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1. Introduction

The purpose of this chapter is to introduce the student to the methods of spatial
dynamics in biology. They are to form the building blocks for later lectures in
the PCMI series. The approach taken here is to introduce some well known ideas
and methods in spatial dynamics in the context of a new problem in mathematical
biology. Many of the general results here can be found in the excellent texts by
Fife [7], Kot [10], and Okubo [13], as well as in the new text by de Vries et al [6].

The problem that provides the context for this chapter is called the drift para-

dox in stream ecology [12]. The paradox can be summarized by a question. Why
can populations persist in streams when they are being constantly washed down-
stream? While the problem has been recognized for half a century, the application
of methods of spatial dynamics to the problem has occurred in the last five years,
starting with the work of Speirs and Gurney [15]. Speirs and Gurney modeled the
drift paradox using partial differential equations. The analysis of the equations was
then used, for example, to show why invasive zebra mussels Dreissena polymorpha

cannot persist in certain US rivers, or why stone flies can persist, but fish cannot
persist in certain creeks in southeast UK. Here the mathematical analysis allows us
to link persistence of species to environmental conditions in streams and rivers.

Even though the models discussed here have been used to understand specific
stream ecosystems, the models themselves are simple, and leave out many biolog-
ically relevant factors. The primary motivation is to use the model to understand
the essential processes governing species persistence and spread. Extensions of
Speirs and Gurney’s work to more realistic stream ecosystems have been made by
Pachepsky et al [14] and Lutscher et al [11]. However, we will stick to the simplest
versions of the models for the purposes of this chapter.
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4 2. DERIVING THE MODEL

2. Deriving the model

We first focus on deriving a model that includes the relevant spatial and growth
dynamics. This model takes the form of a reaction-advection-diffusion model. The
‘reaction’ describes birth and death dynamics, the ‘advection’ describes drift in the
stream, and the ‘diffusion’ describes random movement in the stream.

There are two fundamental ways to derive the model. The first is via a con-

servation law. This approach comes from mathematical physics. The conservation
equation tracks the density of individuals over time and space by specifying forms
for the ‘reaction’, which describes population growth, and for the flux of individuals,
which describes drift and random motion.

The second approach comes from stochastic processes. If we ignore birth and
death dynamics for now, the location of an individual is a random variable, indexed
by time, (i.e., a stochastic process). This random variable has an associated prob-
ability density function. The probability density function changes with time, as
the individual executes steps in a biased random walk. The resulting model is an
advection-diffusion equation referred to variously as the Fokker-Planck equation,
or the forward Kolmogorov equation.

2.1. Conservation law derivation

Assume a population with density u(x, t) is living and moving in a given region.
To describe movement, we introduce another dependent quantity, the population
flux, J(x, t) ∈ IRn, where n is the space dimension. At each location x and at each
time t, the flux J(x, t) is a vector which points in the direction of movement at
that location. Its units are density times velocity, and its magnitude, |J(x, t)|, is
proportional to the amount of particles which flow in that direction per unit time.

We assume that the population density and the flux are smooth functions of
space and time. We consider a test volume Ω with boundary Γ and we balance the
fluxes inward and outward on Ω through Γ (see Figure 1). In words,

Change of u in Ω = flux into Ω + change due to birth, death, interactions.

u(x,t)

J(x,t)

Γ

Ω

Figure 1. Sketch of a test volume Ω with boundary Γ, population
density u(x, t), and flux J(x, t) through the boundary.
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Written in mathematical terms, this means

d

dt

∫

Ω

u(x, t)dV = −
∫

Γ

J(x, t) · n dS +

∫

Ω

f(u(x, t))dV,

where n is the outwardly oriented unit vector normal to Γ.
We use the Divergence Theorem

∫

Γ

J(x, t) · n dS =

∫

Ω

∇ · J(x, t)dV,

and we get
∫

Ω

(

∂

∂t
u − f(u) + ∇ · J

)

dV = 0.

The above relation is satisfied in each test volume Ω. Then it follows that

(1)
∂

∂t
u − f(u) + ∇ · J = 0.

Next, we need an expression of the flux in terms of the population density. Simple
diffusive flux arises from Fick’s second law1

(2) J = −D∇u.

This law assumes that the flux J is proportional to the negative gradient of the
density of individuals. Note that, for the units to match in (2), the diffusion
coefficient D must have units space2time−1.

x

J(x,t)

u(x,t)

Figure 2. Schematic of Fick’s second law. A positive gradient
of u gives rise to a negative flux J .

