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Abstract Gliomas are a class of rarely curable tumors arising from abnormal glia
cells in the human brain. The understanding of glioma spreading patterns is essential
for both radiological therapy as well as surgical treatment. Diffusion tensor imaging
(DTI) allows to infer the white matter fibre structure of the brain in a noninvasive way.
Painter and Hillen (J Theor Biol 323:25–39, 2013) used a kinetic partial differential
equation to include DTI data into a class of anisotropic diffusion models for glioma
spread. Here we extend this model to explicitly include adhesion mechanisms between
glioma cells and the extracellular matrix components which are associated to white
matter tracts. The mathematical modelling follows the multiscale approach proposed
by Kelkel and Surulescu (Math Models Methods Appl Sci 23(3), 2012). We use scal-
ing arguments to deduce a macroscopic advection-diffusion model for this process.
The tumor diffusion tensor and the tumor drift velocity depend on both, the directions
of the white matter tracts as well as the binding dynamics of the adhesion molecules.
The advanced computational platform DUNE enables us to accurately solve our
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macroscopic model. It turns out that the inclusion of cell binding dynamics on the
microlevel is an important factor to explain finger-like spread of glioma.
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Mathematics Subject Classification 92C17 · 92C50 · 35Q92

1 Introduction

Gliomas are rarely curable brain tumors arising from abnormal glial cells in the human
brain. Especially the most agressive type, glioblastoma multiforme, has a poor progno-
sis with a median survival rate that is<1 year (Wrensch et al. 2002). Complex therapy
approaches including surgical resection of neoplastic tissue, radio- and chemo-therapy
can still not ensure a complete healing of the patient and are part of ongoing research.

Modern methods such as diffusion tensor imaging are the preferred radiological
diagnostic instruments (Sundgren et al. 2004). These techniques also allow revealing
the specific architecture of a human brain in a noninvasive way. Particularly for surgical
treatment of brain tumors this is valuable information. Detailed knowledge of the tissue
structure can be used for modeling cellular movement in a mesoscopic framework
(Hillen 2006; Painter and Hillen 2013). The respective settings involve kinetic transport
equations, which provide an appropriate framework to account for patient specific
diffusion tensor imaging (DTI) data and allow for modeling directly on the cell scale.
Here we extend the results in Hillen and Painter (2013), Painter and Hillen (2013) to
a multiscale framework also accommodating subcellular dynamics.

Starting from a mesoscopic transport equation for the cell density and under some
appropriate assumptions we deduce an advection-diffusion equation for the tumor cell
density via parabolic scaling. This corresponds to changing the time and space scales
from minutes and micrometers (for cell movement) to weeks and centimeters (for
glioma). The scaling will allow for characterizing the evolution of the macroscopic
quantity of interest (i.e., cancer cell density) with the aid of an anisotropic tumor diffu-
sion tensor and a tumor drift velocity. Their concrete forms follow from the underlying
mesoscopic model, which renders this approach more precise than modeling directly
on the macroscopic level. Using formal computations similar to those in the work of
Painter and Hillen (2013) we show that the tumor diffusion tensor depends on the
structure of the underlying fibre network, while the drift velocity contains two com-
ponents, a directional one due to the underlying fibre network and a supplementary
one, which is due to the binding of glioma to extracellular matrix (ECM) components
that surrounds the fibre tracts. Our modeling approach is, however, more evolved, as it
accounts for three spatiotemporal levels: the microscale for the subcellular dynamics,
the mesoscale for migratory events on the cellular level, and the macroscale, on which
the whole cell population, i.e. the tumor, is observed. Thus, we combine mathemat-
ical multiscale modeling with DTI data1 and use numerical simulations in order to

1 We obtained preprocessed DTI data by courtesy of Carsten Wolters and Felix Lucka, Institute for Bio-
magnetism und Biosignalanalysis, University of Münster. This includes segmentation data, the apparent
water diffusion tensors as well as a brainmask for each voxel of the brain of a healthy male student.
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forecast the anisotropic tumor spread. We find that our new model predicts finger-like
invasion patterns for glioma, as observed in clinical practice, see e.g., Gerstner et al.
(2010). Hence, we claim that these invasion patterns are more realistic than round-
shaped predictions from isotropic diffusion models, but we have to leave a quantitative
comparison with patient data to future research.

In Sects. 1.1 and 1.2 we provide a short review of biological and medical facts
concerning neural structure, brain tumors and imaging techniques, followed by a
description of cell movement by kinetic transport equations in Sect. 1.3. In Sect.
2.1, a (formal) deduction of the evolution equation for the macroscopic cell density is
given, including the derivation of the tumor diffusion tensor and tumor drift velocity
under involvement of DTI data. Numerical simulations for the macroscopic model are
presented in Sect. 3, where we outline the potential benefit of this method. Finally, in
Sect. 4 we discuss pros and cons of this modeling approach.

1.1 Brain anatomy and neurobiology of glioma growth

The human brain has a highly complex structure. Billions of neurons control the
central nervous system and the peripheral nervous system, hence all our activities.
It is estimated that a typical human brain consists of approximately 1011 neurons,
each having a central part (soma), cellular extensions with many branches (dendrites),
a long and thin element called axon and an axon terminal. Main components of the
human brain are white matter, grey matter, blood, ECM, and cerebrospinal fluid (CSF).
White matter is composed of glia cells and axonal nerve fibres. Since these are often
myelinated, they are better visible due to their distinctive colour (Descoteaux 2008).
Glia cells are another major component of human nervous tissue. They are responsible
for the electric isolation of nerve cells and have a stabilizing function, acting as a
support for these. There are several types of glia cells like astrocytes, oligodendrocytes,
radial glia or Schwann cells.

Axons are often called nerve fibres, and bundles of myelinated axons are called fibre
tracts (Descoteaux 2008). Diffusion along such fibre tracts differs significantly from
diffusion happening orthogonally to them (Gritsenko et al. 2012). Modern imaging
methods use this circumstance to reveal the human brain architecture by tracing the
diffusion behaviour of injected water molecules (Hagman et al. 2006).

Neoplasms within the brain originate from the mutation of glia cells or neurons.
They are difficult to treat and have a poor prognosis. Cancer cells are able to invade
blood or lymph vessels, and subsequently circulate through the whole lymphatic and/or
haemodynamic system (Geho et al. 2005). After extravasation, they continue growing
and proliferating and build up secondary tumors. The most frequent types of brain
tumors are gliomas (70 % incidence) and among them glioblastoma multiforme is the
most malignant and frequent type (Ohgaki and Kleihues 2005).

The exact interaction of glioma cells with white matter tracts is largely unknown.
What is known is that glioma do follow white matter tracts (D’Abaco and Kaye 2007;
Giese and Kluwe 1996; Giese and Westphal 1996) and that several microbiological
processes play in concert. Gritsenko et al. (2012) identified several ECM molecules
which are highly expressed along myelinated fibres including hyaluronic acid (HA),
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tenascin R, and leticans, which interconnect with each other and with the nerve fibres.
The molecule HA is known to have a high water binding capacity, making the ECM
softer compared to other areas in the brain. HA, tenascin and leticans bind to glioma cell
surface receptors such as integrins, CD44 and ICAM-1. Integrins are transmembrane
glycoproteins which are closely related to glioma invasion (Demuth and Berens 2004).
The interaction of these molecules with several ECM components enable cells to
adhere, to spread and to migrate, since they connect all interior components of the cell to
the extracellular environment. As integrins are also responsible for the transduction of
extracellular information into the cell interior, they influence cell growth, cell division,
proliferation and apoptosis (Hood and Cheresh 2002; Huttenlocher and Horwitz 2011;
Moschos et al. 2007).

