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Question 1. [p 151, #2]

Solve the problem of heat transfer in a bar of length L = 1 with initial heat distribution f(x) = cosπx and
no heat loss at either end, where the thermal diffusivity is c = 1, that is, solve the initial boundary value
problem below:

∂u

∂t
=

∂2u

∂x2
, 0 < x < 1, t > 0

∂u

∂x
(0, t) =

∂u

∂x
(1, t) = 0, t > 0

u(x, 0) = cosπx, 0 < x < 1.

Solution: Since both the partial differential equation and the boundary conditions are linear and homoge-
neous we may use separation of variables, and we write

u(x, t) = X(x) · T (t)

where X depends only on x and T depends only on t. Substituting this into the partial differential equation,
we have

X · T ′ = X ′′ · T,

and separating variables,
X ′′

X
=

T ′

T
= −λ

which leads to the two ordinary differential equations

X ′′ + λX = 0 and T ′ + λT = 0.

Since
∂u

∂x
(0, t) = X ′(0) · T (t) and

∂u

∂x
(1, t) = X ′(1) · T (t)

we can satisfy the boundary conditions by requiring that X ′(0) = X ′(1) = 0, so that X(x) must satisfy the
boundary value problem

X ′′ + λX = 0, 0 < x < 1, t > 0

X ′(0) = 0

X ′(1) = 1.

Now we must find those values of λ for which this boundary value problem has a nontrivial solution.



Case 1: λ = 0

In this case, the differential equation is X ′′ = 0, with general solution

X(x) = Ax + B,

where A and B are constants. Applying the boundary condition X ′(0) = 0, we get B = 0, so that X(x) = A,

a constant. In this case, the second boundary condition is automatically fulfilled, and the only nontrivial
solution is

X0(x) = 1,

the constant solution. The corresponding solution to the equation T ′ = 0 is

T0(t) = 1.

Case 2: λ < 0, say λ = −µ2 where µ 6= 0

In this case, the differential equation becomes X ′′ − µ2X = 0, with general solution

X(x) = A coshµx + B sinh µx

where A and B are constants. We will need the derivative

X ′(x) = µA sinh µx + µB coshµx

in order to apply the boundary conditions, we have

X ′(0) = µB = 0 so that B = 0,

and
X ′(1) = µA sinh µ = 0 so that A = 0

since µ 6= 0 and sinh µ 6= 0. Therefore, in this case the only solution is X(x) = 0, and there are no nontrivial
solutions.

Case 3: λ > 0, say λ = µ2 where µ 6= 0

In this case, the differential equation becomes X ′′ + µ2X = 0, with general solution

X(x) = A cosµx + B sin µx

where A and B are constants. Again, we will need the derivative

X ′(x) = −µA sin µx + µB cosµx

in order to apply the boundary conditions, we have

X ′(0) = µB = 0 so that B = 0.

Now however, when we apply the second boundary condition

X ′(1) = µA sin µ = 0

in order to get a nontrivial solution, we must require that A 6= 0, so that sin µ = 0, and µ = nπ for some
integer n. In this case, we get a nontrivial solution

Xn(x) = cosnπx

for each integer n ≥ 1.



The corresponding solution to the equation T ′ + n2π2T = 0 is

Tn(t) = e−n2π2t

for n ≥ 1.

For each n ≥ 0, the product

un(x, t) = Xn(x) · Tn(t) = e−n2π2t cosnπx, 0 < x < 1, t > 0

satisfies the heat equation and the boundary conditions, and since they are both linear and homogeneous,
then any linear combination does also, so we can use the superposition principle to write

u(x, t) = a0 +

∞
∑

n=1

ane−n
2
π

2
t cosnπx

and all we need to do now is find the coefficients an for n ≥ 0, so that the initial condition is also satisfied.
Setting t = 0 in the series above, we have

cosπx = u(x, 0) = a0 +
∞
∑

n=1

an cosnπx,

that is, the an’s are just the coefficients in the Fourier cosine series for cosπx on the interval [0, 1].