In Figure 2, we show a positive gradient of u ( ∂
∂x

u(x, t) > 0). The flux points
to the left, tending to equilibrate high and low levels of u. If there is also advection
(drift) with velocity v then Fick’s law is modified to

(3) J = −D∇u + vu.

If we combine the balance law (1) with the general version of Fick’s law (3), we get a
reaction-advection-diffusion equation. When the diffusion coefficient D is constant
this equation is

(4)
∂u

∂t
+ ∇ · (vu) = D∆u + f(u),

1In the interpretation of heat transport, this law is known as Fourier’s Law.
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where the Laplacian ∆u is defined as

∆u(x, t) =
∂2

∂x2
1

u(x, t) + · · · + ∂2

∂x2
n

u(x, t), x = (x1, . . . , xn) ∈ IRn.

If there are no growth dynamics (f = 0), and there is no advection (v = 0) then
equation (4) is simply the diffusion equation or heat equation.

2.2. The Fokker-Planck equation

Most living organisms move in space. Given that we have some information about
how an organism moves over short time scales, can we determine where it is likely
to be over long time scales? If movement rules are simple, mathematical models
can be used to translate the movement rules into equations. As we will show in
this section, analysis of the resulting equations yields an equation for a probability
density function that can be used to track the changing location of the organism
over time.

We consider an individual executing a random walk in one-dimensional space.
At each time-step, the individual either jumps to the right or left, and its new
position is determined by its current position plus a random increment to the left
or right. This is called a one-step Markov process, because it is a stochastic process
which requires only the knowledge of its current location, plus the random incre-
ment, to determine the next position. The precise path taken to get to the current
location plays no role in determining future positions. A very readable introduction
to stochastic processes is Allen [2].

We now consider the probability density function (PDF) for the location of
the individual, released at location x = 0 at time t = 0, for times t > 0. Rather
than calculating the probability density directly, we show that the PDF satisfies a
diffusion-advection equation called the Fokker-Planck equation. As we will show
in the subsequent section, when the Fokker-Planck equation comes from a simple
movement model, it can be directly solved.

We start with a master equation describing possible locations of the individual
from one time step to the next. Let X(t) be a stochastic process describing the
location of an individual at time t, which is released at location x = 0 at time = 0
(X(0) = 0). We define a time-dependent probability density function p(x, t) and
small space interval λ, such that p(x, t)λ = probability an individual released at
x = 0 and time = 0 is between x and x + λ at time t.
We start by assuming that the random walk is unbiased, with individuals moving
at every time step. This means that the probability of jumping to the right, R,
or left, L in a given time step is one half. The master equation which describes
movement between points situated distance λ apart is

(5) p(x, t + τ) =
1

2
p(x − λ, t) +

1

2
p(x + λ, t)

(see Figure 3).
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x x − ∆ x  x + ∆ x

Figure 3. Movement on the lattice giving rise to the diffusion
equation. Here an individual arriving at x can come from locations
x − ∆x and x + ∆x, where ∆x = λ in equation (5).

Expanding the Taylor series gives:

p(x, t) + τ
∂p

∂t
(x, t) +

(τ)2

2

∂2p

∂t2
(x, t) + h.o.t.

= 1
2

{

p(x, t) − λ
∂p

∂x
(x, t) +

(λ)2

2

∂2p

∂x2
(x, t) + h.o.t.

+ p(x, t) + λ
∂p

∂x
(x, t) +

(λ)2

2

∂2p

∂x2
(x, t) + h.o.t.

}

,

where h.o.t. indicates higher order terms in the Taylor series. The above equation
can be approximated by dropping the higher order terms and reorganizing to yield

∂p

∂t
+

τ

2

∂2p

∂t2
=

(λ)2

2τ

∂2p

∂x2
.

Taking the limit as λ, τ → 0 so that (λ)2

2τ
→ D yields the diffusion equation:

(6)
∂p

∂t
= D

∂2p

∂x2
.

A slight bias in the movement direction (R = 0.5 + γλ, L = 0.5 − γλ) yields
the advection-diffusion equation

(7)
∂p

∂t
+ v

∂p

∂x
= D

∂2p

∂x2
,

where γ(λ)2

2τ
→ v. The biased random walk model can be extended to higher spatial

dimensions to yield the n-dimensional advection diffusion equation ((4) with f = 0).