For simplicity of our model in Sect. 2, we will refer to these receptors as “integrins”,
and the concentration of bound receptors is denoted with y(t). Also we denote by
A(x, t) the generic ECM component. The mechanical details of the cell guidance along
white matter tracts are unknown and it is believed that it results from a combination of
reduced stiffness around nerve fibres, binding between ligands and ECM components
and proteolytic activities. There are many more internal and external pathways at
work, corresponding to the various processes which influence tumor migration. For
example, proteases and MMPs degrade the ECM in a proteolytic process; cells might
use chemotactic effects for directional guidance; cells interact with other glioma cells,
with healthy cells and with the immune system. Here we focus only on the geometric
aspects related to cell guidance and cell-ECM interactions, and we show that this effect
is already able to explain finger-like spread of glioma.

1.2 Anisotropic diffusion: MRI, DTI and HARDI techniques

Since the random motility constant involved in the classical diffusion models does not
carry any directional infomation, a tensor model which allows for capturing anisotropic
aspects of diffusion has been poposed by Basser et al. (1992, 1993), Matiello and
LeBihan (1994a, b). Thereby, the diffusion probability density function (pdf) of water
is approximated by a tensor model, with a symmetric and positive definite tensor. The
model is still Gaussian but it has six degrees of freedom instead of one. This idea led
to diffusion tensor imaging (DTI). For more details about the physical background of
the corresponding diffusion processes see e.g., Descoteaux (2008) and Tuch (1996).

As part of the diagnosis, modern imaging methods play a central role in the detec-
tion of brain tumors (Sundgren et al. 2004). Common high-resolution methods like
computer tomography (CT) or especially magnetic resonace imaging (MRI) based
methods like diffusion tensor imaging (DTI) (Hagman et al. 2006; LeBihan et al.
2001) or Q-ball imaging (QBI) (Descoteaux 2008; Tuch 1996, 2004) provide power-
ful noninvasive tools. The key idea of magnetic resonance imaging (MRI) relies on
the diffusion behaviour of water molecules within structured tissue also containing
information about the network architecture itself. Hence, these methods relate the
anisotropy of water diffusion to the anisotropy of neural tissue, particularly of brain
white matter (Hagman et al. 2006; Tuch 1996; Descoteaux 2008). The water molecules
are assumed to spread in a Brownian way in an isotropic medium, thus there is no
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Fig. 1 Diffusion tensor imaging measures the spatial diffusion of water molecules by MRI per volume
element. This yields a symmetric apparent water diffusion tensor which represents the directional dependent
diffusivity of water molecules (a). Since there is no direct intuitive access to data in tensor form, ellipsoids
can be used to vizualize data in tensor form. b The representation of the tensor by an ellipsoid, whose axes
are scaled with the tensor eigenvalues λ1(x), λ2(x) and λ3(x). a Diffusion behaviour per volume element
(voxel). b Representation of diffusion tensor data by an ellipsoid

directional preference. In contrast, in a fibrous or structured environment water mole-
cules diffuse faster along the structure, which leads to anisotropy and also provides the
physical basis for DTI. Despite this technological progress, the definitive diagnosis
of the tumor can only be confirmed by histological examination of neoplastic tissue.
This can be achieved e.g., by brain biopsy and is necessary for an optimal treatment
strategy.

As mentioned, DTI measures the spatial diffusion of water molecules by MRI per
volume element (voxel). This can be characterized with a symmetric diffusion tensor

DW (x) =
⎛
⎝

dxx (x) dxy(x) dxz(x)
dyx (x) dyy(x) dyz(x)
dzx (x) dzy(x) dzz(x)

⎞
⎠ (1)

for each voxel, containing the full (apparent) diffusion information along six directions
(see Fig. 1a). The orientation of fibre tracts within a voxel is of great interest. In
this discrete, Cartesian view of the brain each voxel (volumetric pixel) has a volume
of <1 mm3, hence a typical size of a DTI data set is of order 106. Thus, millions
of tensors are needed to represent the tissue architecture of a human brain. Since
we assumed that the diffusion is Gaussian, this approach is not capable to resolve
multiple fibre crossings in a voxel and is therefore still not optimal. Recent improved
high angular resolution imaging techniques [like e.g., HARDI (Descoteaux 2008; Tuch
2004; Descoteaux et al. 2009)] try to solve this problem.

In general, there are two main approaches to visualize a diffusion tensor, using
either some scalar indices as fractional anisotropy (Beppu et al. 2003) or so called
tensor glyphs. The latter encode the anisotropy structure of a tensor by a geometric
object like ellipsoids or peanuts (Hagman et al. 2006). We discuss these two major
approaches in more detail below. The fractional anisotropy is a scalar value between
zero and one, calculated by using the eigenvalues of the apparent diffusion tensor.
A value close to one means high anisotropy, i.e., a strong preference for a specific
direction, whereas a very small value corresponds to the nearly isotropic case.

Since the diffusion tensor is assumed to be symmetric, it can be diagonalized. The
obtained diagonal matrix features the eigenvalues (λ1(x), λ2(x), λ3(x)) on its main
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Fig. 2 Visualization of tensor data: ellipsoids, peanuts, and fractional anisotropy. a Representation of
diffusion anisotropy by ellipsoids. b A peanut is given by the directional distribution function θ �→ θ t

D(x)θ .
c Fractional anisotropy index plotted for a horizontal slice of a human brain

diagonal. Then the fractional anisotropy index (FA) is defined per voxel (Hagman et
al. 2006) by

F A(x) =
√

3√
2

√
(λ1 − λ)2 + (λ2 − λ)2 + (λ3 − λ)2√

λ2
1 + λ2

2 + λ2
3

(2)

with λ = λ1+λ2+λ3
3 . A typical fractional anisotropy map is illustrated in Fig. 2c, where

the FA-index is plotted for a horizontal slice of a human male brain. Observe that the
FA index does not contain any directional information about the fibre tracts.

Tensor glyphs encode the information of a tensor in more detail than a scalar index
does. Common glyphs are ellipsoids and peanuts. The diffusion ellipsoid is given by
the 1-level set of θ t

D
−1θ , which for a diagonal D takes the form

θ2
1

λ1
+ θ2

2

λ2
+ θ2

3

λ3
= 1.

If (λi , vi ) denotes the eigenvalue-eigenvector pairs of D, then
√
λi indicates the dif-

fusivity in direction vi . In the case of isotropic tissue, for instance, where no direction
is preferred by the diffusing water molecules, the corresponding ellipsoid is a ball. If
the tissue is strictly aligned, there is one mean direction of diffusion, which is usually
v1. Then the corresponding ellipsoid is cigar-shaped, see also Figs. 3a–i illustrating
the connection between tissue architecture and diffusion ellipsoids.

As mentioned by Painter and Hillen (2013), instead of ellipsoids other objects
having a peanut-like shape can also be used for the visualization (see Fig. 2b). These
can be obtained when considering the directional distribution function q given by
S

n−1 � θ �→ θ t
D(x)θ ∈ R. The corresponding object contains the same information

as the ellipsoid. For each direction θ given by a point on the unit-sphere S
n−1 a peanut

represents the diffusivity along that direction. Furthermore, the peanut is proportional
to the mean squared displacement in direction θ , see Painter and Hillen (2013). We
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Fig. 3 Tissue architecture, tensor ellipsoids, and eigenvalues. a Isotropic case. Fibres are not aligned. b
1D alignment of fibres. Higher diffusivity in the alignment direction. c Two crossing fibre tracts: two main
directions of diffusion. d Isotropic case: the diffusion ellipsoid is a ball. e Prolate diffusion: the diffusion
ellipsoid is cigar-shaped for strictly aligned fibre tracts. f Oblate diffusion: the case with two crossing
fibre tracts. g Isotropic case: all eigenvalues are of equal order, no directional preference. h One leading
eigenvalue for one main direction of diffusion. i Crossing fibre tracts: two leading eigenvalues

will use a rescaled version of the peanut to define a directional distribution function
based on tissue information obtained from DTI measurements.

1.3 Kinetic transport equations and cell movement

When observing systems of interacting biological entities, there are (at least) two major
modeling approaches, according to whether the relevant dynamics are considered
directly on the macroscopic population level or rather on the mesoscopic individual
level. The first option provides a mean field view on a whole population. Thereby, on
the one hand some information is lost about the individual behavior, but on the other
hand the macroscopic setting offers a satisfactory overall description of the population.
The second option allows for accommodating the individual behavior of the members
in the population. The corresponding models are in general more complex than their
macroscopic counterparts, but clearly ensure a more detailed description.

