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Question 1. [p 151, #2]

Solve the problem of heat transfer in a bar of length L = 1 with initial heat distribution f(z) = cos 7z and
no heat loss at either end, where the thermal diffusivity is ¢ = 1, that is, solve the initial boundary value
problem below:

ou  O%u

= 1, t
9% 92 O<z<l, >0
ou ou

—(0,t) = —(1,t) =0, t>0

5y 0t)=5-(1,1)=0, t>

u(z,0) = cosmx, 0<z<l

SOLUTION: Since both the partial differential equation and the boundary conditions are linear and homoge-
neous we may use separation of variables, and we write

u(z,t) = X(x) - T(t)

where X depends only on z and T depends only on ¢t. Substituting this into the partial differential equation,
we have

X -T'=X"-T,
and separating variables,

XI/ TI )\

X T

which leads to the two ordinary differential equations
X"+XX =0 and T + T =0.

Since
%(o,t):X’(o)-T(t) and @(17t):X’(1)-T(t)

we can satisfy the boundary conditions by requiring that X’(0) = X’(1) = 0, so that X (z) must satisfy the
boundary value problem

X"+AX =0, 0<z<l1l, t>0
X'(0) =0
X'(1) =1.

Now we must find those values of A for which this boundary value problem has a nontrivial solution.



Case 1: A=0
In this case, the differential equation is X" = 0, with general solution
X(z) = Az + B,
where A and B are constants. Applying the boundary condition X’(0) = 0, we get B = 0, so that X (z) = A,
a constant. In this case, the second boundary condition is automatically fulfilled, and the only nontrivial

solution is
Xo(I) = 1,

the constant solution. The corresponding solution to the equation T = 0 is

To(t) = 1.
Case 2: X\ <0, say A = —pu? where p # 0
In this case, the differential equation becomes X” — u2X = 0, with general solution

X (x) = Acosh pz + Bsinh px
where A and B are constants. We will need the derivative
X'(x) = pAsinh px + pB cosh pux
in order to apply the boundary conditions, we have
X'(0)=puB=0  sothat B=0,

and
X'(1) = pAsinhpp =0 so that A=0

since p # 0 and sinh g # 0. Therefore, in this case the only solution is X (x) = 0, and there are no nontrivial
solutions.

Case 3: X > 0, say A = u? where u # 0

In this case, the differential equation becomes X" + u2X = 0, with general solution
X (x) = Acos ux + Bsin px
where A and B are constants. Again, we will need the derivative
X'(x) = —pAsin px + pB cos px
in order to apply the boundary conditions, we have
X'(0)=puB=0  sothat B=0.

Now however, when we apply the second boundary condition

X'(1) =pAsinp =0

in order to get a nontrivial solution, we must require that A # 0, so that siny = 0, and 4 = nx for some
integer n. In this case, we get a nontrivial solution

X, (z) = cosnmx

for each integer n > 1.



The corresponding solution to the equation T’ 4+ n?72T = 0 is
To(t) = e ™"

for n > 1.

For each n > 0, the product
up(z,t) = Xp(x) - Tn(t) = et cosnmr, 0<zx<l1l, t>0

satisfies the heat equation and the boundary conditions, and since they are both linear and homogeneous,
then any linear combination does also, so we can use the superposition principle to write

oo
2_2
u(z,t) = ag + g ane "™ tcosnmr
n=1

and all we need to do now is find the coefficients a,, for n > 0, so that the initial condition is also satisfied.
Setting ¢t = 0 in the series above, we have

oo
cosmx = u(x,0) = ap + E Gy, COSNTTY,

n=1
that is, the a,’s are just the coefficients in the Fourier cosine series for cos mz on the interval [0, 1].
Since cos 7z is its own Fourier cosine series on the interval [0, 1], then

_J0 for n#1,
n = 1 for n=1.

and the solution is )
u(z,y) =e " LcosTx

for0<z <1, t>0.