Since cosπx is its own Fourier cosine series on the interval [0, 1], then

an =

{

0 for n 6= 1,

1 for n = 1.

and the solution is
u(x, y) = e−π

2
t cosπx

for 0 < x < 1, t > 0.



Question 2. [p 151, #6]

Solve the problem of heat transfer in a bar of length L = π and thermal diffusivity c = 1, with initial heat
distribution u(x, 0) = sin x where one end of the bar is kept at a constant temperature u(0, t) = 0, while
there is no heat loss at the other end of the bar so that ux(π, t) = 0, that is, solve the initial boundary value
problem below:

∂u

∂t
=

∂2u

∂x2
, 0 < x < π, t > 0

u(0, t) = 0, t > 0

∂u

∂x
(π, t) = 0, t > 0

u(x, 0) = sin x, 0 < x < π.

Solution: Assuming u(x, t) = X(x) · T (t) and separating variables, we get the two ordinary differential
equations X ′′ +λX = 0 and T ′ +λT = 0, and the boundary conditions lead to the following boundary value
problem for X :

X ′′ + λX = 0, 0 < x < π

X(0) = 0

X ′(π) = 0

Arguing as in the previous problem, the only nontrivial solutions occur when λ > 0, say λ = µ2 where µ 6= 0,

and the differential equation becomes
X ′′ + µ2X = 0

with general solution
X(x) = A cosµx + B sin µx

and applying the first boundary condition, we have A = 0, so that

X(x) = B sin µx and X ′(x) = µB cosµx.

Applying the second boundary condition, we have

B cosµπ = 0,

and in order to get nontrivial solutions we must have µπ =
(2n − 1)π

2
, so that the eigenvalues are µ2

n =

(2n − 1)2

4
for n ≥ 1. The corresponding eigenfunctions are

Xn(x) = sin (2n−1)x
2

for n ≥ 1. The corresponding solutions to the equation T ′ + µ2
nT = 0 are

Tn(t) = e−
(2n−1)2t

4

For each n ≥ 1, the function

un(x, t) = Xn(x) · Tn(t) = e−
(2n−1)2t

4 sin (2n−1)x
2

satisfies the heat equation and the boundary conditions.



Using the superposition principle, we write

u(x, t) =

∞
∑

n=1

bne−
(2n−1)2t

4 sin (2n−1)x
2

for 0 < x < π, t > 0, and setting t = 0, we have

sin x = u(x, 0) =

∞
∑

n=1

bn sin (2n−1)x
2 (∗)

for 0 < x < π.

In order to determine the coefficients bn, we use the fact that the functions {sin (2n−1)x
2 }n≥1 are orthogonal

on the interval [0, π]. To see this, note that if n 6= m, then

∫ π

0

sinµmx sin µnx dx =
1

2

∫ π

0

[cos(µm − µn)x − cos(µm + µn)x] dx

=
sin(µm − µn)x

2(µm − µn)

∣

∣

∣

∣

π

0

− sin(µm + µn)x

2(µm + µn)

∣

∣

∣

∣

π

0

=
sin(m − n)π

2(m − n)
− sin(m + n)π

2(m + n)

= 0.

Also, if m = n, then

∫ π

0

sin2 µmx dx =

∫ π

0

(

1

2
− 1

2
cos 2µmx

)

dx

=
π

2
− sin 2µmx

4µm

∣

∣

∣

∣

π

0

=
π

2
− sin(2m − 1)π

2(2m− 1)

=
π

2
.