In the mesoscopic setting the dispersal and/or migration of cells is modelled by
using kinetic transport equations featuring an integral operator for the characteriza-
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tion of velocity innovations. This modeling framework was proposed by Alt (1980) and
Othmer et al. (1988) in order to describe the motile behavior of organisms like bacteria
under the influence of a chemotactic signal. Some rigorous results for a one-particle
distribution function had already been provided by Stroock (1974) in a different con-
text. More recently Hillen (2006) proposed a model for mesenchymal tumor invasion
which is inspired by the setting in Alt (1980), Othmer et al. (1988) and which has been
further developed for brain tumors (Painter and Hillen 2013) and for accounting for
chemotaxis and cell–cell interactions (Chauviere et al. 2007). Ecological applications
have been studied by Hillen and Painter (2013). A yet more general framework, the
so-called kinetic theory of active particles (KTAP) was proposed by Bellomo et al.
(2010).

Often it is possible to establish a connection between the mesoscopic and the macro-
scopic levels, e.g., by using some appropriate rescaling arguments and averaging, lead-
ing to evolution equations for the moments of the cell distribution function, see e.g.,
Filbet et al. (2005), Hillen (2006). For rigorous results on hyperbolic and parabolic
limits of kinetic equations for chemotaxis we refer to (Chalub et al. 2004; Othmer and
Hillen 2002; Hillen 2003). Further macroscopic models for cell migration directly
rely on mass conservation and/or mechanical force balance (Anderson et al. 2000;
Chaplain and Lolas 2006) or on the theory of mixtures (Barocas and Tranquillo 1997;
Maini 1989; Tosin and Preziosi 2010; Traqui 1995).

During the last decades it has been recognized that the phenomena taking place
on the macroscale are regulated by (and in turn influence) microscopic, subcellular
processes in a sort of feedback mechanism. In particular, the binding of cell surface
receptors like integrins to soluble and insoluble components of the ECM is seen as the
onset of the subsequent intracellular signaling and its effects on the cell responses (e.g.,
polarization, proliferation, restructuring of the cytoskeleton etc.) (Hood and Cheresh
2002; Huttenlocher and Horwitz 2011). Multiscale models linking the subcellular
with higher level (mesoscopic and/or macroscopic) descriptions offer a more detailed
characterization of the migratory mechanism, but are also more difficult to handle.
Among the first such models has been the one proposed by Firmani et al. (1999) for
a tumor-immune system competition with medically induced activation-disactivation.
The same idea was retaken later by Othmer et al. (Erban and Othmer 2005; Xue and
Othmer 2009) and Bournaveas and Calvez (2008) in a multiscale description of bac-
terial chemotaxis, where the relevant intracellular signal transduction was modeled
by an excitation-adaptation mechanism. A still related, but more detailed multiscale
model for bacterial dispersal was provided by Surulescu and Surulescu (2010, 2011,
2013), where the authors also proposed an equation free model for the velocity jump
movement of cells under the influence of a chemoattractant signal and of the intra-
cellular dynamics. Numerical simulations for the macroscopic cell density have been
performed via a nonparametric method, (see Surulescu and Surulescu (2010, 2011),
to appear), an issue of particular importance, since no reliable numerical methods are
available so far for handling a full multiscale setting connecting equations formulated
on microscopic, mesoscopic, and macroscopic levels. This issue will be readressed
later on in this work. Further descriptions—some of them even multiscale—of the
interaction between tumor cells and the underlying tissue have been proposed, involv-
ing continuum mechanistic approaches (Chauviere and Preziosi 2010; Stolarska et al.
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2009), discrete, or hybrid continuum-discrete settings (Chauviere et al. 2012; Frieboes
et al. 2010; Hatzikirou and Deutsch 2008; Tanaka et al. 2009).

In the paper (Kelkel and Surulescu 2012) the authors started from the mesoscopic
framework to deduce a multiscale model describing the evolution of tumor cell pop-
ulation density, whereby at the microscopic scale they did not account for genuine
intracellular signaling, but rather for the above mentioned receptor dynamics on the
cell surface. Transmembrane proteins called integrins provide linkages to the tissue
fibres and to the ECM fragments resulting from proteolytic degradation. The latter
acted as a chemoattractant, the evolution of which was characterized with a reaction-
diffusion equation connected to the kinetic equation for the cell density and to the cell
surface dynamics of integrins. In the paper (Kelkel and Surulescu 2011) the model also
accounted for the dependence of proteolytic cutting on the fibre density in the direction
of movement. Those concrete settings both align to the already mentioned KTAP the-
ory proposed by Bellomo et al. (2010). Another class of multiscale models connecting
the microscopic and macroscopic levels of cancer cell migration is considered e.g.,
in Meral and Surulescu (2013), Meral et al. (2013), Stinner et al. (2013), Szymanska
et al. (2009), where the focus is on the effect of subcellular events on the tumor cell
motility with more or less detailed description of the microscopic phenomena.

We consider here the mesoscopic (cell-level) setting obtained from describing the
cell movement with the aid of velocity jump processes. The kinetic equation for the
density function p(t, x, v, y) of cells at time t , position x ∈ R

n , velocity v ∈ V ⊂ R
n ,

and internal state y ∈ Y ⊂ R
p has the form, see e.g., Erban and Othmer (2005), Kelkel

and Surulescu (2012),

∂t p + ∇x · (v p)+ ∇y · (G(y)p) = −λ(y)p + λ(y)
∫

V
K (x, v, v′)p(v′)dv′. (3)

Here Lp := −λ(y)p +λ(y) ∫V K (x, v, v′)p(v′)dv′ is the turning operator modeling
the cell velocity innovations due to contact guidance, environmental cues etc, and λ(y)
denotes the turning rate of cells.

The vector y stands for the internal state of a cell: its components can be e.g., con-
centrations of proteins involved in some intracellular signaling network or—as will be
the case throughout this work—concentrations of adhesion molecules bound to soluble
and/or unsoluble components of the cell environment. Its dynamics is characterized
by a system of ordinary differential equations

d

dt
y(t) = G(y(t)), (4)

where the right hand side is involving the concentrations/densities of the solu-
ble/unsoluble environmental components as inputs.

The high dimensionality (2n + p) of the state space renders the numerical handling
of the multiscale model directly on the mesoscopic level very difficult. Also, we are
not interested in computing the state and location of each individual cell on a timescale
of seconds, but rather in the macroscopic spread of the glioma as a whole. Hence we
employ parabolic scaling, to find a macroscopic model which describes the dynamics
on macroscopic time and space scales. We will show later that the corresponding
macroscopic model for the cell density
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n(x, t) :=
∫

Y

∫
V

p(t, x, v, y)dvdy. (5)

has the form of a fully anisotropic advection-diffusion equation

∂t n(x, t) = ∇∇ : (DT (x)n(x, t)
) + ∇ · (u(x)n(x, t)

)
, (6)

with a tumor diffusion tensor DT (x) and a tumor drift velocity u(x). The operator
∇∇ : is a short version of the full second order derivative

∇∇ : (DT u) =
n∑

i, j=1

∂

∂xi

∂

∂x j

(
Di j u

)
,

where Di j denote the components of DT

Notice that (6) can equivalently be written in a more standard form as

∂t n(x, t) = ∇ · (DT (x)∇n(x, t)
) + ∇ · (ũ(x)n(x, t)

)
, (7)

with ũ = ∇ · DT + u. Since the diffusion tensor arises from the orientation of the
tissue fibres, the term ∇ · DT appears as a haptotaxis term. Equation (7) provides a
convenient split between diffusion and advection terms, which we will use later for
our numerical simulations.