Exercise (Random walk derivation of a diffusion-advection equation)
Describe, by means of a master equation, a random walk with movement to

nearest neighbors on a 2D lattice with spacing λ and time steps of size τ . Denote
L, R, U and V to be the probability of moving to the left, right up or down,
respectively. Assume that L = 0.25 − λγ1, R = 0.25 + λγ1, U = 0.25 + λγ2 and
V = 0.25 − λγ2. Derive a diffusion-advection equation

∂p

∂t
+ v · ∇p = ∇ · D∇p

by taking the appropriate diffusion limit of the random walk. Here v is an advec-
tion vector which you should describe in terms of γ1 and γ2.

When the probabilities of jumping to right and left depend on spatial location
a more complex form of the Fokker Planck equation arises.
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Exercise (Spatially varying diffusion model)
Using Taylor Series and the diffusion limit, derive an equation for ∂p/∂t where

(a) p(x, t + τ) = α(x − λ)p(x − λ, t) + N(x)p(x, t) + α(x + λ)p(x + λ, t) and
(b) p(x, t + τ) = α(x − λ/2)p(x − λ, t) + N(x)p(x, t) + α(x + λ/2)p(x + λ, t).

In the first model, 2α(x) and N(x) describe the probabilities of leaving the site
or staying at the site. In the second model α(x − λ/2) + α(x + λ/2) and N(x)
describe the probabilities of leaving a site or staying at a site, respectively. Note
that N(x) + 2α(x) = 1 in the first model and N(x) + α(x− λ/2) + α(x + λ/2) = 1
in the second model. Show that the first problem can be written in the form

∂p

∂t
=

∂2

∂x2
{A(x)p} ,

where A(x) is a function you should determine. (HINT: when deriving Taylor
expansions it may be easiest to expand the product of two functions.) Show that
the second problem can be written in the form

∂p

∂t
=

∂

∂x

{

B(x)
∂p

∂x

}

,

where B(x) is a function you should determine. Compare and contrast the assump-
tions for the two models and the resulting equations for pt. Show that the difference
between the two models can be expressed as an advection term that appears in one
model but not the other. For further reading on this see Aronson [3].

So far we have derived the diffusion-advection equation two different ways, first
from a conservation law, and second from random walk. If we are to calculate the
density of individuals (or, alternately, the probability density function for a single
individual) we must solve this equation. This is what we consider in the next
section.

2.3. Fundamental solution to the diffusion equation

The fundamental solution is a particular solution of the diffusion equation (equation
(6), or equivalently, equation (4) with f = 0 and v = 0), that can be used to find
other solutions by convolution (see, for example, Britton [5]).

The fundamental solution can be interpreted as the solution to the Fokker-
Planck equation (6) for an individual which starts at the location x = 0 at time
t = 0.

To denote this single individual whose initial location is known precisely we
use a δ-distribution δ0(x). The δ-distribution denotes a unit impulse, centered at
x = 0. Mathematically, it is defined by its action on smooth functions. If h(x) is a
smooth function, then δ0(x) is the one and only object which satisfies

∫

R

δ0(x)h(x)dx = h(0)

and
∫

R

δ0(x)dx = 1.
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t=t
1

t=t
2

0
x

Figure 4. Solutions of the diffusion equation (6) are given for
three time values, t = 0, t = t1 > 0, and t = t2 > t1.

Consider the initial-value problem for a particle which diffuses in one dimension
and starts with certainty at 0:

(8) wt = Dwxx, w(x, 0) = δ0(x).

The fundamental solution (in one dimension) is

(9) w(x, t) =
1

2
√

πDt
e−

x2

4Dt .

This can be found by using Fourier Transform methods [9].

Exercise (Fundamental solution)

(a) Verify that the function

w(x, t) =
1

2
√

πDt
e−

x2

4Dt

satisfies the diffusion equation wt = Dwxx.
(b) Derive the fundamental solution to the diffusion-advection equation ut +

vux = Duxx.

In Figure 4, we show this solution for time steps t = 0, t = t1 > 0, t = t2 > t1,
and D = 1. As time increases, the variance of the Gaussian increases, and hence
the location of the individual becomes less certain.