Question 2. [p 151, #6]

Solve the problem of heat transfer in a bar of length L = 7 and thermal diffusivity ¢ = 1, with initial heat
distribution u(x,0) = sinx where one end of the bar is kept at a constant temperature w(0,t) = 0, while
there is no heat loss at the other end of the bar so that u,(m,t) = 0, that is, solve the initial boundary value
problem below:

@—@ O<zx < t>0
ot 0x2’ T
u(0,t) =0, t>0

ou

—(m,t) =0 t>0

5 (1) =0, >

u(z,0) =sinz, 0<z <.

SOLUTION: Assuming u(z,t) = X (z) - T'(t) and separating variables, we get the two ordinary differential
equations X” +AX =0 and T" + AT = 0, and the boundary conditions lead to the following boundary value
problem for X :

X"+XX =0, 0<z<m
X(0)=0
X'(m)=0
Arguing as in the previous problem, the only nontrivial solutions occur when A > 0, say A = u? where u # 0,
and the differential equation becomes
X"+ p’X =0

with general solution
X (x) = Acos ux + Bsin pz

and applying the first boundary condition, we have A = 0, so that
X (z) = Bsin ux and  X'(z) = pB cos p.

Applying the second boundary condition, we have

Bcospum =0,

. . . (2n—1)m . 9
and in order to get nontrivial solutions we must have ur = — so that the eigenvalues are u; =
(2n —1)° - :

— for n > 1. The corresponding eigenfunctions are

o (2n—1)z
Xn(x) = sin =5~

for n > 1. The corresponding solutions to the equation 7" + p2T = 0 are

(2n—1)%t
T.(t)=e 14

For each n > 1, the function

(2n—1)%t
un(z,t) = Xp(x) - T(t) =€ 4 sin (271%)1

satisfies the heat equation and the boundary conditions.



Using the superposition principle, we write

e (2n—1)%t
u(z,t) = Z bpe” 4 sin w
n=1
for 0 <z < m, t > 0, and setting t = 0, we have
sinz = u(z,0) = Z by, sin (271%)1 (%)
n=1

for0 <z <.

In order to determine the coefficients b, we use the fact that the functions {sin w

on the interval [0, 7]. To see this, note that if n # m, then

}n>1 are orthogonal

us 1 ™
/ SIN o @ sin ppx de = 3 / [cos(tm — pin)x — cOS(tm + pin)x] da
0 0

" _ sin (e + pin)z |

2(Mm - ,un) 0 2(Mm + Mn) 0
_ sin(m —n)m  sin(m +n)m
2(m —n) 2(m+n)

Also, if m = n, then

™ T 1 1
/ sin? pp,x de = / (— — —cos Qme) dx

s

. m sin2upr
2 dpm |
7w sin(2m — )7
2 2(2m — 1)
o

=3

Multiplying the equation () by sin u,z and integrating from 0 to 7, and using the orthogonality result just
proven, we have

™ ™
/ sinz sin px dr = bm/ sin? fiy, do = g by,
0 0



that is,

since sin

(271;»1)# — (_1)71

Therefore, the solution is

forO<az<m, t>0.

u(z,t) =

T sin(py + Dz

T(pm + 1)

7 sin(py, + )7

8
T

SRR

sin

(2m+1)7w

(b + 1)

2

(2m+1)
(=™

=™

oo

n=1

(2m —3)(2m+1)’

o
(2n—3)(2n+1)

(2m+1)

|

(2n—1)%t

s

0

sin (2n5 1z



Question 3. [p 152, #8]

In the problem of heat transfer in a bar of length L with initial temperature distribution f(z) and no heat
loss at either end, show that the asymptotic temperature is constant and equals the average temperature.

Note: This involves solving the initial boundary value problem

ou  O%u

a—w, 0<.T<L, t>0
ou ou

“(0,t) = —(L,t) =0, ¢

5y (0t) = 5-(L,6) =0, t>0

u(z,0) = f(z), 0<z<L,

and finding tlim u(x,t).

