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Question 1. Given the function
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find the Fourier sine series for f.
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Writing f(z) = cos Zx ~ > by sin %Xz, the coefficients b, in the Fourier sine series are computed as follows
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The Fourier sine series for f is therefore
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for0 <z <a.
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Question 2. Let

(a) Find the Fourier integral of f.
(b) For which values of x does the integral converge to f(z)?

(c) Evaluate the integral

/ Asin A cos \x I\
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1-X2

for —oo < x < o0.
SOLUTION:

(a) The function
cos T x| <
fz) =

0 |x] > 7

is even, piecewise smooth, and is continuous at every & € (—o00,00) except at @ = =+, therefore from
Dirichlet’s theorem the Fourier integral representation of f converges to f(z) for all x # +m, and

fx) ~ /OOO A(X) cos Az dA,
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The Fourier integral representation of f is therefore
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(b) From Dirichlet’s theorem, the integral converges to f(z) for all  # +7, and converges to —% for x = £

(c) Therefore, we have

Fceosx for x| <m,

/ Asin A cos \x d\ — 0 for |z >

for x=+m.
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Question 3. Let F,. denote the Fourier cosine transform and F, denote the Fourier sine transform. Assume
that f(z) and zf(x) are both integrable.

(a) Show that

Fulef (@) = 2 Fu(F(2).
(b) Show that
Fu(ef (@) =~ Ful (),

SOLUTION:

(a) From the definition of the Fourier sine transform, we have

LR == W% o sinwtdt] ,

and differentiating under the integral sign,

Lrun =2 [ s nen

- \/g/oootf(t)coswtdt
= Fe(xf(x)),

and therefore p
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as required.

(b) From the definition of the Fourier cosine transform, we have

LR = W% | 5w coswtdt] ,

and differentiating under the integral sign,
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Question 4. Chebyshev’s differential equation reads

(1—2%)y" —zy + Iy =0, -l<zx<1
y(1) =1,
ly'(1)] < o0

(a) Divide by v/1 — 22 and bring the differential equation into Sturm-Liouville form. Decide if the resulting

Sturm-Liouville problem is regular or singular.

(b) For n > 0, the Chebyshev polynomials are defined as follows:

Tn(x) = cos(n arc cosz), —-1<uz<1.

Show that T,(z) is an eigenfunction of this Sturm-Liouville problem and for each n > 0 find the
corresponding eigenvalue.
1 1

Hint: If v = arc cos z, then cosv =z, and v/ = —— = — .
sin v (1 — 22)1/2

(c) Show that

/1 T (2)T () dr— 0

L)
for m # n, so that these eigenfunctions are orthogonal on the interval [—1, 1] with respect to the weight

function w(z) = A=
-z

SOLUTION:

(a) We can rewrite the differential equation as

! A
_a2\1/2, 0 Y _

which is the self-adjoint form of the Sturm-Liouville problem, with

1

pl) = (L=a®)!% a@) =0, @) = G

This is clearly a singular Sturm-Liouville problem since p(z) vanishes at the endpoints © = +1, and
since r(x) is not defined on the closed interval [—1,1] let alone continuous there. It also fails to be
regular because of the boundary conditions, one of which is a boundedness condition.

If y = T),(z), then
y = cosnk

where k = k(x) = arc cos z, so that = cosk and using the chain rule, we have

1 innk
y' = —nsinnk - k' = —nsinnk - | —= = 2R
sin k sin k
and
"o —n? cosnk + nsinnk cot k _ —n2y n xy’
= sin? k T1—a2  1—2a2

and y = T, (z) satisfies the differential equation (1 — 2?)y” — 2y’ + n?y =0, —1 < z < 1, for each
n > 0. Therefore, T, (z) is an eigenfunction of this Sturm-Liouville problem with eigenvalue n? for
n=0,1,2....



(c) In the integral

/1 Tm(x)Tn(x) da
(1-

. 22)1/2

make the substitution = = cost, so that
dr = —sintdt = —(1 — cos?t)/?dt = —(1 — z®)'/2 dt

that is,

1

Therefore,
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/ de:/ cosmtcosntdt =0
A= 22)12 0

if m # n, and the Chebyshev polynomials are orthogonal on the interval [—1,1] with respect to the

weight function w(z) = A—2

Question 5. Solve the following initial value problem for the damped wave equation

0%u +28u e 0%u
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u(z,0) = 1+ 22
ou

Hint: Do not use separation, instead consider w(z,t) = e’ - u(z,t).

SoLuTION: Note that u(z,t) = e~ - w(z,t), so that
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and if u is a solution to the original partial differential equation, then w is a solution to the equation
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and since e~ # 0, then w satisfies the initial value problem

w 0w
=—, —oo<zr<oo, t>0
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ow

From D’Alembert’s equation to the wave equation, we have (since ¢ = 1)

w(z t)—l ! + ! —i—l/w“lds
2 1zt 14+ (-2 2 )., ’
so that
(2.1) et 1 n 1 4ot
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for —co <z < o0, t>0.