Although the initial condition is not continuous, the solution (9) is continuous
for all t > 0. In fact, it is infinitely often continuously differentiable, a property
which is known as the regularizing property of the diffusion equation.
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If we study the diffusion equation with a general initial condition,

(10) ut = Duxx, u(x, 0) = h(x),

then the solution can be found by convolution with w:

u(x, t) = (h ∗ w(·, t))(x),

where the convolution integral is given by

(h ∗ w(·, t))(x) =

∫ ∞

−∞

h(y) w(x − y, t) dy(11)

=
1

2
√

πDt

∫ ∞

−∞

h(y)e−
(x−y)2

4Dt dy.(12)

This convolution of the fundamental solution with initial conditions works also for
general linear operators, including the diffusion advection equation (7).

3. Population spread

One measure of whether a population can persist in a stream is whether it will
invade spatially when introduced into localized region of the stream. We initially
analyze a very long (in fact, infinitely long) stream, so there are no losses at up-
stream and downstream boundaries. These kinds of boundary losses are considered
in the subsequent section. We also initially choose the drift term (advection ve-
locity) to be zero. While this is clearly an unreasonable assumption, we make the
assumption only for clarity of exposition. The analysis of the zero advection case
can be easily extended to include advection and we do this later in the section.

We write our reaction-diffusion model for growth and dispersal in the stream in
one spatial dimension. Here x is the distance down river and n(x, t) is the density
of individuals in the stream. Random motion, coupled to growth, yields

(13)
∂n

∂t
= D

∂2n

∂x2
+ f(n),

Here typical growth dynamics are logistic growth

(14) f(n) = rn
(

1 − n

K

)

.

However, some populations have a reduced per capita growth rate at low densities,
so on average they cannot replace themselves when densities are low. This is re-
ferred to as an ‘Allee effect’ in honor of Allee, a biologist from the first part of the
20th century who deduced that these effects may be important in the dynamics of
populations (Allee [1]). The bistable growth function

(15) f(n) = rn
(

1 − n

K

)

(

n − C

K

)

is an appropriate model for the Allee effect.
We can simplify our model by rescaling population density by the carrying

capacity, and time and space by characteristic time and length scales.

u =
n

K
, t∗ = rt, x∗ =

√

r

D
x.
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This rescaling renders our new quantities u, t∗ and x∗ dimensionless. We now drop
the asterisks on t and x for notational simplicity. Our new equation is

(16)
∂u

∂t
=

∂2u

∂x2
+ g(u),

where g(u) = u(1 − u) for logistic growth and g(u) = u(1 − u)(u − a) for bistable
growth.

Our first step in analyzing population spread is to consider travelling wave
solutions of (16). Travelling wave solutions are translationally invariant solutions
which move with a fixed profile and constant speed.

c

x

u(x,t)

Figure 5. A typical invasion travelling wave.

In particular, we seek solutions u(x, t) that have the form shown in Figure 5,
joining the extinction steady state u = 0 to the carrying capacity steady state
u = 1, and moving with constant speed c. A solution of this type can be expressed
as

u(x, t) = U(x − ct).

The function U(x− ct) is the function U(x) shifted to the right by ct, see Figure 6.
The parameter c is the wave speed, the new variable z = x − ct is called the wave

variable, and the function U(z) is called the wave profile.

0 2 31 z

U(z)

0 2 31 z

U(z-2)

Figure 6. The profile U(x) from the top figure is shifted by 2 to
the right (bottom).

The travelling wave ansatz, with boundary conditions is

(17) u(x, t) = U(x − ct), U(−∞) = 1, U(+∞) = 0,
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For x → −∞, the population has already grown to its carrying capacity (1 in this
case), and for x → +∞, the population has not yet arrived.

From (17), we obtain

∂

∂t
u(x, t) = −cU ′,

∂2

∂x2
u(x, t) = U ′′,

and (16) reduces to the following ordinary differential equation f or U(z)

(18) −cU ′ = U ′′ + g(U)

To allow analysis in the phase plane, we introduce a new variable, V = U ′, and
write (18) as a 2 × 2 system

U ′ = V,(19)

V ′ = −cV − g(U)

Before doing further analysis, we need to specify the dynamics g(u) in equation
(16) precisely. We consider the case with logistic growth so that g(U) = U(1−U).
The model (16) with logistic growth is referred to as Fisher’s equation in honor of
R.A. Fisher, a quantitative geneticist who used this equation to study the spatial
spread of an advantageous gene into a new environment (Fisher [8]). The analysis
of the bistable case is left as an exercise (below).