SOLUTION: Since both the partial differential equation and the boundary conditions are homogeneous, we
write u(z,t) = X (x) - T(t) and separate variables to get the ordinary differential equation 7" + AT = 0 for
T, and the following boundary value problem for X,

X"+XX =0
X'(0)=0
X'(L) = 0.

The only cases when we get nontrivial solutions are in the case A = 0, in which case we get the solutions
Xo(CC) =1 and To(t) = 17

and in the case when A\ > 0, say A = u?, the eigenvalues are

)\n:ﬂ?x:

and the eigenfunctions are

Xn(x) = cos MTE

for n > 1. The corresponding solutions for the T" equation are

for n > 1.

Using the superposition principle, we have

© _ n?n3t
u(z,t) = ao + E ape” L? cos “TF
n=1

for 0 <z < L, t > 0. We use the initial conditions to evaluate the constants a,, setting ¢t = 0, we get

f(-T) :’U,(.T,O) :ao—i-Za,ncos%

n=1

which is the Fourier cosine series for f(x) on the interval [0, L], therefore the coefficients are given by

1 [k 2 [
ao:Z/ f(z)dx and an:E/ f(:c)cos%dz, n > 1.
0 0



Letting t — oo in the expression for u(z,t), since the exponential goes to 0, the only term that survives is
ag, therefore,

thm u(z,t) =ap = — / flx
the average initial temperature in the bar.

Question 4. [p 162, #2]
Solve the problem of a thin elastic membrane stretched over a square frame of side 1, where the vibrations

are governed by the following two dimensional wave equation:

0%u 1 [(0%u 0O3%*u
— = ==+ = 0 1, 0 1, t>0
o w2<6m2+6y2>’ <z<l, O0<y<l, t>

u(0,y,t) = u(l,y,t) =0, 0<y<1, t>0
u(z,0,t) =u(z,1,t) =0, 0<z<1, ¢t>0
u(z,y,0) = sin 7z sin 7y, 0<z<1, 0<y<l1

0
8—1;(:C,y70):sin7m, 0<z<1, 0<y<l1.

SOLUTIONS: Separating variables, we write u(z,y,t) = ¢(x,y) - T(t), and substitute this into the wave

equation
T// 82¢ 82¢
Z 7)) =
T ¢(6w2+8y2) ’
this gives the two equations
A 82¢ 0%¢

T'— =T=0 and

2 Ox? + 2 =X

Separating variables again the second equation, we write 7(z,y) = X (z) - Y(y), and substituting this into
the equation, we get

X// Y/I
T — =2
X + Y ’
that is,
XI/ YI/
X Ty TAT

where x is a second separation constant. The boundary conditions give rise to two boundary value problems

X"+KkX =0 Y'—(k+N)Y
X(0)=0 Y (0
X(1) =0 Y(

0
0
1

~— ~—
Il

We find nontrivial solutions to the X equation first, since it involves only one separation constant.

As in previous problems, there are nontrivial solutions only if x, = n?7? and the eigenfunctions are
Xn(z) = sinnrz

for n > 1.



For each n > 1, the Y satisfies the boundary value problem

Y — (n*r? 4+ N)Y =0
Y(0)=0
Y(1) =0,
and as in previous problems, this has nontrivial solutions only if \4+-n27? = —m?272, that is A\ = —(n?+m?)n2,

and the eigenfunctions are
Y (y) = sinmmy

for m > 1.

For each n,m > 1, the function
On.m(,y) = sinnrx - sinmmy

satisfies the equation for ¢, as well as the four boundary conditions.