Multiplying the equation (∗) by sin µmx and integrating from 0 to π, and using the orthogonality result just
proven, we have

∫ π

0

sin x sin µmx dx = bm

∫ π

0

sin2 µm dx =
π

2
· bm,



that is,

bm =
2

π

∫ π

0

sin x sin µmx dx

=
1

π

∫ π

0

[cos(µm − 1)x − cos(µn + 1)x] dx

=
sin(µm − 1)x

π(µm − 1)

∣

∣

∣

∣

π

0

− sin(µm + 1)x

π(µm + 1)

∣

∣

∣

∣

π

0

=
sin(µm − 1)π

π(µm − 1)
− sin(µm + 1)π

π(µm + 1)

=
2

π

[

sin (2m−3)π
2

(2m − 3)
− sin (2m+1)π

2

(2m + 1)

]

=
2

π

[

(−1)m

(2m − 3)
− (−1)m

(2m + 1)

]

=
8

π

(−1)m

(2m − 3)(2m + 1)
,

since sin (2n+1)π
2 = (−1)n.

Therefore, the solution is

u(x, t) =
8

π

∞
∑

n=1

(−1)n

(2n − 3)(2n + 1)
e−

(2n−1)2t

4 sin (2n−1)x
2

for 0 < x < π, t > 0.



Question 3. [p 152, #8]

In the problem of heat transfer in a bar of length L with initial temperature distribution f(x) and no heat
loss at either end, show that the asymptotic temperature is constant and equals the average temperature.

Note: This involves solving the initial boundary value problem

∂u

∂t
=

∂2u

∂x2
, 0 < x < L, t > 0

∂u

∂x
(0, t) =

∂u

∂x
(L, t) = 0, t > 0

u(x, 0) = f(x), 0 < x < L,

and finding lim
t→∞

u(x, t).

Solution: Since both the partial differential equation and the boundary conditions are homogeneous, we
write u(x, t) = X(x) · T (t) and separate variables to get the ordinary differential equation T ′ + λT = 0 for
T, and the following boundary value problem for X,

X ′′ + λX = 0

X ′(0) = 0

X ′(L) = 0.

The only cases when we get nontrivial solutions are in the case λ = 0, in which case we get the solutions

X0(x) = 1 and T0(t) = 1,

and in the case when λ > 0, say λ = µ2, the eigenvalues are

λn = µ2
n =

n2π2

L2

and the eigenfunctions are
Xn(x) = cos nπx

L

for n ≥ 1. The corresponding solutions for the T equation are

Tn(t) = e−
n2π2t

L2

for n ≥ 1.

Using the superposition principle, we have

u(x, t) = a0 +

∞
∑

n=1

ane−
n2π2t

L2 cos nπx
L

for 0 < x < L, t > 0. We use the initial conditions to evaluate the constants an, setting t = 0, we get

f(x) = u(x, 0) = a0 +

∞
∑

n=1

an cos nπx
L

which is the Fourier cosine series for f(x) on the interval [0, L], therefore the coefficients are given by

a0 =
1

L

∫ L

0

f(x) dx and an =
2

L

∫ L

0

f(x) cos nπx
L

dx, n ≥ 1.



Letting t → ∞ in the expression for u(x, t), since the exponential goes to 0, the only term that survives is
a0, therefore,

lim
t→∞

u(x, t) = a0 =
1

L

∫ L

0

f(x) dx,

the average initial temperature in the bar.

Question 4. [p 162, #2]

Solve the problem of a thin elastic membrane stretched over a square frame of side 1, where the vibrations
are governed by the following two dimensional wave equation:

∂2u

∂t2
=

1

π2

(

∂2u

∂x2
+

∂2u

∂y2

)

, 0 < x < 1, 0 < y < 1, t > 0

u(0, y, t) = u(1, y, t) = 0, 0 ≤ y ≤ 1, t ≥ 0

u(x, 0, t) = u(x, 1, t) = 0, 0 ≤ x ≤ 1, t ≥ 0

u(x, y, 0) = sin πx sin πy, 0 ≤ x ≤ 1, 0 ≤ y ≤ 1

∂u

∂t
(x, y, 0) = sin πx, 0 ≤ x ≤ 1, 0 ≤ y ≤ 1.

Solutions: Separating variables, we write u(x, y, t) = φ(x, y) · T (t), and substitute this into the wave
equation

π2 T ′′

T
=

1

φ

(

∂2φ

∂x2
+

∂2φ

∂y2

)

= λ,

this gives the two equations

T ′′ − λ

π2
T = 0 and

∂2φ

∂x2
+

∂2φ

∂y2
= λφ.