1.4 Previous models for glioma growth

Diffusion tensor imaging (DTI) data have been used previously in glioma model-
ing (Bondiau et al. 2008; Clatz et al. 2005; Cobzas et al. 2009; Jbabdi et al. 2005;
Konukoglu et al. 2010; Mosayebi et al. 2010; Painter and Hillen 2013). Most of these
models are set directly on the macroscopic level, using a scaled version of the DTI
tensor as diffusion tensor for the tumor cells. The models have been compared to atlas
data and to synthetic data, and they can be seen as an endorsement of the concept
that anisotropic advection-diffusion equations are a promising framework for glioma
spread. Our approach here supports this model class through our macroscopic scal-
ing analysis. We are able to derive the diffusion tensor and the drift velocity from
biologically reasonable assumptions.

Our model differs from the previous kinetic setting in the reference (Painter and
Hillen 2013) by the inclusion of a supplementary scale, in order to account for the
cell-ECM interactions on the microscopic level, as proposed by Kelkel and Surulescu
(2011, 2012) in a more general framework. Our simulations show that these interac-
tions play an important role in the glioma spread patterns.
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2 The mesoscopic and macroscopic models

2.1 Cell-ECM interactions

As mentioned before, in this work we aim for a multiscale description of glioma
invasion. Starting from the receptor dynamics on the cell surface at the microscale
level, we progress to the higher mesoscopic level to a kinetic transport equation. From
this an evolution equation for the macroscopic cell density will be deduced with the
aid of a parabolic scaling. Since our focus is here on the interaction between tumor
cells and tissue and their effects on glioma invasion we do not account for chemotactic
effects on the migratory behavior, nor for the proteolytic degradation of tissue fibres.
Our model is built on the framework proposed by Kelkel and Surulescu (2011, 2012),
in which additionally the fibre residuals resulting by the action of matrix degrading
enzymes were playing the role of a chemoattractant for the moving cells. Hence, the
present model is a simplified version of the more general setting in the papers by
Kelkel and Surulescu (2011, 2012).

For the microscopic dynamics we make the following assumptions:

1. The free receptors (e.g. integrins) on the cell surface bind to the underlying ECM.
This process is described on the microscale by an ordinary differential equation
for the density of bound receptors y(t), leading to an additional transport term in
our model on the mesoscopic level. We assume that binding occurs preferentially
in areas of highly aligned tissue.

2. The turning rate of the cells depends on the receptor state on the cell surface. We
assume that if many receptors are occupied,then it is expected to increase, since
in that case the cell will need to change its direction more often in order to ’free’
itself from the too densely packed fibres surrounding it (Sun et al. 2006).

3. The turning behaviour of the cells can be described by a turning kernel dictating
the choice of the new moving direction upon conditioning on the previous velocity
regime and/or the integrin dynamics.

4. Let us denote by A(t, x) the volume fraction of the ECM components which are
expressed in between myelinated brain fibres (HA, tenascin, leticans). Since the
fractional anisotropy is a measure for the alignment for the brain fibres, we assume
that the ECM components are proportional to the fractional anisotropy of the fibres,
i.e. A(x, t) = FA(x, t).

Starting from simple mass action kinetics, the receptor dynamics on the cell surface
is described by the following ordinary differential equation:

ẏ = k+(R0 − y)A − k−y,

where R0 denotes the total number of receptors on the cell (we assume it is conserved),
whereas y(t) gives the density of receptors bound to ECM. The constants k+ and
k− denote the reaction rates for the reversible binding of adhesion molecules to the
tissue fibres. Note that since A is not a classical density measured in M = mol/l,
the k+ constant is not the classical association rate for second order reactions with
unit M−1s−1 (Lauffenburger and Lindermann 1993), but is a measure for how many

123



C. Engwer et al.

receptors of a cell with R0 receptors are bound per unit time. Hence, both k+ and k−
have unit s−1. The subsequent analysis follows the idea of Erban and Othmer (2005).

The steady state of this equation is y∗ = k+ AR0
k+ A+k− . Further, let us introduce a

new internal variable z := y∗ − y measuring deviations from the steady state. Next
consider the path of a single cell starting in x0 and moving with velocity v through a
time-invariant density field A(x). Then with the notations x = x0 + vt and

f (A(x)) = k+ A(x)R0

k+ A(x)+ k− (8)

it follows that for any t

d

dt
f
(

A(x0 + vt)
) = f ′(A(x0 + vt)) v · ∇ A(x0 + vt)

and hence z satisfies the equation

ż = −(k+ A(x)+ k−)z + f ′(A(x))v · ∇ A(x)

= −(k+ A(x)+ k−)z + k+k− R0

(k+ A(x)+ k−)2
v · ∇ A(x). (9)

This equation can be solved explicitly for z to yield

z(t) = (y∗ − y0)e
−(k+ A+k−)t + (1 − e−(k+ A+k−)t )

k+k− R0

(k+ A + k−)3
v · ∇ A,

where y0 = y(0). Hence, z is bounded as long as ∇ A is and its sign depends on the
current orientation of the cell w.r.t. the gradient of the fibre volume fraction.

For the turning rate we choose

λ(z) = λ0 − λ1z ≥ 0, (10)

where λ0 and λ1 are some positive constants. Note that this is equivalent to considering
λ(y) = λ0−λ1 y∗+λ1 y, which becomes indeed larger when many receptors are bound
to the tissue. This choice corresponds to the one proposed by Erban and Othmer
(2005) for the turning rate of bacteria and—after a linearization—also to that chosen
by Grünbaum (2000).

2.2 The corresponding transport equation

With the above model for the internal dynamics equation (3) reads

∂t p + ∇x · (v p)+ ∂z
((−(k+ A + k−)z + f ′(A(x)) v · ∇ A

)
p
)

= −λ(z)p + λ(z)
∫

V
K (x, v, v′)p(v′)dv′.

(11)
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We now focus on the case where the cell speed is constant s, hence we have V = sS
n−1.

Furthermore, we choose K (x, v, v′) = q(v̂)
ω

with ω = ∫
V q(v̂)dv = sn−1 a scaling

constant, as proposed by Hillen (2005) and Painter and Hillen (2013) according to our
assumption that cells choose new directions of movement due to contact guidance.
Recall that q denotes the directional distribution of tissue fibres, thus we also assume
the tissue to be undirected. Additionally, we choose a linear turning rate λ(z) =
λ0 − λ1z, and have hence the transport equation

∂t p + ∇x · (v p)− ∂z
((
(k+ A + k−)z − f ′(A(x)) v · ∇ A

)
p
)

= −λ0 p + λ1zp + λ0
q

ω

∫
V

p(v′)dv′ − λ1
q

ω

∫
V

zp(v′)dv′.
(12)

Next introduce the following moments:

m(t, x, v) =
∫

Z
p(t, x, v, z)dz, M(t, x) =

∫
V

∫
Z

p(t, x, v, z)dzdv

mz(t, x, v) =
∫

Z
zp(t, x, v, z)dz, Mz(t, x) =

∫
V

∫
Z

zp(t, x, v, z)dzdv,

where our new domain for the internal dynamics is Z ⊆ [y∗−R0, y∗]. In the following
we assume the data to be compactly supported in the (x, v, z)-space, which allows to
perform the subsequent calculations.

Integrate (12) with respect to z:

∂t m + v · ∇m = −λ0m + λ1mz + λ0
q

ω
M − λ1

q

ω
Mz . (13)

Multiply (12) by z and integrate again:

∂t m
z + v · ∇mz −

∫
Z

z · [∂z
([
(k+ A + k−)z − f ′(A(x)) v · ∇ A

]
p
)]

dz

= −λ0mz + λ1mzz + λ0
q

ω
Mz − λ1

q

ω
Mzz

with

mzz(t, x, v) =
∫

Z
z2 p(t, x, v, z)dz and Mzz(x, t) =

∫
V

∫
Z

z2 p(t, x, v, z)dzdv.

