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Preface
Applied Functional Analysis is a branch of mathematics that lies at the intersection of
pure mathematics and practical applications to real world problems. It explores the deep
an intricate structures of function spaces, often infinite dimensional, and the mappings
between them. This text provides a comprehensive introduction to powerful theories
such as Banach and Hilbert spaces, linear operators, spectral theory, fixed point methods,
variational calculus, and semigroup theory. Each of these topics is developed with full
proofs of the main results and many examples for specific applications. I also include
several illustrations and pedagogical tools that help learners to better understand the under-
lying concepts and memorize them easier, such as the rainbow of function spaces and the
semigroup triangle.

The mathematical concepts developed here provide a rigorous framework to model and
analyze real world problems from engineering, mechanics, physics, and natural sciences.
We will witness how Applied Functional Analysis empowers us to unravel the complexities
of the natural world.

I am grateful for support from many of our graduate students, who took this course at
the University of Alberta. They found mistakes and asked hard questions, which all helped
to improve the presentation. I am very grateful to Pablo Venegas Garcia, who typed up the
first version of the linear operator chapter. My thanks also go to Alexandra Shyntar and
Ryan Thiessen for careful proof reading of the manuscript. Nevertheless, all remaining
errors are entirely my own fault.

"Let us now embark on this journey into the realm of Applied Functional
Analysis, where the beauty of pure mathematics intertwines with the practical-
ity of real-world applications, offering a powerful toolkit for understanding,
analyzing, and transforming our world."1

Thomas Hillen
Edmonton, May 2023

1This last sentence is taken from chatGPT, I couldn’t say this better.
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1. Introduction

Contents
1.1 Applied Mathematics 9

1.2 Partial Differential Equations 10

1.3 Spectrum 12

1.4 Compactness 12

1.5 Optimization 12

1.6 Fixed Point Methods 13

1.7 Outline 13

1.8 Recommended Literature 14

1.1 Applied Mathematics
Concerned with the mathematical formulation of technical systems, physical problems,
and natural phenomena, the field of applied mathematics has undergone drastic changes
over the last decades. Traditional applied mathematics was often motivated by theoretical
thought experiments. A. Einstein is famous for using thought experiments to formulate
plausible theoretical concepts about nature, which can then be formulated as mathematical
models and be analysed. Deep mathematical methods were developed for the analysis of
these models to gain insight into the engineering, physical, or natural system at hand. A
beautiful theory of Applied Functional Analysis developed, which we present here.

Traditionally, data did not play a big role in this process, and data analysis would be
left in the capable hands of Statisticians. If quantitative mathematical predictions were
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needed, applied mathematicians would focus on numerical methods. In fact, numerical
analysis and scientific computing became the driving force of applied mathematics for
many years. Experimental data would be included, somehow, but a full statistical analysis
was not at the centre of interest.

This has changed. The fast development of data collection methods in all areas of
sciences in recent years has modified the demands on applied mathematics. Some data
sets are so vast that they can be seen as continua of data. Modern applied mathematicians
engage in direct collaboration with the sciences, and science requires that their data are
included in the modelling from the very beginning. Science expects us to provide an
explanation of the available data and possibly make testable predictions. The traditional
theoretical approaches are still possible, but applied mathematics has expanded to include
inference, statistical learning, data analysis, and AI as applied math tools.

In my view, an applied mathematician in the 21st century needs to gain skills in
(i) development of new mathematical models (modelling), (ii) theoretical analysis of
mathematical models, (iii) numerical solutions of these models, and (iv) data inferences
and statistical learning.

This textbooks focuses on the theoretical aspects of applied mathematics (i.e. item
(ii)). This does not mean that the material is old. On the contrary, some parts of this book
include quite modern approaches, for example the rainbow of function spaces, and the
chapter of semigroup theory. Other chapters cover very traditional material, such as the
chapters on operators and function spaces, and the chapter on variational methods.

1.2 Partial Differential Equations
A main part of applied mathematics are differential equations. Ordinary differential
equations (ODEs) include a finite number of differential equations of a single independent
variable, and the analysis of those is covered in courses on ODEs, boundary value problems,
and dynamical systems. The defining feature of ODEs is the fact that they can be formulated
as a finite dimensional systems, often in Rn for appropriate dimension n.

