In Section 3.2 we found that the NTCPΦ jumps from 0 to 1 exactly
when the characteristic x(t) meets the threshold value l. Transforming back to the original
quantities Z(t), an equivalent condition is

Z(tmax) = L, (4.27)

where L is the minimal number of cells for an organ to still function and tmax is the maximal
treatment time, for a given treatment, such that the healthy organ is not damaged too
much. In the case of brachytherapy, the radioactive seeds are left inside the organ, hence
a maximum treatment time is only an indication of a time point after which the radiation
dosage should have reduced to very low levels. Moreover, our method can as well be applied
to fractionated treatments, and in those cases the knowledge of tmax is quite helpful.

We solve the logistic equation (4.25) until Z(tmax) = L to find the maximal tolerable
treatment time tmax. The corresponding maximal tolerable treatment dose is

Dmax = D(tmax).
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constant radiation brachytherapy

case tmax (day) Dmax (Gy) tmax (day) Dmax (Gy)

I 58 67.28 52 65.45
II 44 51.04 35 48.25
III 39 45.24 28 40.11
IV N/A N/A
V 58 67.28 52 65.45

Table 3: Maximal treatment time tmax and maximal tolerable dosages Dmax for the ten
treatments from Table 1.

As an example we use the parameter values from Table 1 for five uniform treatments
and five brachytherapy treatments. The NTCP curves were shown in Figure 1. The max-
imal tolerable dose and the maximal time of exposure in these cases are listed in Table
3. We notice that the maximal dosages for constant treatment and for brachytherapy are
very similar. However, the maximal tolerable doses for brachytherapy are a bit smaller,
since in brachytherapy a higher dose rate is given at the beginning of treatment.

Notice that for many patients side effects occur only temporarily and they resolve after
some time. In our study we only consider the onset of side effects, since these data for the
onset of side effects are available.

Summarizing, the parameters that are involved in the computation of the NTCP are
the following.

Patient/organ specific:

1. radiosensitivity parameters of the healthy organ; α, β.

2. minimal viable number of cells of the organ; L

3. initial number of cells in the organ; Z(0)

4. normal number of cells in the organ; M

5. mean organ repair rate if damaged; µ

We believe that it is possible in the realm of modern medical research to obtain estimates
for those parameter values for individual patients.

5 Prostate brachytherapy and side effects

Prostate cancer is treated with a variety of methods including surgical removal, chemother-
apy, hormone therapy, external beam radio therapy and brachytherapy [21, 7]. Particularly
for low risk prostate cancer patients, brachytherapy is the therapy with the least severe
side effects as compared to the other treatments [7]. The toxicity related to sexual dys-
function, rectal effects and severe urethral side effects is lower than compared to surgery
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Type Side effect toxicity rate toxicity rate
Japanese study [30] Spanish study [7]

Urethral overall urethral toxicity 78% 89.9 %
urinal frequency 70%
micturition pain ∼ 6 %
urinal incontinence 2 %
urinal retention 3.7 % 3.4%

Kishan study [15]

Rectal acute response 30-35 %
late response 5-7%
rectal fistula 0.1%

Table 4: Occurance of side effects in large cohort studies as reported in the literature.

or external beam radio therapy. However, urinary irradiative obstructive symptoms are
more common in brachytherapy [7, 20]. Brachytherapy for prostate cancer is typically
performed by inserting radioactive isotopes 125I or 103Pd directly into the prostate. The
physical characteristics are listed in Table 2.

Several recent comprehensive reviews evaluate the occurrence of certain side effect
after brachytherapy of prostate cancer. The most common side effects relate to sexual
performance, to the urethra and to the rectum. Reduced sexual function is a very common
outcome of prostate cancer treatment. It affects about 82% of patients treated by surgery
or external beam radio therapy and about 52% of patients treated with brachytherapy [7].
Urethral side effects include increase in urinary frequency, urinal retention, micturition
pain, and urinary incontinence. Rectal side effects are characterized as radiation proctitis
and they occur as acute effects (diarrhea), rectal bleeding, incontinence, rectal fistula and
late effects. In a Spanish study about 700 patients were evaluated in 5 year and 10 year
follow-up studies [7, 20], and in a Japanese study [30] 218 patients were followed after
treatment. Kishan et al. [15] reviews data on rectal toxicities after brachytherapy. In
Table 4 we summarize the reported occurrences of side effects. These study only report
the onset of a side effect. In many cases these side effects disappear after some time. Since
these events are not recorded in the data mentioned above, we do not include the recovery
from side effects here.