The equilibria of (19) are P1 = (0, 0) and P2 = (1, 0). Using the linearization,
we find that the point P1 = (0, 0) is stable for c > 0. It is a stable spiral for c < 2,
and a stable node for c ≥ 2. The point P2 = (1, 0) is always a saddle.

Recall that the boundary conditions for the wave profile are U(−∞) = 1 and
U(+∞) = 0. Moreover, from the form of U as shown in Figure 7, it is clear that
V (−∞) = V (+∞) = 0. In the phase portrait of system (19), we must find a con-

for z ∞

∞

−

for z

1

0

Figure 7. The travelling wave as a function of the wave variable z.

nection from the saddle (1, 0) to the stable point (0, 0). We show these connections
for c < 2 in Figure 8 (saddle-focus), and for c ≥ 2 in Figure 9 (saddle-node).

Exercise (Phase plane analysis for the bistable travelling wave)
Analyze the bistable travelling wave problem in the phase plane. Show that a

heteroclinic connection from U = 1 to U = 0 yields a saddle-saddle connection in
the phase plane.

The function U is the profile of the population density; hence it must be non-
negative. Thus solutions for c < 2 are not biologically relevant. (Nor are they
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1 U

V

Figure 8. Heteroclinic connection from the saddle at (1, 0) to
the stable spiral at (0, 0). Here µ = D = 1 and c < 2. There is no
non-negative travelling wave.

V

U1

Figure 9. Heteroclinic connection from the saddle at (1, 0) to
the stable node at (0, 0). Here µ = D = 1, c > 2. There exists a
non-negative travelling wave.

mathematically possible as solutions to (13), provided initial conditions are non-
negative (Fisher [7].)) They correspond to an oscillating front (see Figure 10).
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z

U(z)

U(z)    < 0:  not biologically relevant

Figure 10. Oscillations at the leading edge of the wave from Figure 8.

Hence c ≥ 2 is a necessary condition for a heteroclinic orbit. Is it a sufficient
condition? Because the stable manifold at P1 = (0, 0) is of dimension 2, it is rea-
sonable to expect that, when c ≥ 2, a trajectory leaving the saddle at P2 = (1, 0),
as shown in Figure 9, will approach the origin with U ≥ 0. You are asked to prove
this result in the exercise below.

Exercise (Trapping region)
Show that c ≥ 2 is a sufficient condition for the heteroclinic orbit to exist as

shown in Figure 9). A proof can be constructed as follows:

(a) Create a triangular ‘trapping region’ whose edges are V = 0, U = 1 and
V = −αU , α > 0.

(b) The unstable manifold at P2 = (1, 0) emanates out of the equilibrium and
into the triangular region. Furthermore, within the triangle, the flow must
move to the left. Why?

(c) Start to show that the ‘trapping region’ is invariant with respect to the
flow (the flow starting at any point (U, V ) inside the triangle can never
leave the triangle). Do this by showing that on the edge V = 0, V ′ < 0
and on the edge U = 1, U ′ < 0.

(d) Finally show that α can be chosen so that dot product of the inward
normal to the line V = −αU and the flow on the line V = −αU is
positive. In other words show that α can be chosen so that (α, 1)·(U,−cU−
V (1 − V )) > 0 whenever V = −αU . HINT: show that an α value that
satisfies α2 − cα + 1 ≤ 0 will do this. Hence a value of α lying between
(c −

√
c2 − 4)/2 and (c +

√
c2 − 4)/2 will suffice.

(e) Put the parts of the argument together to conclude that there must be a
heteroclinic orbit that stays within the trapping region when c ≥ 2.

Thus a non-negative travelling wave solution exists for each c ≥ 2 and no such
solution exists for c < 2. The minimum wave speed for which there is a positive
solution is c = 2. In dimensional terms this minimum wave speed is c = 2

√
rD.

The travelling wave problem, expressed in travelling wave coordinates (18)
has an alternative ‘physical’ interpretation if we take U to be displacement of a
nonlinear spring and z to be ‘time’. Then U ′ = V is velocity and V 2/2 is kinetic
energy. We assume that the potential energy in the spring is a nonlinear function
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of displacement

(20) G(U) =

∫ U

0

g(w) dw.

Defining the energy to be the sum of kinetic and potential energies E = V 2/2+G(U)
we calculate the rate of change of energy as

E′ =
dE

dU
U ′ +

dE

dV
V ′(21)

= g(U)V + V (−cV − g(U)) = −cV 2.