The solutions of the equation T" — — T = 0 corresponding to the separation constant A = —(n? + m?)r?
s
are

Tpm = Bnmcosv/n? +m?t+ By, | sin/n? +m?2t

and for each n,m > 1, the function

Un,m (T, Y, 1) = Gnom (2, Y) - T () = sinnre sinmmy (Bmm cos Vn?+m?2t+ By, sin vn? +m?2 t)

satisfies the wave equation and all four boundary conditions. Using the superposition principle, we write the
solution as

u(z,y,t) Z Z sin nmz sin mmy (Bmm cos V/n? +m2t+ By, siny/n? +m?2 t) .

n=1m=1

We evaluate the constants B, ,, and By, ,, using the initial conditions. Setting ¢ = 0 in the above expression
for u(x,y,t) we see that

sinwzsinmy = u(x,y,0 g g By, m sinnmz sinmmy,
n=1m=1

so that
Bn m —

P

1 for n=m=1,
0 otherwise.

Differentiating the expression for u(z,y,t) with respect to ¢, and setting ¢ = 0, we see that
. 5 5 3 o .
sinmz = (z,9,0 Z n? +m?2 By, ,, sinnmr sinmmy,
that is,

n=1 m=1

o0 o0
sinx = g sinnmx g n?2+m?2B; sinmmy |,

and we need

Z V1+m?Bi,, sinmry =1, and Z vn2+m?B,, sinmry=0 if n#lL
m=1 m=1



Therefore, we may take B, ,,, = 0 for all n # 1, while for n = 1, we want v/1 + m? Bf ,, to be the coefficients
in the Fourier sine series of the function f(z) =1, 0 <z <1, that is,

2 ! 2
Bf, =—— [ sinmrydy= ———[1 — (-1)™
= g [, Sy = e 1= ()"
for m > 1.
Therefore,
o . — 2[1 - (=1)™] . , 2
u(x,y,t)—Slnmcsmﬁycosﬂwt—&— E sinmx cosmmysiny/ 1+ m=t

mmrv 14+ m?

m=1
forO0<z,y<1,t>0.

Question 5. [p 163, #12]

Find the temperature distribution in a thin two dimensional plate with thermal diffusivity ¢ = 1, in the
shape of a unit square, with insulated faces and edges kept at zero temperature with an initial temperature
distribution given by f(z,y) = zy(1 — z)(1 — y) for 0 < z,y < 1, that is, solve the initial boundary value
problem given below:

ou 0%u 0%

- a3t 339 0 1, 0 1, t>0
0t~ 022 oy’ <z<l, 0<y<l, t>
U(07yat)zu(1,y,t)=0, O<y<l1l, t>0

u(z,0,t) = u(z,1,t) =0, O<z<l, t>0

u(z,y,0) =zy(l-—2z)(1-y), 0<z<l, 0<y<l

SOLUTION: After separating variables, using the superposition principle, and applying the boundary condi-
tions, we find the solution has the form

o0 o0
. . — \/n2 2
u(z,y,t) = Z Z B, sinnrx sinmauy e TV ML
n=1m=1
We evaluate B, ,, using the initial condition

1,1
Bym = 4/ / (1 — 2)y(1l — y) sinnra sin mry dy dx
0o Jo

(2 /01 2(1— 2) sinnmcdx) - (2 /01 y(1—y) sinmwydy)

16[1 —(=1)"]-[1 = (=1)™]
n3m3m6

for n,m > 1, that is,

n3m3m6
0 otherwise.

5 {ﬂ if both n,m are odd



The solution is therefore

u(z,y,t Z Z o 1 (2m —7) sin(2n — 1)wasin(2m — 1)y e~ [@n=1+@m-1)%|x"¢

for0<z<1,0<y<1,t>0.