In Figure 4 we present a sketch of the prostate and related critical organs. We consider
the NTCP for three of these: (i) increase in urinary frequency, (ii) urinary retention, and
(iii) for rectal proctitis; and we compare those to the tumor control probability (TCP).
The relevant parameter values are given in Table 5. We use as many parameters from
the literature as are available, however, many of these parameters, especially those related
to healthy tissue, are not known. We choose reasonable values to illustrate the NTCP
framework and we leave a detailed parameterization for future work.

1. Cancer TCP. To calculate the tumor control probability (TCP), we use typical
parameter values for prostate carcinoma as collected by Carlson 2004 [3] with α/β =
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Figure 3: A Mathematicians view of the prostate and the surrounding critical organs
(adapted from Wikipedia).

4, α = 0.2, β = 0.05 and a cancer regrowth rate of µ = 0.015 (T1/2 = 46 days).
Brachytherapy parameters are those of 125I with an initial dose rate of d0 = 1.68
Gy/day, a decay rate of σ = 0.0117, a total dose delivered as 145 Gy on a treatment
time scale of 207.8 days. In all three figures of Figure 4 we show the tumor control
probability as function of time in a black dashed line. We see that the TCP starts
to increase at about 50 days and well saturates near 1 at the end of treatment,
indicating a successful treatment.

2. Healthy tissue NTCP for urinary frequency. Increase in urinary frequency
affects about 70 % of patients after brachytherapy of the prostate [20, 30]. Hence
the NTCP for this case is very high. Urinal urgency is triggered by a combination of
effects. Firstly, the epithelial tissue that surrounds the lower part of the bladder is
exposed to radiation and becomes raw and sensitive to touch with urine. In addition,
radiation damages the muscle tissue that surrounds the bladder and creates scar
tissue in the muscles. The bladder cannot expand as much as normal and it looses
parts of its flexibility. This leads to an increased sense of urinal urgency even if
the bladder is filled at less than 1/4. We assume that the lower bladder region is
exposed to about 20% of the full radiation dose rate d(t). The radio sensitivities
α and β need special consideration for NTCP modelling. Now we are interested
at which doses does epithelial tissue become irritated and raw, rather then when
epithelial cells die. In lack of any available data, we choose a five times increased α-
value for radio sensitivity related to tissue irritation, i.e. α = 0.1. Since the damage
is a combination of effects on epithelial and muscle tissue, and since muscle tissue
does not fully repair (it forms scar tissue), we use a rather low tissue repair rate of
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Case α β µ % of threshold tissue
Gy−1 Gy−2 day−1 total dose for side effects type

TCP 0.2 0.05 0.015 100% prostate
NTCP urinal frequency 0.1 0.01 0.01 20% 60% bladder
NTCP urinal retention 0.02 0.01 0.05 90% 10% urethra
NTCP acute rectal 0.1 0.01 0.05 20% 50% rectum

Table 5: Parameter values for the TCP and NTCP computations.

µ = 0.01 (T1/2=70 days). Finally we assume that urgency is prevalent if about 40%
of the lower bladder is affected in this way.

To approximate the NTCP, we use the method developed here in Section 3.2.
We solve equation (4.26) with the chosen parameters and evaluate the condition
Z(tmax) = L. The simulation shown in Figure 4 (left) shows the TCP (dashed), the
expected functionality of the bladder as function of time and the NTCP threshold
as horizontal line. As soon as the blue curve crosses over the threshold line, the
probability of urinal frequency increases significantly.

3. Healthy tissue NTCP for urinal retention. Urinal retention, or urethral block-
age occurs if a part of the urethra is so damaged that urine flow stops ([30, 20]).
Particularly critical is the internal urethral opening and the part of the urethra that
runs through the prostate. The radioactive seeds are usually placed at a small dis-
tance from the urethra, such that it does not receive the full dose. We assume it
is exposed to 90% of the full dose rate. The urethra needs to be severely damaged
before it can block urine flow, hence we assume a damage threshold of 90%. The
radiosensitivities are those of healthy epithelial tissue ([30]) with α = 0.02, β = 0.01
and a repair rate of µ = 0.05 (T1/2 = 14 days).

We observe in Figure 4 (middle) that the mean expected functionality of the urethra
stays well above the threshold value, indicating that urethral retention is unlikely
(but possible) in brachytherapy.

4. Healthy tissue NTCP for radiation proctitis. Similar to the bladder, the
rectum is affected in (at least) two ways. Epithelial tissue becomes raw and irritated
and the lining muscle tissue of the rectum develops scars and looses part of its
flexibility ([15]). We assume that part of the rectum receives about 20% of the
radiation dose rate and that acute rectal effects show if about 50% of the irradiated
rectum area is damaged. We use the same radio sensitivities as for the bladder,
α = 0.1, β = 0.01 and a repair rate of µ = 0.05.