The last term on the right hand side of the equation can be interpreted as a damp-
ing term, with c the friction coefficient. In the case of the Fisher equation, when
the spring is stretched close to U = 1 it moves towards U = 0. When there is little
or no friction the spring will oscillate. The critical wave speed c = 2 is the critical
friction coefficient that prevents oscillation about the well in potential energy that
is found at U = 0. Any friction coefficient that exceeds this value will also prevent
oscillations, and will allow the spring to come to rest without overshooting.

Exercise (Energy methods for waves)
Plot G(U) for Fisher’s equation and for the bistable equation. Use the above

kind of heuristic reasoning to argue that while, Fisher’s equation allows travelling
waves for all speeds exceeding the minimum speed c = 2, a heteroclinic connection
between U = 1 and U = 0 for the bistable equation must have a unique wave speed.
(HINT by plotting G(U) show that U = 0 is not a well in potential energy, but a
local peak.)

Although our initial interest was in spread rate of an introduced population,
our analysis, so far, has been restricted to travelling waves and their speeds. The
relationship between minimum travelling wave speed and spread rate was derived
by Aronson and Weinberger [4]. Here the spread rate refers to the rate at which
a locally introduced population (zero outside a compact set) will spread outwards.
Mathematically c∗ is the spread rate if, providing the population is introduced
locally on a sufficiently large region, a moving reference frame that expands at a
speed slower than c∗ eventually sees the carrying capacity u = 1, and a moving
reference frame that expands at speed faster than c∗ eventually sees the uninvaded
steady state. Mathematically these statements are written as for all 0 < ǫ ≪ c∗

(22) lim
t→∞

sup
|x|>(c∗+ǫ)t

u(x, t) = 0

and

(23) lim
t→∞

sup
|x|<(c∗−ǫ)t

|u(x, t) − 1| = 0

The result from Aronson and Weinberger [4] shows that the spread rate for Fisher’s

equation is exactly the minimum wave speed c∗ = 2
√

rD.
Returning to the problem of invading a stream system with unidirectional flow,

we now include the drift (advection) back into our model (13-14) so that

(24)
∂n

∂t
+

∂

∂x
(vn) = D

∂2n

∂x2
+ rn

(

1 − n

K

)

.
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u(x, 0)

u(x, t)

c∗ + vc∗ − v

c∗ − v upstream

speed

c∗

spread rate
c∗ + v downstream

advection speed vc∗

spread rate

Figure 11. A locally introduced population spreads upstream
at rate c∗ − v and downstream at rate c∗ + v. Upstream and
downstream spread rates are shown as a function of drift velocity.

However, this drift term is equivalent to simply using a moving reference frame in
(13-14). In other words moving from (x, t) to (x − vt, t) transforms (24) to (13-
14). Hence, the above analysis can be interpreted as follows. A locally introduced
population will spread upstream at speed c∗−v and downstream at speed c∗+v. In
other words, the population will be successful at spreading upstream when the rate
c∗ = 2

√
rD exceeds the drift rate v, and is washed downstream when v > 2

√
rD

(Figure 11).

4. Critical domain size problem

Another measure of whether a population will persist in a stream is whether it will
grow when rare. Consider a short stream where the population can grow, outside
of which it dies quickly. We start by asking whether the length of stream L is
sufficiently large to allow the species to grow when rare. If the length of stream is
too small, then individuals will leave the region, move into the hostile surroundings
and die. When the stream is long, most individuals can grow and reproduce without
leaving the region and moving into the hostile surroundings.

4.1. Classical problem

As we did earlier, we first evaluate the case with zero flow (v = 0), and then return
to the case v > 0 later. As the species is assumed to be rare, it is reasonable to
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0 L

Figure 12. A typical solution of (29).

assume that it is at low density. Hence the linearization of (13-14) about n = 0 will
approximate the dynamics of (13-14). This linearized system, along with boundary
conditions indicating a hostile exterior, and an initial condition describing the initial
spatial profile of the population is given as

(25)
∂n

∂t
= rn + D

∂2n

∂x2
, n(0, t) = n(L, t) = 0, n(x, 0) = n0(x).

Because our system is linear, it can be solved by separation of variables. If we
consider separable solutions of the form n ∝ exp(λt)f(x), then substitution into
(25) yields

(26) f ′′ +
r − λ

D
f = 0, f(0) = f(L) = 0.