Separating variables again the second equation, we write π(x, y) = X(x) · Y (y), and substituting this into
the equation, we get

X ′′

X
+

Y ′′

Y
= λ,

that is,
X ′′

X
= −Y ′′

Y
+ λ = −κ

where κ is a second separation constant. The boundary conditions give rise to two boundary value problems

X ′′ + κX = 0 Y ′′ − (κ + λ)Y = 0

X(0) = 0 Y (0) = 0

X(1) = 0 Y (1) = 1.

We find nontrivial solutions to the X equation first, since it involves only one separation constant.

As in previous problems, there are nontrivial solutions only if κn = n2π2 and the eigenfunctions are

Xn(x) = sinnπx

for n ≥ 1.



For each n ≥ 1, the Y satisfies the boundary value problem

Y ′′ − (n2π2 + λ)Y = 0

Y (0) = 0

Y (1) = 0,

and as in previous problems, this has nontrivial solutions only if λ+n2π2 = −m2π2, that is λ = −(n2+m2)π2,

and the eigenfunctions are
Ym(y) = sin mπy

for m ≥ 1.

For each n, m ≥ 1, the function
φn,m(x, y) = sin nπx · sinmπy

satisfies the equation for φ, as well as the four boundary conditions.

The solutions of the equation T ′′ − λ

π2
T = 0 corresponding to the separation constant λ = −(n2 + m2)π2

are
Tn,m = Bn,m cos

√

n2 + m2 t + B∗
n,m sin

√

n2 + m2 t

and for each n, m ≥ 1, the function

un,m(x, y, t) = φn,m(x, y) · Tn,m(t) = sin nπx sin mπy
(

Bn,m cos
√

n2 + m2 t + B∗
n,m sin

√

n2 + m2 t
)

satisfies the wave equation and all four boundary conditions. Using the superposition principle, we write the
solution as

u(x, y, t) =

∞
∑

n=1

∞
∑

m=1

sinnπx sin mπy
(

Bn,m cos
√

n2 + m2 t + B∗
n,m sin

√

n2 + m2 t
)

.

We evaluate the constants Bn,m and B∗
n,m using the initial conditions. Setting t = 0 in the above expression

for u(x, y, t) we see that

sin πx sin πy = u(x, y, 0) =

∞
∑

n=1

∞
∑

m=1

Bn,m sin nπx sin mπy,

so that

Bn,m =

{

1 for n = m = 1,

0 otherwise.

Differentiating the expression for u(x, y, t) with respect to t, and setting t = 0, we see that

sinπx =
∂u

∂t
(x, y, 0) =

∞
∑

n=1

∞
∑

m=1

√

n2 + m2 B∗
n,m sinnπx sin mπy,

that is,

sin πx =

∞
∑

n=1

sin nπx

( ∞
∑

m=1

√

n2 + m2 B∗
n,m sin mπy

)

,

and we need

∞
∑

m=1

√

1 + m2 B∗
1,m sin mπy = 1, and

∞
∑

m=1

√

n2 + m2 B∗
n,m sin mπy = 0 if n 6= 1.



Therefore, we may take B∗
n,m = 0 for all n 6= 1, while for n = 1, we want

√
1 + m2 B∗

1,m to be the coefficients
in the Fourier sine series of the function f(x) = 1, 0 ≤ x ≤ 1, that is,

B∗
1,m =

2√
1 + m2

∫ 1

0

sin mπy dy =
2

mπ
√

1 + m2
[1 − (−1)m]

for m ≥ 1.

Therefore,

u(x, y, t) = sin πx sin πy cos
√

2πt +

∞
∑

m=1

2 [1 − (−1)m]

mπ
√

1 + m2
sin πx cosmπy sin

√

1 + m2 t

for 0 < x, y < 1, t > 0.