We see in Figure 4 (right) that the red curve, indicating the normally functional
portion of the rectum, to come close to the red threshold line. This shows that the
NTCP for acute rectum dysfunction is less than 50% but still significant. The data
show that this occurs in about 30% of the cases.
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Figure 4: TCP (dashed) and urinary frequency (left), urinary blockage (middle), and
rectal proctitis (right). In the left figure we plot the fraction of undamaged tissue in
the lower bladder area and the threshold of 60% as straight line. Crossing the threshold
indicates a significant risk to develop this side effect. The middle figure shows that the
fraction of healthy urethral lining cells stays way above the threshold for urethral retention,
indicating that this side effect is least likely. The right figure shows the functioning part of
the irradiated part of the rectum. The red curve stays slightly above the threshold, hence
acute rectal dysfunction can be expected in several cases (30% according to the data).

6 Model extensions

The above simplified cancer growth model (3.11) was used to introduce our methodology.
We wanted to make the point that the transition of the NTCP from 0 to 1 can be ap-
proximated for large carrying capacity by a jump discontinuity in the weak solution of the
characteristic equation. This allows us to use ODEs for the modelling process.

Certainly, many important aspects of cancer growth have been ignored and should be
included. We use this section to discuss some of the relevant model extensions including
other treatment schedules, stem cells, and other cell compartments, and we will relate the
results to an interesting concept of functional subunits.

6.1 Other treatment schedules

If we consider fractionation therapy of n fractions of equal dose d, then we use the standard
linear quadratic model

S(D) = e−(α+βd)D, D = nd.

In [10] we developed a general framework such that the hazard function h(t) can be
defined for any treatment schedule D(t). To be precise, we only assume that the dose rate
Ḋ(t) is a piecewise continuous function of time. Such a dose rate can then describe uniform
and non-uniform radiation schemes, fractionations with varying dosages, hyper and hypo-
fractionations as well as constant radiations, brachytherapies and any combination of the
above. The total dose D(t) =

∫ t
0 Ḋ(s)ds is then a continuous and non-decreasing function
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of time. In [10] we defined a generalized hazard function as

h(t) = (α+ βdeff(t))Ḋ(t),

with an effective dose rate deff(t). The effective dose rate deff(t), introduced in [10], depends
on the specific treatment schedule and on the underlying cell survival model. For example
for fractionation therapy of equal dose d per fraction, we simply use deff(t) = d and for
brachytherapy we use

deff(t) = 2

∫ t

−∞
e−γ(t−s)Ḋ(s)ds.

It was shown in [10] that this choice of deff(t) indeed leads to the correct Lea-Catcheside
factor (2.1). Many more models and treatments can be included via deff(t) and we consider
this formulation a convenient way to use hazard functions for modelling different treat-
ments. Moreover instead of assuming a constant natural death rate, a time dependent
rate would be more realistic.

6.2 Other cell compartments, stem cells, cell cycle

• Hanin and Zaider [11] included a compartment of doomed (seriously damaged) cells.
These cells although clonogenically dead, can still contribute to the function of the
organ and use resources and space. For our purpose we denote the doomed cell
number as V (t). Hanin and Zaider consider the logistic system

Ṅ = µN

(
1− N + V

M

)
V̇ = −dV

and they use it to analyse urethral toxicity of prostate cancer treatment. The inclu-
sion of V would require a simple addition to the above logistic birth-death process
above (3.11). Our point is, however, that it is not necessary to use birth-death pro-
cesses, and we should rather model directly on the level of an ODE, as done, for
example, by Hanin and Zaider [11]. In that sense, our framework confirms the ODE
approach of Hanin and Zaider from a different perspective.

• Stem cells are known to be the organizing centers of many organs. Stem cells are
activated through feedback from damaged organ tissue, initiating tissue repair. The
inclusion of stem cell dynamics, feedback mechanisms, differentiation and dediffer-
entiation is quite difficult on the level of a stochastic birth-death process. This can,
however, be done on the level of an ODE, see for example in [2, 16, 25].

• The inclusion of cell cycle dynamics is another interesting challenge. Radiation treat-
ment interferes with the cell cycle and various cell cycle check points are activated by
radiation damage [24, 27]. Since the cell cycle phases are not stochastically indepen-
dent, we leave the realm of Markov processes when studying stochastic models for
cell cycle dynamics [14, 19] and an extension to NTCP calculations is an interesting
topic for future research.
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• The side effects discussed in our paper are only related to the number of functional
cells of the organ at hand. As discussed above in the case of prostate cancer treat-
ment, side effects can have many more causes than just cell loss. For example,
irradiated epithelial tissue becomes raw and sensitive to touch, tissue might form
scars which changed the functionality of the tissue, muscle tissue might not fully
recover its original strength, and infections might develop. The inclusion of the ner-
vous system, wound healing, scarring, and the immune response is a huge endeavour.
Still, an NTCP modelling based on detailed ODE models, might enable us to include
these processes in the future.