Assume the internal dynamics equilibrates rapidly, so that the system is always close
to the steady state. Hence, we neglect the second-order moments in z, so that the last
equation becomes

∂t m
z + v · ∇mz = −(k+ A + k−)mz + f ′(A(x)) v · ∇ A m − λ0mz + λ0

q

ω
Mz .
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2.3 Parabolic scaling

Now, use a parabolic scaling: t̂ = ε2t, x̂ = εx, then drop the hats on x, t . This yields
two equations:

ε2∂t m + εv · ∇m = −λ0m + λ1mz + λ0
q

ω
M − λ1

q

ω
Mz (14)

ε2∂t m
z + εv · ∇mz = −(k+ A + k−)mz + ε f ′(A(x)) v · ∇ A m − λ0mz + λ0

q

ω
Mz .

(15)

Next, use Hilbert expansions for m, M , mz and Mz :

m = m0 + εm1 + ε2m2 + . . .

M = M0 + εM1 + ε2 M2 + . . .

mz = mz
0 + εmz

1 + ε2mz
2 + . . .

Mz = Mz
0 + εMz

1 + ε2 Mz
2 + . . .

and collect terms of equal order in ε:

ε0:

0 = −λ0m0 + λ1mz
0 + λ0

q

ω
M0 − λ1

q

ω
Mz

0 (16)

0 = −(k+ A + k−)mz
0 − λ0mz

0 + λ0
q

ω
Mz

0 . (17)

ε1:

v · ∇m0 = −λ0m1 + λ1mz
1 + λ0

q

ω
M1 − λ1

q

ω
Mz

1 (18)

v · ∇mz
0 = −(k+ A + k−)mz

1 + f ′(A(x)) v · ∇ A m0 − λ0mz
1 + λ0

q

ω
Mz

1 . (19)

ε2:

∂t m0 + v · ∇m1 = −λ0m2 + λ1mz
2 + λ0

q

ω
M2 − λ1

q

ω
Mz

2 . (20)

By integrating with respect to v it follows from (16) to (20):

ε0:

From eq. (17) : Mz
0 = 0, mz

0 = 0.

From eq. (16) : m0 = q

ω
M0.

ε1 (recall the assumption of undirected tissue):

From eq. (19) : Mz
1 = 0,mz

1 = (k+ A + k− + λ0)
−1 m0 f ′(A(x)) v · ∇ A(x)
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From eq. (18) : M1 = 0, m1 = − 1

λ0

(
v · ∇m0 − λ1mz

1

)
.

Indeed, we use the properties of the operator L[λ0](m1) := −λ0m1 + λ0
q
ω

M1

defined on L2
q(V ). The latter is a weighted L2-space, with weight function q−1(v̂).

For the kernel of L[λ0] we have

L[λ0](m1) = 0 ⇐⇒ m1 = q̂(v̂)
ω

M1.

The mapping L[λ0] is a compact Hilbert-Schmidt operator (see Hillen and Othmer
2000) whose kernel is given by the linear space 〈q〉, denoting the subspace of L2

q (V )
spanned by q.
Then (see again Hillen and Othmer 2000) on 〈q〉⊥ we can find the pseudo-inverse
of L[λ0]. Consider for this a given function ψ ∈ 〈q〉⊥ and solve

L[λ0](m1) = ψ.

Since m1 ∈ 〈q〉⊥ we have M1 = 0 and the rest follows immediately.

Now, we can collect known expressions and write them w.r.t. M0.

m0 = q

ω
M0

mz
1 = (

k+ A + k− + λ0
)−1

f ′(A(x)) v · ∇ A
q

ω
M0

m1 = − 1

λ0

[
v · ∇

( q

ω
M0

)
− λ1

(
k+ A + k− + λ0

)−1
f ′(A(x)) v · ∇ A

q

ω
M0

]
.

Integration of (20) w.r.t. v yields∫
V

(
∂t

q

ω
M0 + v · ∇m1

)
dv = 0.

With the terms calculated above and a function g(A) representing the influence of the
receptor dynamics given by

g(A(x)) = λ1(k
+ A(x)+ k− + λ0)

−1 f ′(A(x)),

this gives

∂t M0 +
∫

V
v · ∇

[
− 1

λ0

(
v · ∇

( q

ω
M0

)
− g(A(x)) v · ∇ A

q

ω
M0

)]
dv = 0,

which is equivalent to

∂t M0 − 1

λ0

∫
V

v · ∇
(

v · ∇
( q

ω
M0

))
dv

+ 1

λ0

∫
V

v · ∇
(

g(A(x)) v · ∇ A
q

ω
M0

)
dv = 0.
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We end up with an evolution equation for M0, given by

∂t M0 − 1

λ0
∇ ·

(∫
V

v ⊗ v∇ q

ω
dv M0

)
− 1

λ0
∇ ·

(∫
V

v ⊗ v
q

ω
dv ∇M0

)

+ 1

λ0

∫
V

v · ∇
(

g(A(x)) v · ∇ A
q

ω
M0

)
dv = 0.

This leads to the evolution equation

∂t M0 − ∇ · (DT (x)∇M0)+ ∇ · ([g(A(x))DT (x)∇ A(x)− u(x)] M0) = 0 (21)

with the tumor diffusion tensor

DT (x) = 1

λ0ω

∫
V

v ⊗ vq dv,

and a tumor drift velocity which can be written as

u(x) = 1

λ0ω

∫
V

v ⊗ v∇q dv.

Remark 1 – Notice the suplementary term (in comparison to the macroscopic equa-
tions, e.g., in the paper by Hillen (2006) involving the gradient of the fibre volume
fraction. It highlights the haptotactic character of cell movement influenced by the
receptor binding dynamics on the cell surface.

– Equation (21) can also be rewritten in the fully anisotropic form

∂t M0 − ∇∇ : (DT (x) M0)+ ∇ · (g(A(x))DT (x)∇ A(x)M0) = 0.

2.4 Determination of the coefficients

In order to determine an explicit form for the coefficients DT (x), and u(x) we need to
characterize the fibre distribution q(x, θ). As already mentioned, the aim is to embed
DTI data into our model equations. Thereby, a possible choice can be (Hillen and
Painter 2013; Painter and Hillen 2013)

q(x, θ) = n

|Sn−1|trDW (x)
θ t

DW (x)θ . (22)

The water diffusion tensor DW (x) can be obtained for each voxel x by measurements,
hence the above formula allows for computing the fibre distribution function for each
voxel.

Remark 2 Painter and Hillen (2013) argued that this choice for the relationship
between fibre orientation and water diffusion data encompasses some significant short-
comings. Hence, instead of (22), a bimodal von Mises-Fisher distribution (see e.g.,
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Mardia and Jupp 1999) of the form

q(x, θ) = k(x)
8π sinh(k(x))

(
ekφ·θ + e−kφ·θ) (23)

has been chosen, with k(x) = κ ·FA(x), where FA(x) denotes the fractional anisotropy
and φ represents the leading eigenvector of the diffusion tensor for each voxel. In this
approach, the concentration parameter κ has to be determined2 and it can be interpreted
as the sensitivity of the cells to the orientation of the underlying fibre structure.

In order to avoid introducing more parameters for which the identification is still
unclear in practice, we will keep the form (22) for q. However, in Sect. 3 we will also
consider the alternative fibre distribution (23) and compare the results obtained for
both choices.

Now (see also Painter and Hillen 2013) the tumor diffusion tensor has the following
structure:

DT (x) = s2

λ0(n + 2)

(
In + 2

DW (x)
trDW (x)

)
. (24)

From this and our choice of the fibre distribution q we can compute (upon using the
notation ωn = |Sn−1|):

u(x) = sn+1

λ0ω

n

ωn

∫
Sn−1

θθ t∇
(

1

trDW (x)
θ t

DW (x)θ
)

dθ .

First, we have

∇x

(
1

trDW (x)
θ t

DW (x)θ
)

= ∇x

(
1

trDW (x)

)
θ t

DW (x)θ + 1

trDW (x)
∇x

(
θ t

DW (x)θ
)

= −∇x(trDW (x)) · θ t
DW (x)θ

(trDW (x))2
+ (trDW (x))−1 · ∇x

⎛
⎝

n∑
k,l=1

dkl
w (x)θ

kθ l

⎞
⎠

= −1

trDW (x)

⎡
⎢⎢⎢⎢⎢⎣

⎛
⎜⎝
∂x1(trDW (x))

...