Question 5. [p 163, #12]

Find the temperature distribution in a thin two dimensional plate with thermal diffusivity c = 1, in the
shape of a unit square, with insulated faces and edges kept at zero temperature with an initial temperature
distribution given by f(x, y) = xy(1 − x)(1 − y) for 0 ≤ x, y ≤ 1, that is, solve the initial boundary value
problem given below:

∂u

∂t
=

∂2u

∂x2
+

∂2u

∂y2
, 0 < x < 1, 0 < y < 1, t > 0

u(0, y, t) = u(1, y, t) = 0, 0 < y < 1, t > 0

u(x, 0, t) = u(x, 1, t) = 0, 0 < x < 1, t > 0

u(x, y, 0) = xy(1 − x)(1 − y), 0 < x < 1, 0 < y < 1.

Solution: After separating variables, using the superposition principle, and applying the boundary condi-
tions, we find the solution has the form

u(x, y, t) =

∞
∑

n=1

∞
∑

m=1

Bn,m sinnπx sin mπy e−cπ
√

n2+m2 t.

We evaluate Bn,m using the initial condition

Bn,m = 4

∫ 1

0

∫ 1

0

x(1 − x)y(1 − y) sinnπx sin mπy dy dx

=

(

2

∫ 1

0

x(1 − x) sin nπx dx

)

·
(

2

∫ 1

0

y(1 − y) sin mπy dy

)

=
16 [1 − (−1)n] · [1 − (−1)m]

n3m3π6

for n, m ≥ 1, that is,

Bn,m =

{ 64

n3m3π6
if both n, m are odd

0 otherwise.



The solution is therefore

u(x, y, t) =

∞
∑

n=1

∞
∑

m=1

64

π6(2n − 1)3(2m − 1)3
sin(2n − 1)πx sin(2m − 1)πy e−[(2n−1)2+(2m−1)2]π2 t

for 0 < x < 1, 0 < y < 1, t > 0.

Question 6. [p 168, #2]

Solve the Dirichlet problem for the unit square in the plane with the boundary data as given below:

∂2u

∂x2
+

∂2u

∂y2
= 0, 0 < x < 1, 0 < y < 1,

u(x, 0) = 0 0 ≤ x ≤ 1,

u(x, 1) = 100, 0 ≤ x ≤ 1,

u(0, y) = 0 0 ≤ y ≤ 1,

u(1, y) = 100, 0 ≤ y ≤ 1.

Solution: We split the original problem into two problems, as below

∂2v

∂x2
+

∂2v

∂y2
= 0, 0 < x < 1, 0 < y < 1,

v(x, 0) = 0 0 ≤ x ≤ 1,

v(x, 1) = 100, 0 ≤ x ≤ 1,

v(0, y) = 0 0 ≤ y ≤ 1,

v(1, y) = 0, 0 ≤ y ≤ 1

and

∂2w

∂x2
+

∂2w

∂y2
= 0, 0 < x < 1, 0 < y < 1,

w(x, 0) = 0 0 ≤ x ≤ 1,

w(x, 1) = 0, 0 ≤ x ≤ 1,

w(0, y) = 0 0 ≤ y ≤ 1,

w(1, y) = 100, 0 ≤ y ≤ 1

each with one pair of homogeneous boundary conditions (so we can use separation of variables) and the
soluton to the original problem is then u(x, y) = v(x, y) + w(x, y).

Now note that we only have to solve one of these problems, say the first, for v(x, y), since we can get
the solution to the second problem by interchanging x and y in the solution to the first problem, that is,
w(x, y) = v(y, x), so that the solution to the original problem is u(x, y) = v(x, y) + v(y, x).



Writing v(x, y) = X(x) · Y (y), after substituting this into Laplace’s equation and separating variables, we
have

X ′′

X
= −Y ′′

Y
= −λ,

so that we get the following boundary value problems for X and Y,

X ′′ + λX = 0 Y ′′ − λY = 0

X(0) = 0 Y (0) = 0

X(1) = 0

As in previous problems, we have a nontrivial solution for X only if λ = µ2 > 0, and in this case the general
solution is

X(x) = A cosµx + B sin µx,

applying the boundary conditions, we have

X(0) = 0 = A, and X(1) = 0 = B sin µ.