Solutions f(x) that satisfy the boundary conditions take the form f(x) = A cos(µx)+
B sin(µx), where µ2 = (r − λ)/D. The application of boundary condition f(0) = 0
implies A = 0 and the application of boundary condition f(L) = 0 implies µ =
kπ/L. Hence (kπ/L)2 = (r − λ)/D so λ = r − D(kπ/L)2. Using the principle of
superpositioning the solution to (25) is given as

(27) n(x, t) =

∞
∑

k=1

Bke

“

r−D( kπ
L )

2
”

t
sin

(

kπ

L
x

)

,

where the constants Bk are determined by the initial conditions n0(x) in equation
(25).

Hence the population will grow if λ > 0 for some k. The fastest growing mode
is associated with k = 1. In other words, the population will grow if L exceeds

(28) Lc = π
√

D/r.

Suppose the critical domain size is exceeded and the population grows. How
far it will grow? We can answer this question by considering steady state solutions
to time-independent version of the nonlinear problem (13-14). Rescaling n by K
to yield u = n/K, steady state solutions satisfy

(29)
r

D
u(1 − u) + u′′ = 0, u(0) = u(L) = 0

(Figure 12). Multiplying (29) through by u′ and integrating with respect to x yields

(30)
w2

2
+

r

D
F (u) =

r

D
F (ω),

where F (u) = u2/2 − u3/3 and w = u′. This is a Hamiltonian system. In other
words it has a first integral (30) that is conserved. Here ω is the maximum value
of u which is found at the interior critical point w = 0. Symmetry of the diffusion
operator and the boundary conditions imply that the maximum occurs at x = L/2.
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1

domain size L
Lc

max height

Figure 13. A bifurcation curve describing the maximum density
of the population µ as a function of the domain size L. Solid lines
indicate a stable solution, and dashed lines an unstable.

Hence, on the interval 0 < x < L/2

(31) w =
du

dx
=

√

2r

D
(F (ω) − F (u)).

Separating variables for the previous equation and integrating yields

L(ω) =

√

2D

r

∫ ω

0

du
√

(F (ω) − F (u))

=

√

2D

r

∫ 1

0

ωdz
√

(F (ω) − F (ωz))
,(32)

where z = u/ω. This equation yields a bifurcation diagram for ω versus L. A
branch of nontrivial steady state solutions arises from the bifurcation point (L, ω) =

(π
√

D/r, 0) (Figure 13).
Using (32) it is possible to show that, as the maximum value ω approaches

zero, L approaches Lc = π
√

D/r

Exercise (Bifurcation point in critical domain problem) Using (32), and

carefully taking the limit, show that limω→0 L(ω) = Lc = π
√

D/r.

4.2. Critical domain size problem in a stream

We now undertake the analysis of the critical domain size problem in the stream
ecosystem. Our analysis will conceptually tie together the classical critical domain
size problem with travelling wave theory.

When we include drift, the linearized equation (25) becomes

(33)
∂n

∂t
+ v

∂n

∂x
= rn + D

∂2n

∂x2
, n(0, t) = n(L, t) = 0, n(x, 0) = n0(x).

Typical streams have an upstream source, and then empty into a larger body of
water. Hence reasonable boundary conditions are zero-flux at the upstream end,



LEWIS, HILLEN, AND LUTSCHER, SPATIAL DYNAMICS IN ECOLOGY 19

where the population cannot leave, and hostile at the downstream end, where en-
vironmental conditions may change

(34) vn − D
∂n

∂x
= 0 at x = 0, n = 0 at x = 0.

Proceeding as we did before, the spatial eigenfunction problem becomes

(35) λf + vf ′ = rf + Df ′′, vf(0) − Df ′(0) = 0, f(L) = 0.

This kind of problem is referred to as a Sturm-Liouville boundary value problem [9].
Solutions that satisfy the boundary conditions take the form

(36) f = A exp(ξx) cos(ρx) + B exp(ξx) sin(ρx),

where ξ = v/(2D) and ρ =
√

(r − λ)/D − (v/(2D))2. Application of the boundary
conditions (after some algebra) yields

(37) tan(ρL) = −2Dρ/v

and hence, the critical domain size is given as λ → 0 by

(38) L = Lc =

√

D/r
√

1 − v2/(4rD)
arctan

(

−2
√

rD

v

(

1 − v2/(4rD)
)

)

.