∂xn (trDW (x))

⎞
⎟⎠ θ t

DW (x)θ
trDW (x)

−

⎛
⎜⎜⎜⎜⎜⎝

n∑
k,l=1

∂x1 dkl
w (x)θ

kθ l

...
n∑

k,l=1
∂xn dkl

w (x)θ
kθ l

⎞
⎟⎟⎟⎟⎟⎠

⎤
⎥⎥⎥⎥⎥⎦
.

2 the larger the value of κ , the higher the concentration of distribution around the mean direction.

123



C. Engwer et al.

So this is a vector γ (x) = (γ1(x), . . . , γn(x))t with

γi (x) = −1

(trDW (x))2
∂xi (trDW (x)) θ t

DW (x)θ + 1

trDW (x)

n∑
k,l=1

∂xi d
kl
w (x)θ

kθ l .

From this observe that

∫
V

θθ t∇
(

1

trDW (x)
θ t

DW (x)θ
)

dθ

is a vector α(x) = (
α1(x), . . . , αn(x)

)t with components

αc(x) =
∫

V

n∑
d=1

θcθd
( −1

(trDW (x))2
∂xd

(
trDW (x)

) n∑
a,b=1

θaθbdab
w (x)

+ 1

trDW (x)

n∑
a,b=1

∂xd dab
w (x)θ

aθb
)

dθ

= − 1

(trDW (x))2

( n∑
d,a,b=1

∂xd

(
trDW (x)

)
dab
w (x)

∫
V
θcθdθaθbdθ

)

+ 1

trDW (x)

( n∑
d,a,b=1

∂xd dab
w (x)

∫
V
θcθdθaθbdθ

)

:= α1
c (x)+ α2

c (x).

Now we evaluate the two terms above. For this recall (Hillen 2005) that

∫
V
θcθdθaθbdθ = ωn

n(n + 2)

(
δcdδab + δcaδdb + δcbδda),

hence

α1
c (x) = − 1

(trDW (x))2
ωn

n(n + 2)( n∑
d,a,b=1

∂xd

(
trDW (x)

)
dab
w (x)

(
δcdδab + δcaδdb + δcbδda)

)

= − 1

(trDW (x))2
ωn

n(n + 2)

( n∑
d,a,b=1

∂xd

(
trDW (x)

)
dab
w (x)δ

cdδab

+
n∑

d,a,b=1

∂xd

(
trDW (x)

)
dab
w (x)δ

caδdb +
n∑

d,a,b=1

∂xd

(
trDW (x)

)
dab
w (x)δ

cbδda
)
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= − 1

(trDW (x))2
ωn

n(n + 2)

( n∑
d=1

∂xd

(
trDW (x)

)
δcd trDW (x)

+
n∑

d=1

∂xd

(
trDW (x)

)
dcd
w (x)+

n∑
d=1

∂xd

(
trDW (x)

)
ddc
w (x)

)
.

Hence, we obtain for the vector α1(x):

− 1

(trDW (x))2
ωn

n(n + 2)

(
trDW (x)In + 2DW (x)

)
· ∇trDW(x).

Analogously, we obtain for α2
c (x):

α2
c (x) = 1

trDW (x)
ωn

n(n + 2)

( n∑
d,a,b=1

∂xd dab
w (x)

(
δcdδab + δcaδdb + δcbδda)

)

= 1

trDW (x)
ωn

n(n + 2)

( n∑
d,a,b=1

∂xd dab
w (x)δ

cdδab

+
n∑

d,a,b=1

∂xd dab
w (x)δ

caδdb +
n∑

d,a,b=1

∂xd dab
w (x)δ

cbδda
)

= 1

trDW (x)
ωn

n(n + 2)

( n∑
a=1

∂xc daa
w (x)+

n∑
d=1

∂xd dcd
w (x)+

n∑
d=1

∂xd ddc
w (x)

)
,

and this means

α2(x) = 1

trDW (x)
ωn

n(n + 2)

(
∇trDW (x)+ 2∇ · DW (x)

)
.

Altogether, this yields

u(x) = s2

λ0(n + 2)

[
− 1

(trDW (x))2

(
trDW (x)In + 2DW (x)

)
· ∇trDW(x)

+ 1

trDW (x)

(
∇trDW (x)+ 2∇ · DW (x)

)]
(25)

= 2s2

λ0(n + 2)

(∇ · DW (x)
trDW (x)

− DW (x) · ∇trDW(x)
(trDW (x))2

)
. (26)
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2.5 Complete macroscopic model

We summarize our model to bring it into a more compact form. We derived the evo-
lution equation

∂t M0 − ∇ · (DT (x)∇M0)+ ∇ · ([g(A(x))DT (x)∇ A(x)− u(x)] M0) = 0 (27)

for the macroscopic quantity M0(t, x) where g(A(x)) is as in (8). We employed

q(x, θ) = n

|Sn−1|trDW (x)
θ t

DW (x)θ

to derive explicit terms for the coefficients DT (x) and u(x) which led to

DT (x) = s2

λ0(n + 2)

(
In + 2

DW (x)
trDW (x)

)
, (28)

and

u(x) = 2s2

λ0(n + 2)

(∇ · DW (x)
trDW (x)

− DW (x) · ∇trDW(x)
(trDW (x))2

)
, (29)

where the values of the water diffusion tensor DW (x) are known from DTI measure-
ments. We want to simulate this equation numerically in the next section and for
reasons of clarity and comprehensibility rewrite it in the form

∂t M0 − ∇ · (DT (x)∇M0)− ∇ · (v(x) M0) = 0, (30)

with v(x) := u(x)− g(A(x))DT (x)∇ A(x).

3 Numerical simulations

We present 2D simulations of the resulting macroscopic advection-diffusion equation
(30). The tumor diffusion tensor and the tumor drift velocity are precalculated in the
MATLAB3 numerics software. The simulations of the macroscopic evolution equation
are implemented using the DUNE framework (Bastian et al. 2008).

The macroscopic quantities DT (x) and v(x) are spatially dependent, and we expect
regions in space where the system is diffusion dominated and regions where it is
drift dominated. This can be expressed by the spatially dependent Péclet number
Pe = ‖v(x)L‖

‖DT (x)‖ , where the norm in the numerator is the L2 norm, while we take in
the denominator the Frobenius norm of DT . L is a macroscopic characteristic length
scale (2 mm, in our present setting and simulations). For Pe � 1 we have a diffusion
dominated case, and classical methods for parabolic equations will apply, while for
Pe � 1 the equation is drift dominated, and hyperbolic numerical methods need to

3 MATLAB Release 2012b, The MathWorks, Inc., Natick, Massachusetts, United States.
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Fig. 4 Visualization of the local invasive behaviour. a For the visualization we focus on the selected right
upper part of the brain slice. b Local Frobenius norm of the tumor diffusion tensor. c Quiver plot of the
drift term resulting from internal dynamics. White matter regions with a high anisotropy lead to higher
velocities. d Local Péclet number Pe, indicates where the migration is dominated by diffusion and where
by advection Vizualization of the local invasive behavior

be used. Note that the equation is still parabolic, but the numerical method should be
chosen based on its characteristics scales. In Fig. 4b we illustrate the behavior of the
Frobenius norm of DT (x). That of the Péclet number is shown in Fig. 4d. We clearly
observe a large Péclet number along the white matter tracks.

The numerical scheme needs to be able to handle degenerated anisotropic parabolic
equations and full tensors. Furthermore it should be locally mass conservative. For
these reasons we decided to employ a first order discontinuous Galerkin (dG) scheme
in space and an implicit Euler scheme in time. This method is overall first order
accurate.