Question 6. [p 168, #2]

Solve the Dirichlet problem for the unit square in the plane with the boundary data as given below:

%+%—0, O<zr<l, O<y<l,
u(z,0) =0 0<z<1,
u(z, 1) = 100, 0<z<1,
u(0,y) =0 0<y<l,
u(1,y) = 100, 0<y<1

— =0, 0<z<l, O0<y<l,

I
o
o
IN
<
IA
\:—‘

I
=
e}
IN
<
IN

—_

and

W“La—y?:()’ 0<z<l, 0<y<l,
w(z,0) = 0<x <1,
w(z,1) =0, 0<z <1,
w(0,y) =0 O0<y<l1,
w(l,y) = 100, 0<y<1

each with one pair of homogeneous boundary conditions (so we can use separation of variables) and the
soluton to the original problem is then u(z,y) = v(z,y) + w(z, y).

Now note that we only have to solve one of these problems, say the first, for v(z,y), since we can get
the solution to the second problem by interchanging x and y in the solution to the first problem, that is,
w(z,y) = v(y, z), so that the solution to the original problem is u(z,y) = v(z,y) + v(y, x).



Writing v(z,y) = X (x) - Y (y), after substituting this into Laplace’s equation and separating variables, we

have
XII Y/I

X Y
so that we get the following boundary value problems for X and Y,

Y

X"+ XX =0 Y'Y =0
X(0)=0 Y(0)=0
X(1)=0
As in previous problems, we have a nontrivial solution for X only if A = u? > 0, and in this case the general

solution is
X (x) = Acos px + Bsin pz,

applying the boundary conditions, we have
X(0)=0=A4, and X(1)=0= Bsinp.

We get a nontrivial solution only when B # 0, in which case we need p = nm for some positive integer n,
the eigenvalues are u2 = n?72, and the eigenfunctions are

Xn(z) = sinnmz
for n > 1. For each n > 1, the corresponding equation for Y is Y — py2Y = 0, with general solution
Y (y) = Acoshnry 4+ Bsinhnry,
and applying the boundary condition Y (0) = 0, we get A = 0, so the corresponding solutions are
Y, (y) =sinhnry, n>1
For each n > 1, the function
Un(x,y) = Xp(x) - Yo(y) = sinnresinh nry
satisfies Laplace’s equation and all of the boundary conditions except v(x,1) = 100.

Now we use the superposition principle to write

o0
v(z,y) = Z by, sin nmx sinh ny

n=1

and determine the constants b,, using this last boundary condition, that is,

100 = v(z, 1) = Z by, sin na sinhnw = Z(b" sinh n) sin nra,
n=1 n=1

and we recognize the constant b, sinhnm as the Fourier sine series coeflicient of the constant function 100
on the interval [0, 1], therefore

) 400

9 =

by, sinhnm = 2/ 100sinnrede = — [1 — (—1)"] = nm
0

0 if n is even.

if n is odd



The solution to the first problem is therefore

oo

400 1
_ . iih
v(x,y) — Z @n = 1) smb(@n —1)r sin nrx sinh nry

n=

for 0 < z,y < 1. Interchanging x and y in this solution, we get the solution to the second problem,

400 1
= — 1 <] h
w(z,y) - 321 @n — D) sinh(2n — D7 sin ny sinh nwx,

and the solution to the original problem is therefore

[sin nrz sinh nry + sin nry sinh nrx)

0 o0
T; 2n —1) smh(2n— D
for0<z,y<l1.

Question 7. [p 168, #4]

Solve the Dirichlet problem for the unit square in the plane with the boundary data as given below:

g:; gi;;_o, O<zx<l, O<y<l,
u(z,0)=1—2 0<a<1,
u(z,1) = x, 0<z<1,
u(0,y) =0 0<y<l,
u(l,y) =0, 0<y<1

% giyz—(), 0<x,y<l, %4—%—0, 0<zy<l,
v(z,0) =0, 0<a<1, w(z,0)=1—z, 0<z<1,
v(z, )=z, 0<z<1, w(z,1) =0, 0<z<1,
v(0,y) =0, 0<y<l, w(0,y) =0, 0<y<l,
v(l,y) =0, 0<y<I1, w(l,y) =0, 0<y<l1

each with one pair of homogeneous boundary conditions (so we can use separation of variables) and the
soluton to the original problem is then u(z,y) = v(z,y) + w(z, y).