We get a nontrivial solution only when B 6= 0, in which case we need µ = nπ for some positive integer n,

the eigenvalues are µ2
n = n2π2, and the eigenfunctions are

Xn(x) = sinnπx

for n ≥ 1. For each n ≥ 1, the corresponding equation for Y is Y ′′ − µ2
nY = 0, with general solution

Y (y) = A coshnπy + B sinh nπy,

and applying the boundary condition Y (0) = 0, we get A = 0, so the corresponding solutions are

Yn(y) = sinh nπy, n ≥ 1.

For each n ≥ 1, the function

vn(x, y) = Xn(x) · Yn(y) = sin nπx sinh nπy

satisfies Laplace’s equation and all of the boundary conditions except v(x, 1) = 100.

Now we use the superposition principle to write

v(x, y) =

∞
∑

n=1

bn sinnπx sinh nπy

and determine the constants bn using this last boundary condition, that is,

100 = v(x, 1) =

∞
∑

n=1

bn sin nπx sinh nπ =

∞
∑

n=1

(bn sinh nπ) sin nπx,

and we recognize the constant bn sinh nπ as the Fourier sine series coefficient of the constant function 100
on the interval [0, 1], therefore

bn sinh nπ = 2

∫ 1

0

100 sinnπx dx =
200

nπ
[1 − (−1)n] =







400

nπ
if n is odd

0 if n is even.



The solution to the first problem is therefore

v(x, y) =
400

π

∞
∑

n=1

1

(2n − 1) sinh(2n − 1)π
sin nπx sinh nπy

for 0 ≤ x, y ≤ 1. Interchanging x and y in this solution, we get the solution to the second problem,

w(x, y) =
400

π

∞
∑

n=1

1

(2n − 1) sinh(2n − 1)π
sin nπy sinh nπx,

and the solution to the original problem is therefore

u(x, y) =
400

π

∞
∑

n=1

1

(2n − 1) sinh(2n − 1)π
[sin nπx sinh nπy + sinnπy sinh nπx]

for 0 ≤ x, y ≤ 1.

Question 7. [p 168, #4]

Solve the Dirichlet problem for the unit square in the plane with the boundary data as given below:

∂2u

∂x2
+

∂2u

∂y2
= 0, 0 < x < 1, 0 < y < 1,

u(x, 0) = 1 − x 0 ≤ x ≤ 1,

u(x, 1) = x, 0 ≤ x ≤ 1,

u(0, y) = 0 0 ≤ y ≤ 1,

u(1, y) = 0, 0 ≤ y ≤ 1.

Solution: Again, we divide the problem into two problems:

∂2v

∂x2
+

∂2v

∂y2
= 0, 0 < x, y < 1,

∂2w

∂x2
+

∂2w

∂y2
= 0, 0 < x, y < 1,

v(x, 0) = 0, 0 ≤ x ≤ 1, w(x, 0) = 1 − x, 0 ≤ x ≤ 1,

v(x, 1) = x, 0 ≤ x ≤ 1, w(x, 1) = 0, 0 ≤ x ≤ 1,

v(0, y) = 0, 0 ≤ y ≤ 1, w(0, y) = 0, 0 ≤ y ≤ 1,

v(1, y) = 0, 0 ≤ y ≤ 1, w(1, y) = 0, 0 ≤ y ≤ 1

each with one pair of homogeneous boundary conditions (so we can use separation of variables) and the
soluton to the original problem is then u(x, y) = v(x, y) + w(x, y).

Note that if we find the solution v(x, y) to the first problem, then the solution to the second problem is

w(x, y) = v(1 − x, 1 − y).



We leave it to you to check that w(x, y) satisfies Laplace’s equation, and for the boundary conditions, note
that

w(x, 0) = v(1 − x, 1) = 1 − x

w(x, 1) = v(1 − x, 0) = 0

w(0, y) = v(1, 1− y) = 0

w(1, y) = v(0, 1− y) = 0

so that w(x, y) is a solution to the second problem.