• A new idea of Niemierko et al. [22] and Staverv et al. [28] is the introduction of
the concept of a Functional Subunit (FSU). A variety of organs can still function
even when partially destroyed. This fact is called a parallel organ structure and
appears in organs such as the lung and kidney, because the undamaged parts work
independently from the damaged ones. The smallest unit of an organ that is capable
to perform biological functions is called a functional subunit (short: FSU) [28]. For
example in the kidney the FSU are the renal tubes, in the liver it is the lobules, and
the FSU of the lung are the acinuses. As mentioned in [11], the above modelling
framework can be formulated in units of FSUs. In that case, the death and repro-
duction rates no longer relate to individual cells, but to groups of cells, the FSUs.
These values are not easily available in the literature.

6.3 Optimization and Optimal Control Problems

The next step is to compare the tumor control probability to the NTCP and formulate a
constraint optimization problem and an optimal control problem. These are based on the
following patient specific and organ specific parameters:

• radio sensitivities of tumor: αt, βt and initial tumor size n0.

• radio sensitivities of the involved healthy tissue; αh, βh

• initial number of healthy tissue cells Z0, the normal number of healthy tissue cells
M , and the minimal tolerable number of the organ cells at hand L.

• tumor growth rate b, and tumor death rate rt(t) based on a radiation schedule Ḋ(t)

• healthy tissue repair rate µ, and death rate of healthy tissue due to treatment rh(t),
given by a treatment Ḋ(t), which can include a dose-volume histogram of the exposed
healthy tissue.

In the following we denote by D the set of admissible treatment schedules consisting
of certain functions Ḋ : [0, tmax] → R+. Note that D can include restrictions on the
maximal dose in total and per time interval and further a-priori choices on the type of
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treatment (e.g. discrete radiation events, continuous radiation, weekends off, etc.). For a
given treatment schedule Ḋ let (n(·; Ḋ), Z(·; Ḋ)) denote the solutions of

dn

dt
= (b− rt(t))n, n(0) = n0

dZ

dt
= µZ

(
1− Z

M

)
− rh(t)Z, Z(0) = Z0.

Note that the variable Ḋ(t) enters the radiation induced death rates rt(t), rh(t) through
the hazard functions.

The goal of the radiation therapy taking into account TCP and NTCP is to achieve
tumor control in a certain time interval while restricting the damage. Note that the first
means to have TCP close to one at final time tmax, which can be expressed already by the
formula of Zaider-Minerbo (2.8). The constraint has to be formulated in the whole time
interval [0, tmax] however, since too strong damage during the treatment cannot guarantee
recovery even if the NTCP is again below a threshold at time tmax.

Control problem: Given a fixed target time tmax and a target TCPmax close to 1.
Find Ḋ ∈ D such that for all 0 < t ≤ tmax:

TCPZM (tmax) =

1− n(tmax; Ḋ)

n0 + bn0

∫ tmax

0
dt

n(t;Ḋ)

n0

= TCPmax, Z(t; Ḋ) ≥ L.

Since it may be difficult or even impossible to achieve exact controllability in a finite
time interval, we alternatively formulate an optimization problem rather in the tradition
of optimizing treatment schedules:

Optimization problem:

max
tmax>0,D∈D

TCPZM (tmax), Z(t; Ḋ) ≥ L for all 0 < t ≤ tmax.

The analysis of this optimization problem and the control problem depends on specific
choices of D and parameters, which exceeds the scope of this paper and it is an interesting
problem for future research.

7 Conclusions

We introduced a mathematical model for the normal tissue complication probability
(NTCP), which is based on patient-specific, organ-specific and treatment-specific param-
eters. This of course means that we do not provide a one-fits-all formula. Rather, we
present a framework such that in a given situation, a NTCP can be derived. The analysis
of the stochastic birth-death process suggests to use the logistic differential equation (3.14)
as a good indicator of the NTCP. Hence the model is mathematically simple. There is even
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an explicit solution to the logistic equation. Moreover, the number of parameters that are
needed is quite limited (α, β, Z(0),M,L) and there is real hope that these parameters can
be estimated for many healthy tissues in the future. If this is achieved, we will have a
biologically-based formulation of the NTCP instead of a statistically based NTCP as the
one by Lyman [18], for example.
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