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MATHEMATICS 300 - SAMPLE MIDTERM
1. Solve the following differential equation for w
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2. Given the function

and f(x + 27) = f(x) otherwise.
(a) Find the Fourier series of f.
(b) For which values of x € [—m, 7] does the Fourier series converge to f?

3. Find all functions w for which u(z,t) = w(z — ct) is a solution of the first order partial differential
equation
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where A and c are constants.
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SOLUTIONS:

1. Since % (eIZ—Z) = —xe”, integrating we get
d
o2 — —/ xe® dx 4+ ¢; = —[ze” —/e””d:v]—i—cl
dx
therefore exg—g = —ze” + e* + ¢, and so z—g = —x + 14 cje”". Integrating again,
1 2 —x
u(zx) = —5% +x—cre "+

and u(0) =0 = ¢; = ¢g, while u(a) =0 = ¢ = 2(“12;2,‘2). The solution is

1 1 1—e®
u(x) :—§x2+x+§(a2—2a)(1_ea>.
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2. (a) Writing f(x) = ap + >_ (an cosnx + by, sin nx), the coeflicients in the Fourier series are given by

n=1
1 (7 1 [ 1 T
a0 = 5 » f(:c)d:c:% ; cosxda::%sin:c . =0
and for n > 1,
1 (7 1 (7
ap = — f(z)cosnzdr = — cos T cos nx dx
™) _n ™ Jo
1 [ 1 sin(n+1)z|" 1 sin(n—1)z|"
- — 1 —Da)de = ——— T 0 2T )
o7 ), (cos(n + 1)z + cos(n — 1)z) dx prer wl R =i ,
while for n =1,
a —l/wcos2acdczc—i/w(l—i—cos%n)dac—1
1 ™ Jo o 2T 0 n 2'
Also, forn =1,
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and
0 if n is odd

bn = 2n

m if n is even.



The Fourier series for f is therefore

oo

1 4
flx) ~ icosz+ - z:l Wn_lsin%m.

The Fourier series converges to f(x) for all  in [—m, 7], except at x =0, x =7 and = = —.

1
From Dirichlet’s theorem, the series converges to 3 at z = 0 and converges to —5 atz =7mand x = —7.

Suppose that u(x,t) = w(x — ct) is a solution to the first order partial differential equation

Let £ =z — ct, so that

ow  dwd§  dw q ow dwd§ — dw

or  deor  de M ot deot  Cdg

then w = w(§) satisfies the equation

d d d
(€ + ct)d_? _ ctd—lg — Aw that is gd—? = Aw.
This is a first order linear ordinary differential equation for w, which we can write as ‘fl—? — ?w =0 and
—Alog [¢]

which has as integrating factor e
so that d% (e‘““ogIgl w) =0.

Integrating, we have e~41°81¢l(¢) = K, where K is a constant, therefore if u(x,t) = w(z — ct) is a
solution to (x), then
u(:z:, t) _ KeAlog\mfcﬂ

for some constant K.