3.1 Discretization

For the simulation we use a structured mesh M(Ω) = {Ei }, which is a sub-
set of the voxel mesh of the DTI data. Since our mesh is Cartesian with mesh-
width h, the sets Ei are simply the grid cells that belong to the brain tissue.
We define the skeleton of M as the boundary between those grid cells, Γ ={
γe, f = ∂Ee ∩ ∂E f

∣∣ Ee, E f ∈ M, Ee �= E f , and |γe, f | > 0
}
.

We first discuss the spatial discretization. We use a symmetric interior penalty
discontinuous Galerkin method (SIPG) (Wheeler 1978) as implemented in DUNE
(Bastian et al. 2008). We denote with Vh the discontinuous Galerkin Ansatz-space,
which is in our case the space of piecewise bilinear polynomials

Vh =
{
νh ∈ L2(Ω) : νh |E ∈ Q1(E), E ∈ M(Ω)

}
,
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where Q1(E) denotes the set of bi-linear functions on E . We test the above equation
(30) with these ansatz functions, use a weak formulation, and express coupling con-
ditions along the skeleton through jumps � · � and averages { · } in a similar notation
as introduced by Arnold et al. (2002). We use weighted averages, as proposed in Ern
et al. (2009). Omitting the computational details, which can be found for example in
Arnold et al. (2002), the resulting semi-discrete problem reads: Find M0h(t) ∈ Vh

such that

∂t M0h(t)+ ah
(
M0h(t), νh

) + Jh
(
M0h(t), νh

) = 0 ∀νh ∈ Vh, (31)

with the bilinear form ah and a penalty term Jh given by

ah
(
M0h(t), νh

) =
∫

Ω

DT ∇M0h(t) · ∇νh dx −
∫

Γ

� M0h(t) � · { DT ∇νh }

+ � νh � · { DT ∇M0h(t) } ds −
∫

Ω

v M0h(t)∇νh dx

+
∫

Γ

� νh � · v M0
↑
h (t)ds.

(32)

and

Jh
(
M0h(t), νh

) = ηh−1
∫

Γ

� M0h �� νh � ds , (33)

where η > 0 denotes the penalty factor. For a good choice of η we refer to (Ern et al.
2009).

Note that we require the normal velocity to be continuous, i.e. v|∂En nn =
−v|∂Em nm , where nn denotes the outer normal vector of grid cell En . To ensure
this, we use a Raviart-Thomas RT0 approximation of the velocity field. On an internal
edge with two adjacent cells En and Em we define � x � = x |∂En nn + x |∂Em nm and
{ x } = ωn x |∂En + ωm x |∂Em , with weights ωn, ωm and the unit outer normal vectors
nn,nm . To be robust with respect to heterogeneous diffusion coefficients, we use the

weights ωn = nt
nDT nnn

nt
n(DT n+DT m )nn

and ωm = nt
mDT m nm

nt
m (DT n+DT m )nm

respectively, where DT n

denotes the tumour diffusion tensor computed in En . Note that due to nn = −nm the
relation ωn + ωm = 1 holds.

The advective term is stabilized using an upwind formulation, with the upwind
reconstruction M0

↑
h of the cell density.

For the time discretization of M0h we used an implicit Euler scheme and time steps
τ such that we fulfill a CFL (Courant-Friedrichs-Lewy) condition of 1.
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Fig. 5 Scanned and processed MRI brain data of a healty young male subject. a T1 weighted picture
of a brain slice. b Segmentation of the brain slice. c Overlay of fractional anisotropy and T1 picture. d
Visualization of the main direction of diffusion by a vector pointing in the direction of the tensor’s leading
eigenvalue

Table 1 Choice of parameters
which cannot be obtained from
MRI data

Parameter Value Source

R0 105 Belkin et al. (2005)

s 10−6 m s−1 Sidani et al. (2007)

λ0 0.1 s−1 Sidani et al. (2007)

λ1 0.01 s−1 Estimated

k+ 0.1 s−1 Estimated

k− 0.1 s−1 Lauffenburger and Lindermann (1993)

3.2 Extraction of the model parameters

The parameters used in the simulations are collected in the following table.4

The parameters for DT and v, as well as the computational domainΩ are obtained
from 3D MRI data. MRI measurements yield a T1 image and DTI data (see Fig. 5) on a
domain Ω̂ , including the whole skull and brain. The T1 image (Fig. 5a) shows regions
of gray and white matter and image segmentation yields the actual computational
domain Ω as the union of these tissues, depicted in yellow and light red color (Fig.
5b).

The coefficients of DT and v are reconstructed from 3D DTI data using finite-
difference approximations of the derivatives. These quantities were then projected
onto the 2D simulation slice. It is assumed that the volume fraction A of ECM is high
where the tissue is strongly aligned and thus we observe a high anisotropy in DW (x).
For this reason we use the fractional anisotropy index (introduced in Sect. 1.2) as a
measure for A. Figure 5c shows the fractional anisotropy index for the water diffusion
tensor and 5d visualizes the largest eigenvector, i.e., the main direction.

Gradients of DW (x) and A are computed on a staggered grid and the resulting
velocity field is projected onto an RT0 approximation on the original voxel grid.

4 We assumed that attachment and detachment of receptors to tissue components take place with similar
rates. However, variations in the choice of the binding rate k+ (we tried with up to 50 %) do not seem
to influence the dynamics in a notable way. The choice of λ1 is rather imprecise, as there are no data or
references available for this parameter. We took it to be rather small, in order to endorse the positivity of
the turning rate and not to exaggerate the influence of the microscale dynamics. Larger values of λ1 would
mean higher advection, hence a more pronounced anisotropic behavior.
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The choice for the parameters s, R0, λ0 λ1, k+ and k− can be found in Table 1,
where we also cited some biological relevant sources for the parameter choice, or
marked where we estimated the values. Note that a specific choice of s results only in
time scaling of the simulation. We tested variations of these parameters by ±50 % and
we found very similar simulation behavior. The spread pattern might develop slower
or faster, but the overall spread patterns are very similar to each other.

3.3 Simulation results

In the following we compare simulations done with and without the supplementary
advection term involving g(A(x))DT (x)∇ A(x) and which is due to our accounting
for subcellular dynamics.

Figure 6 illustrates the numerical simulation of the evolution equation for cancer
cells without the mentioned advective term. The effect of anisotropic diffusion shows
as expected a dependence on direction. We started our simulations with a binary
distribution; a small initial tumor is located in the left hemisphere of the brain.

Figure 7 shows the evolution of the tumor cell density with prevalent advective
effects originating from the subcellular dynamics and considering a turning rate
depending on these dynamics. The results differ significantly from diffusion domi-
nated spread and the underlying tissue structure is visible. We will return to this point
later in Sect. 4.

We also compared in Fig. 8 the simulation results for the two suggested choices
(22) and (23) for the fibre distribution function q. The tumor evolution at the endstep
t = 200 × 106 s is shown for the peanut distribution function (first column in Fig.
8) and for the von Mises-Fisher distribution (last two columns in the figure) for the
values κ = 10 and κ = 20, both for the diffusion dominated case (upper row) and
for the full system with advective terms involving subcellular dynamics (lower row).
As expected, an increased κ leads to a higher degree of anisotropy in the spread.

Fig. 6 Spread of cancer cells in the brain: case not involving subcellular dynamics
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Fig. 7 Spread of cancer cells in the brain: advection dominated case (subcellular dynamics involved). For
the parameters see Table 1

Fig. 8 Comparison of the spread of cancer cells in the brain for the distribution (22) and the bimodal von
Mises-Fisher distribution (23) at the endstep t = 200 × 106 s. For the parameters see Table 1

Nevertheless, the results for the tumor evolution look quite similar when compared
to each other. This suggests that the additional drift term resulting from the integrin
dynamics has the predominant effect, and the particular type of diffusion plays a minor
role in generating anisotropic growth patterns.
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4 Discussion

Multiscale models make it possible to understand cancer cell migration in greater
detail. Thereby, micro- and mesoscopic aspects like subcellular dynamics and indi-
vidual interactions of cells with the surrounding tissue network can be used to render
modeling more precise than descriptions made directly on the macroscopic scale. Our
model on the microscale is a differential equation for the cell surface receptors binding
to the tissue. Including this subcellular dynamics led to an additional convection term
in the transport equation on the macroscale. The latter was deduced by a parabolic
scaling performed on the originary kinetic transport model. The resulting equation (21)
for the macroscopic tumor cell density M0 is of advection-diffusion type. Thereby, the
tumor diffusion tensor DT (x) contains information about the local tissue structure, as
it depends on the fibre distribution function q. The dynamics on the microscale are
then involved in a haptotactic drift term, corresponding to a directed movement of
cancer cells along the gradient of ECM density.