Partial differential equations (PDEs), however, can be seen as infinite dimensional
dynamical systems, a concept that I will make precise in this book. PDEs are used
for problems in physics, mechanics, engineering, chemistry, biology and many other
disciplines. They are the work-horses of applied mathematics and they form a topic of
central importance in our field. Compared to ODEs, PDEs require a new language. The
state space of a PDE is a Banach space, the PDE itself can be seen as a combination of
operators between Banach spaces, and solutions often arise as weak or weak∗ limits in
those Banach spaces. All these concepts need to be learned, and that is what we do in this
book.

As an example, consider a standard reaction-diffusion equation

ut = d∆u+ f (u)

for an unknown function u(x, t) that depends on space x and time t. The constant d > 0
denotes the diffusion coefficient, ut =

∂

∂ t u(x, t) denotes the partial time derivative, ∆ =
∂ 2

∂x2
1
+ · · ·+ ∂ 2

∂x2
n

denotes the Laplace operator, and f (u) is a given function that describes
growth or decay.
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If we introduce a linear operator

Au = d∆u,

we write the reaction diffusion equation as

ut = Au+ f (u), (1.1)

which now looks like an ODE (ordinary differential equation).
In fact, if it were an ODE, we could use matrix exponentials and the variation of

constant formula like

u(t) = eAtu0 +
∫ t

0
eA(t−s) f (u(s))ds, (1.2)

where eAt is a matrix exponential. But now, A = d∆ is a differential operator, and not a
matrix. The question arises whether we can define a matrix exponential for unbounded
operators. The answer is YES, using semigroup theory, which we cover in the final Chapter
9.

If u(x, t) is a solution of the "ODE" (1.1), then for each t, u(x, t) is a function of x.
Hence it lies in a function space. But in which function space? We will discuss appropriate
choices for a large variety of function spaces, such as Banach spaces, Hilbert spaces,
Sobolev spaces, and their dual spaces later in Chapters 2, 4, and 5. In this scenario A
becomes a linear operator between those spaces, hence we need to consider operator theory,
as we do in Chapter 3.

� Example 1.1 As a specific example we consider the one dimensional heat equation on
[0,L] with homogeneous Dirichlet boundary conditions.

ut = duxx, (1.3)
u(t,0) = u(t,L) = 0,
u(0,x) = u0(x),

with a given initial condition u0(x). Using separation of constants and the superposition
principle [14], we find a solution as Fourier-sine series

u(x, t) =
∞

∑
n=1

ane−λndt sin
(nπx

L

)
,

where the coefficients an are the Fourier-sine coefficients of the initial condition

u0(x) =
∞

∑
n=1

an sin
(nπx

L

)
.

The family of functions

S :=
{

sin
(nπx

L

)
,n ∈ N

}
forms an orthogonal set with inner product

〈φn,φm〉=
∫ L

0
φn(x)φm(x)dx.
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S can be seen as a basis of the function space L2(0,L) of square integrable functions on
[0,L]. Since S is infinite, we say that L2(0,L) is infinite dimensional. In this sense we
understand (1.3) as an infinite dimensional ODE.

Also note that the Dirichlet boundary conditions u(t,0) = u(t,L) = 0 became part of the
basis functions S , since the sine functions satisfy these boundary conditions. This suggest
that other boundary conditions, such as Neumann boundary conditions, for example, might
lead to a different basis functions. In fact, much of PDE theory is concerned about the
identification of the "right" basis and the "right" function space. We come back to this
question when we talk about domains of definition of unbounded operators in Chapter 3. �

1.3 Spectrum
If A is a matrix, then the eigenvalues of A tell us something about the stability of the ODE
u̇ = Au. Now, if A is an unbounded operator, (e.g. A = d∆), what information can we get
from the spectrum of A? What actually is the spectrum of A in that case? We will see in
the chapter on spectral theory (Chapter 8) that the spectrum of A, denoted as σ(A) might
contain much more than just eigenvalues.

1.4 Compactness
One of my favorite PhD exam questions is: “What is your favorite compactness result?”

In Rn we have the theorem of Bolzano-Weierstrass, i.e. if U ⊂ Rn is bounded and
closed, then it is compact. This, unfortunately, is no longer true in infinite dimensions,
since, as we will show that even unit balls in general Banach spaces do not need to be
compact.

Another well known compactness result is the theorem of Arzela-Ascoli:

Theorem 1.4.1 — Arzela-Ascoli. Consider a sequence of real-valued continuous func-
tions { fn(x)}n∈N defined on a closed and bounded interval [a,b] of the real line. If
this sequence is uniformly bounded and equicontinuous, then there exists a uniformly
convergent subsequence.