We can use separation of variables as in the previous problem to find the solution v(x, y), and the result is

v(x, y) =
∞
∑

n=1

bn sinnπx sinh nπy

and the constants bn are determined from the last boundary condition

x = v(x, 1) =
∞
∑

n=1

bn sinh nπ sin nπx

so that

bn sinh nπ = 2

∫ 1

0

x sin nπx dx =
2(−1)n+1

nπ
,

so that

bn =
2(−1)n+1

nπ sinh nπ

for n ≥ 1.

The solution to the first problem is

v(x, y) =
2

π

∞
∑

n=1

(−1)n+1

n sinh nπ
sinnπx sinh nπy,

and the solution to the second problem is

w(x, y) =
2

π

∞
∑

n=1

(−1)n+1

n sinhnπ
sin nπ(1 − x) sinh nπ(1 − y).

The solution to the original problem is given by

u(x, y) =
2

π

∞
∑

n=1

(−1)n+1

n sinhnπ
[sin nπx sinh nπy + sin nπ(1 − x) sinh nπ(1 − y)]

for 0 < x < 1, 0 < y < 1.



Question 8. [p 169, #8]

Approximate the temperature at the center of the plate in Question 7.

Solution: Note that at the center of the plate x = y = 1
2 , and from the previous problem

u( 1
2 , 1

2 ) =
4

π

∞
∑

n=1

(−1)n+1

n sinh nπ
sin nπ

2 sinh nπ
2 .

Now,
sinh nπ = 2 sinh nπ

2 cosh nπ
2 ,

and
sin nπ

2 = 0

if n is even, while

sin (2k+1)π
2 = (−1)k

if n = 2k + 1 is odd.

Therefore,

u( 1
2 , 1

2 ) =
2

π

∞
∑

k=0

(−1)k

(2k + 1) cosh (2k+1)π
2

,

and a simple symmetry argument as in the text shows that this series converges to 1
4 , that is,

u( 1
2 , 1

2 ) = 1
4 .

To see this, note that we can decompose the problem when the solution is identically 1 on the boundary of
the square into four separate problems as shown in the figure:

0

−x

1−x

1−y 1−y

+=
1

00

x 

x 

0 0

+

11

1

+y y

0

0 0

1

By symmetry, each of the four problems has exactly the same value of the solution at the center ( 1
2 , 1

2 ), and
since the solution to the original problem is identically 1 on the square, then

4u( 1
2 , 1

2 ) = 1,

that is, u( 1
2 , 1

2 ) = 1
4 .



Question 9. [p 198, #2]

Compute the Laplacian of the function

u(x, y) = tan−1
(y

x

)

in an appropriate coordinate system and decide if the given function satisfies Laplace’s equation O
2u = 0.

Solution: Note that in polar coordinates θ = tan−1
(y

x

)

, so that

u(r, θ) = θ,

and since
∂u

∂r
=

∂2u

∂r2
= 0,

then Laplace’s equation becomes
∂2u

∂r2
+

1

r

∂u

∂r
+

∂2u

∂θ2
=

∂2θ

∂θ2
= 0,

and u(x, y) = tan−1
(y

x

)

does satisfy Laplace’s equation.

Question 10. [p 198, #6]

Compute the Laplacian of the function

u(x, y) = ln(x2 + y2)

in an appropriate coordinate system and decide if the given function satisfies Laplace’s equation O
2u = 0.

Solution: Note that in polar coordinates, r2 = x2 + y2, so that

u(r, θ) = ln r2 = 2 ln r,

and
1

r

∂u

∂r
=

2

r2
and

∂2u

∂r2
= − 2

r2
,

and since
∂2u

∂θ2
= 0, then

∂2u

∂r2
+

1

r

∂u

∂r
+

∂2u

∂θ2
= − 2

r2
+

2

r2
= 0

and u(x, y) = ln(x2 + y2) does satisfy Laplace’s equation.