With a special choice for the form of the fibre distribution allowing to take also
DTI data into account we were able to determine the specific structure of the diffusion
tensor and drift velocity explicitly. Since both only depend on the values of the water
diffusion tensor DW (x) for each voxel, they can be easily evaluated.

Numerical simulations for the equation obtained in Subsect. 2.5 have been per-
formed within a domain representing a single slice of a human brain and showed that
our model predicts a highly anisotropic spread of the tumor in the surrounding tissue.
A comparison of simulations with and without drift indicated that the influence of the
haptotactic drift term (essentially involving the receptor dynamics on the cell surface)
is striking. It can be seen that within tissue areas with a lot of aligned fibre bundles
the tumor spreads along these structures. This observation supports the conjecture
that directed cellular movement plays a crucial role in cancer invasion processes,
while diffusion is seen as a driving factor of the cell dispersal. This makes sense from
the biological point of view, since haptotactic and chemotactic movements of cells are
assumed to be the major transport mechanisms on the cellular scale. Our model bridges
the scales from the subcellular level of receptor binding (which can be seen as the onset
of all subsequent processes related to cell motility, see e.g., Hood and Cheresh 2002)
over the mesoscale of individual cell behavior in interaction with the tissue and up to
the macroscale of the tumor population. Thus, the latter is directly connected to the
dynamics on the subcellular scale, which are actually driving the motility and prolifer-
ation of cells and hence the growth and spread of the cancer (Hanahan and Weinberg
2011). As mentioned, the equation for the macroscopic cell density involves in its
coefficients the tumor diffusion tensor and the drift velocity, both explicitly computed
from DTI data, the cell speeds, and the cell turning rates. Moreover, it carries—again
in an explicit way—the subcellular information about receptor binding dynamics. The
resulting additional advective-type term endorses in the simulations the well known
fact that glioma follow white matter tracts (D’Abaco and Kaye 2007; Claes et al.
2007; Giese and Kluwe 1996; Giese and Westphal 1996) and is, moreover, able to
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describe5 the finger-like and sometimes fibrillary invasion patterns for glioma, as
observed in clinical practice, see e.g., Coons (1999); Daumas-Duport et al. (1997);
Gerstner et al. (2010); Matsukado et al. (1961). The latter could not be obtained so
far with the more common (reaction-)diffusion based models, see e.g., Jbabdi et al.
(2005); Cobzas et al. (2009); Konukoglu et al. (2010) set directly on the macroscopic
scale. While diffusion is driving the cells spread, it is the drift term in Eq. (21) (and
its effect is decisively enhanced by the term involving g(A(x)), hence the microlevel
dynamics) who is directing their motion according to the local tissue anisotropy.

Painter and Hillen (2013) questioned the choice (22) for the fibre distribution and
proposed instead the von Mises-Fisher distribution (23). Thus we carried out a numer-
ical comparison between the two choices both with and without subcellular dynamics.
We found that the simulations without subcellular dynamics are diffusion dominated
for both choices (22) and (23), whereas involving integrin binding and the correspond-
ing turning rate led to pronounced advection and strongly anisotropic distribution of
tumor cells.

As shown in Sect. 3, the dominating process (advection or diffusion) differs locally,
thus it is important to use numerical schemes, which can handle degenerated parabolic
equations. Methods like discontinuous Galerkin and finite volume schemes are par-
ticularly attractive, as they fulfil this requirement and are locally mass conservative.
In order to efficiently handle 3D simulations and sharp fronts, higher order methods
with flux limiters should be considered.

Several open problems and questions remain, rendering future work necessary. In
our model many biological relevant processes are still missing or are highly simplified.
For instance, we neglected the influence of chemotactic movement of the cells due
to their response to matrix degrading enzymes and we did not take proliferation into
account. While chemotaxis can be integrated as in the works of Kelkel and Surulescu
(2011) and Kelkel and Surulescu (2012), it is still unclear how to introduce proliferation
on the level of mesoscopic dynamics in an appropriate way also allowing for reliable
numerical simulations. Some suggestions have been made by Bellomo et al. (2010)
in the KTAP framework, however, they rely on cell–cell interaction as a necessary
condition for proliferation and it is still not clear how to deduce the macroscopic
limit in that context. When modeling directly on the macroscopic level, this is a less
challenging issue, as one can simply add a source term (e.g., logistic growth with or
without crowding) in the right hand side of the equation in Subsect. 2.5. This approach
is, however, rather artificial, as the form of the source term is directly imposed by
some ’guess’ and not mathematically deduced from considerations involving relevant
processes on the lower scales. This and further issues are addressed in a forthcoming
paper.

For the sake of simplicity, we did not consider manipulative interactions of the cells
with the underlying tissue network, although there are several important aspects. While
moving, cells use proteolytic enzymes to degrade bundles of collagen fibres detainig
their movement. This effect has already been taken into account (Hillen 2006; Kelkel
and Surulescu 2011, 2012) and calls for an additional evolution equation for the fibre

5 at least qualitatively, till data become available for an adequate validation.
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density which has been assumed to be constant in time in our model. Additionally,
there is a displacement of healthy tissue due to the growing volume of the tumor. This
effect has also been neglected, but could also be embedded in our model, e.g., by the
already mentioned equation for tissue fibre density or by a supplementary evolution
equation for healthy cells.

We also mentioned that the tensor model encompasses some significant shortcom-
ings. One of its main underlying assumptions is that diffusion is Gaussian and it has
six degrees of freedom. Hence, the tensor model is unable to resolve crossing fibre
bundles within a voxel. For many applications new imaging techniques with higher
angular resolution (e.g., HARDI) techniques are needed. Modern HARDI techniques
as Q-ball imaging make it possible to resolve the neural fibre structure in much more
detail. It seems to be promising to use these methods in the numerical simulations
instead of the tensor data.

Furthermore, the question of how to relate DTI data to neural fibre structure is
a nontrivial one, and obviously this relationship cannot be represented by a simple
mathematical expression of the form (22) or (23). Hence, it is necessary to find an
approximation which is mathematically simple, yet contains enough information. An
option would be to use methods from the field of tractography, which is concerned
with identifying neural tracts by using DTI data (Descoteaux 2008; Descoteaux et al.
2009).

Besides these modeling issues there are some interesting problems also w.r.t. mathe-
matical analysis: the deduction of the macroscopic limit would need a rigorous proof,
which is a nontrivial issue. The existence and uniqueness of a positive solution to
the kinetic transport equation coupled with the subcellular dynamics can be done by
relying on the result by Kelkel and Surulescu (2012), where an even more complex
multiscale model for tumor cell migration has been proposed and analyzed. Thereby,
the existence proof needed the regularity assumption L∞ on the entire, particularly
unbounded space of positions, velocities and internal states and to our knowledge this
assumption is needed also for the other existing results concerning multiscale models
of this type. Recently, see Lorenz and Surulescu (2014), this condition has been weak-
ened and a global existence and uniqueness result in L2 spaces has been obtained in
a much more general context, in which the model presented here and the one in Ref.
(Kelkel and Surulescu 2012) are just particular cases.

Eventually, we stress out that taking subcellular processes into account leads to an
additional advective term on the macroscale, which has non negligible influence on
the spatial distribution of the tumor cells. In order to precisely assess the relevance of
this term in comparison to recent standard models, suitable experimental data would
be necessary for a validation.
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