Compactness results are rather essential in functional analysis as they allow us to find
limits in function spaces. In the chapters on dual spaces (Chapter 4) and on Sobolev
spaces (Chapter 5) we will add a few new compactness results to our menu, such as the
Rellich-Kondrachov compactness, weak*-compactness, reflexive weak compactness, and
compact Sobolev embeddings.

1.5 Optimization
Another interesting generalization from Calculus in Rn is the principle of optimization. To
optimize a real-valued, twice differentiable function in Rn, we simply look at the gradient
∇ f and find its zeroes. Then we study the Hessian matrix Hess f (x) and decide if the
critical points are local maxima or minima. The analogy for functions on Banach spaces is
called the Calculus of Variations, which we cover in Chapter 7.
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1.6 Fixed Point Methods
Now we come back to the reaction-diffusion equation (1.1). A solution is called a mild
solution, if it satisfies the variation of constant formula (1.2). To show the existence of
such a solution, we construct a Picard iteration and use a fixed point argument. Again, the
question of the right function space arises. Let us assume X is the Banach space of interest.
We take a given function v ∈ X and we define a nonlinear operator B as

B(v) = eAtu0 +
∫ t

0
eA(t−s) f (v)ds.

If we can show that B : X → X , then there is hope to apply a fixed point theorem. If B has a
fixed point, u = B(u) in X , then this u is a mild solution of (1.1). We will learn in Chapter
6 a variety of fixed point theorems that apply to this situation.

1.7 Outline
Chapters 2, 3, and 4 contain classical introductory material from functional analysis.
We introduce Banach spaces and Hilbert spaces, talk about different norms, and define
operators between these spaces. We learn when an operator is bounded, continuous,
closed, compact, or symmetric, and we prove the Uniform Boundedness Principle. The
introduction of dual spaces, and the important Hahn-Banach theorem, bring additional
structure to the function spaces, which allow us to distinguish between weak and weak∗

convergence. An important consequence is the Alaoglu weak∗ compactness result, which
we prove in Chapter 4. Chapters 2-4 contain essential background that should be studied by
readers that are new to this area. These chapters can be skipped by experienced functional
analysts.

Chapter 5 on Sobolev spaces makes a distinct jump towards PDEs. General solutions of
PDEs often only allow weak derivatives, which we define from a distributional derivative.
Sobolev spaces collect functions with weak derivatives into a ranking of increased regu-
larity. The Sobolev embeddings make explicit relations between Sobolev spaces, spaces
of integrable functions and spaces of continuous and differentiable functions. We present
these relationships in the Rainbow of function spaces where we show the relations between
smooth functions, Hölder continuous functions, continuous and differentiable functions,
integrable functions, measures, Sobolev spaces and their duals. The Rainbow of function
spaces is a real highlight of this text, as it gives the reader a visual tool to better understand
the relationships between all these spaces.

Chapter 6 on Fixed Point Theorems steers us into very traditional mathematics. Based
on topological arguments (e.g. Brouwers fixed point theorem), we develop standard
results such as the Banach fixed point theorem and the Schauder fixed point theorem. The
Leray-Schauder principle again makes a connection to PDE theory. It shows that a-priori
estimates can lead to fixed points. Finally, the Lax-Milgram theorem, is not really a fixed
point theorem, but it fits into this chapter as it ensures the existence of solutions to bilinear
operator equations, as they appear in solution theory of PDEs.

Variational Calculus in Chapter 7, has developed from optimization of mechanical
systems, specifically for minimizing the underlying energies. Consequently, we begin
Chapter 7 with two classical mechanical problems, the hanging chain and the rolling
ball. We find that the language of variational calculus is functional analysis, hence the
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tools developed so far allow us to formulate optimization problems in a systematic way.
We derive the first variation, the Euler-Lagrange equations and the second variation. We
discuss Hamiltons principle and we derive conditions such that a minimizer exists.

In Chapter 8 on Spectral Theory we come back to the analysis of operators. Where
matrices have eigenvalues, linear operators in general have spectral values which include
eigenvalues (point spectrum) plus elements of the continuous and residual spectra. We
introduce a new best friend, which is the resolvent Rλ (A). The resolvent is needed to
identify the different parts of the spectrum. Also, we relate the spectrum of an operator
to the spectrum of the adjoint and we formulate some spectral theorems, including the
Fredholm alternative.