Exercise (Critical stream size problem) Verify equations (36–38). See also
the electronic Appendix A of Speirs and Gurney [15].

A plot of critical domain size Lc and the up- and down-stream spread rates is
given in Figure 14. As the stream velocity reaches the critical speed c∗ = 2

√
rD,

the critical domain size approaches infinity while the upstream spread rate c∗ − v
simultaneously approaches zero. That these two events occur simultaneously is
intuitively appealing. This also provides a link to two seemingly disjoint areas of
analysis in mathematical biology (critical domain size analysis/bifurcation theory
for one result and travelling wave/spread rate theory for the other).

Further extensions of this work to include more biological scenarios, such as
complex mobile and stationary life-history states (Pachepsky et al [14]) and non-
diffusive movement via turbulent flow (Lutscher et al [11]) have provided a similar
connection between the critical domain size and upstream spread rate.

In summary, the mathematical analysis shows that having a positive spread
rate is a necessary, but not sufficient condition for persistence when there are hos-
tile downstream boundary conditions. The deleterious effects of these boundary
conditions become more pronounced as the stream shortens. These ideas are used
in the final section of the Speirs and Gurney paper [15], where the authors apply
their mathematical results to explaining persistence and extinction in a variety of
river ecosystems.
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advection speed v

domain
size

domain
size

critical

c∗ − v upstream
spread rate

spread rate
c∗ + v downstream

L

c∗

c∗

speed critical

Figure 14. A plot of the critical domain size Lc 38 and the
up- and down-stream spread rates c∗ − v and c∗ + v for a range
of drift velocities. Note that, for v = 0 the critical domain size
π
√

D/r/2 is exactly half that of the classical problem π
√

D/r.
This is because of the differing boundary conditions.



LEWIS, HILLEN, AND LUTSCHER, SPATIAL DYNAMICS IN ECOLOGY 21

Bibliography

[1] W. C. Allee. The Social Life of Animals. W. W. Norton and Co., New York, New York, 1938.
[2] L.J.A. Allen. Stochastic Processes with Applications to Biology. Prentice Hall, 1st edition,

2003.
[3] D. G. Aronson. The role of diffusion in mathematical population biology: Skellam revisited.

In V. Capaso, E. Grosso, and S. L. Paveri-Fontana, editors, Mathematics in Biology and

Medicine, pages 2–6. Springer-Verlag, Berlin, 1985.
[4] D. G. Aronson and H. F. Weinberger. Nonlinear diffusion in population genetics, combustion,

and nerve pulse propagation. In J. A. Goldstein, editor, Lecture Notes in Mathematics, volume
446, pages 5–49. Springer-Verlag, Berlin, 1975.

[5] N.F. Britton. Reaction–Diffusion Equations and Their Applications to Biology. Academic
Press, London, 1986.

[6] G. de Vries, T. Hillen, M.A. Lewis, J. Müller, and B. Schönfisch. A Course in Mathematical

Biology. SIAM, Boston, 2006.
[7] P. C. Fife. Mathematical Aspects of Reacting and Diffusing Systems, volume 28 of Springer

Lecture Notes in Biomathematics. Springer Verlag, Berlin, 1979.
[8] R.A. Fisher. The advance of advantageous genes. Ann. Eugenics, 7:355–369, 1937.
[9] R. Haberman. Applied Partial Differential Equations with Fourier Series and Boundary

Value Problems. Pearson, 4th edition, 2003.
[10] Mark Kot. Elements of Mathematical Ecology. Cambridge University Press, Cambridge, 2001.
[11] F. Lutscher, E. Pachepsky, and M.A. Lewis. The effect of dispersal patterns on stream pop-

ulations. SIAM J. Appl. Math., 65:1305–1327, 2005.
[12] K. Müller. The colonization of freshwater insects. Oecologica, 53:202–207, 1982.
[13] A. Okubo. Diffusion and Ecological Problems: Modern Perspectives, volume 14 of Biomath-

ematics. Springer-Verlag, Berlin, Germany / Heidelberg, Germany / London, UK / etc.,
2001.

[14] E. Pachepsky, F. Lutscher, R.M. Nisbet, and M.A. Lewis. Persistence, spread and the drift

paradox. Theor. Pop. Biol., 67:61–73, 2005.
[15] D.C. Speirs and W.S.C Gurney. Population persistence in rivers and estuaries. Ecology,

82:1219–1237, 2001.