Note that if we find the solution v(z,y) to the first problem, then the solution to the second problem is

w(z,y) =v(l —z,1—1y).



We leave it to you to check that w(x,y) satisfies Laplace’s equation, and for the boundary conditions, note
that

w(z,0) =v(l—z,1)=1—2x
w(z,1) =v(1 —2,0)=0
w(0,y) = v(1,1-y) =
w(l,y) = (0,1 -y) =

so that w(x,y) is a solution to the second problem.

We can use separation of variables as in the previous problem to find the solution v(z,y), and the result is

o0
v(z,y) = Z by, sin nmx sinh ny

n=1

and the constants b,, are determined from the last boundary condition

x=v(z,1) = Z by, sinh nm sin nrx

n=1

so that ) B
2(—1)™
by, sinhnm = 2/ rsinnrr dr = 7( ) ,
0 nm
so that
2(_1)n+1
" prsinhnr
for n > 1.

The solution to the first problem is

oo n+1
E sin nmx sinh nmy,
smh nmw

2

and the solution to the second problem is

2 s n+1

wiey) ; Z Slnhnﬂ' sinnm(1 — z)sinhnr(l —y).

The solution to the original problem is given by

2 > n+1
u(z,y) = = Z 1nhn [sin nmrz sinh nmy 4+ sinnw(1 — x) sinhna (1 — y)]

forO0<z<1,0<y<l.



Question 8. [p 169, #8]
Approximate the temperature at the center of the plate in Question 7.

SoLUTION: Note that at the center of the plate z = y = %, and from the previous problem

4 0 n+1
1 1 nTr
=, 5)= — E sin 7 ginh ¢
2 2 s 1nh nmw 2
Now,
sinhnm = 2sinh 7* cosh =,
and

sin & =0

if n is even, while

gin ZEADT _ (1)K

2
if n=2k+1 is odd.

Therefore,

NJI»—‘
NJI»—‘
S | r

> :

= 2k +1) cosh (%H)W

and a simple symmetry argument as in the text shows that this series converges to %, that is,

)=

To see this, note that we can decompose the problem when the solution is identically 1 on the boundary of
the square into four separate problems as shown in the figure:

ol
PN

3

[N

u(

1 X 1-x
1 1= 0 0 + 0 0
1 1—-x X
0 0
+ v -y + 1-y y
0 0

By symmetry, each of the four problems has exactly the same value of the solution at the center (%, %), and
since the solution to the original problem is identically 1 on the square, then

that is, u(z,

l\)l»—I
N[
S~—
Il
N[



Question 9. [p 198, #2]

Compute the Laplacian of the function

u(z,y) = tan™? (%)

in an appropriate coordinate system and decide if the given function satisfies Laplace’s equation V2u = 0.

SoLUTION: Note that in polar coordinates § = tan™! (g) , so that
x

u(r,0) =6,
and since
ou  0%u 0
or  or2 7

then Laplace’s equation becomes
0%u n 10u n 0%u B 026
o2 ror 002 062

and u(z,y) = tan~* (E) does satisfy Laplace’s equation.
x

Question 10. [p 198, #6]

Compute the Laplacian of the function
u(z,y) = In(z? +y°)

in an appropriate coordinate system and decide if the given function satisfies Laplace’s equation V2u = 0.

SoLUTION: Note that in polar coordinates, 2 = 22 4+ 42, so that
u(r,0) =Inr? = 2Inr,

and
Lou_2 L Pu_ 2
ror 12 " or2 2’
. 2u
and since 902 = 0, then
0%u  10u O%*u 2 2
o2 ror 002 2 g2

and u(x,y) = In(2? + y?) does satisfy Laplace’s equation.

=0