With Spectral Theory under our belt, we develop in Chapter 9 the Semigroup Theory.
Semigroup theory is the framework in which an operator exponential T (t) = etA will be
defined. It can be understood as a solution of an abstract differential equation ut = Au in a
Banach space. The two main theorems in this context are the Hille-Yosida theorem and the
Lumer-Phillips theorem, which we prove in Chapter 9. Based on the spectrum of so called
"sectorial" operators, we will define analytic semigroups. These are important in many
applications since the Laplacian ∆ generates analytic semigroups in suitable domains. The
semigroup theory is build on intricate connections between the generator A, the semigroup
T (t) and the generator Rλ (A). To illustrate these relations, we use the Semigroup Triangle
as a visual tool.

1.8 Recommended Literature
There are excellent textbooks available for each of the topics considered here. As these
texts are more specialized they contain much more material than covered here and I
recommend those for further reading:
• Functional analysis: Robinson [23, 24], Lax [16], Haase [10], Zeidler volume I, II,

II [29], Evans [7], Halmos and Sunder [12], Krasnoselsii [15],
• Sobolev spaces: Adams [1], Robinson [23], Evans [7], Gilbarg and Trudinger [8],

Renardy and Rogers [22]
• Calculus of Variations: van Brunt [3], Wan [28], Evans [7],
• Spectral theory: Conway [4], Lax [16], Zeidler volume I, II, II [29], Edmunds and

Evans [5],
• Reaction diffusion equations: Robinson [23], Smoller [26], Taylor [27], Evans [7],

Renardy and Rogers [22], Britton [2], Lorenzi and Rhandi [17]
• Semigroup theory: Pazy [19], Taylor [27], Engel and Nagel [6], Goldstein [9],

Lunardy [18], Lorenzi and Rhandi [17]
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In this chapter we discuss some basic functional analysis topics such as Banach spaces,
Hilbert spaces, their norms and inner products. We will introduce spaces of continuous
functions, Hölder continuous functions, and integrable functions. Some essential tools in
functional analysis are inequalities, and we will cover the Young, Hölder, and Minkowski
inequalities, as well as some integral inequalities and the famous Gronwall Lemma.

2.1 Banach Spaces
A Banach space (X , ||.||X) is a complete normed space.
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� Example 2.1 Rn with each norm is a Banach space. Let x ∈ Rn, x = (x1, . . . ,xn), then
we have many different norms. Some of them are:

sum-norm: ‖x‖1 =
n

∑
j=1
|x j|,

Euclidean norm: ‖x‖2 =

(
n

∑
j=1
|x j|2

) 1
2

,

p-norm: ‖x‖p =

(
n

∑
j=1
|x j|p

) 1
p

, p≥ 1,

max-norm: ‖x‖∞ = max
j=1,...,n

|x j|.

�

We list a few basic properties of Banach spaces
1. A subset Y ⊂ X is dense in X , if Ȳ = X . A Banach space that contains a dense and

countable subset is called separable. For example, Rn is separable, since Qn is a
dense countable subset.

2. A subset E ⊂ X is called compact, if either (i) each open cover contains a finite
subcover, or, equivalently, if (ii) each sequence {xn}n∈N contains a convergent
subsequence.
For example the closed unit ball in Rn

B̄1(0) = {x ∈ Rn : ‖x‖2 ≤ 1}

is compact by the Theorem of Heine-Borel.
3. Two norms ‖ · ‖(1) and ‖ · ‖(2) are equivalent, if there exist a,b > 0 such that

a‖x‖(1) ≤ ‖x‖(2) ≤ b‖x‖(1), for all x ∈ X .

2.1.1 Continuous and Differentiable Functions
We use the following notations for spaces of continuous functions. Let Ω⊂ Rn be a given
set. If Ω is bounded, we introduce the domain boundary as ∂Ω, and its closure as Ω̄.

C0(Ω) = { f : Ω→ R : continuous},
C0(Ω̄) = { f : Ω̄→ R : continuous},
C0

b(Ω) = { f ∈C0(Ω) : bounded}.

The norm on C0 is the supremum norm

‖u‖∞ = sup
x∈Ω

|u(x)|.

If Ω is bounded, then C0
b(Ω) =C0(Ω).

By Weierstrass’ Theorem we have that

{Polyn. with rational coefficients}
⊂

dense {Polyn.}
⊂

dense C0(Ω̄),
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hence C0(Ω̄) is a separable Banach space.

For spatial derivatives we use a number of notations:

∂

∂xi
= Di = ∂i,

as is common practice in analysis.
For a multiindex α = (α1, . . . ,αn) we denote a combined derivative as

Dα f = Dα1
1 · · ·D

αn
n f .

The order of this derivative is written as

|α|= α1 + · · ·+αn.

Then the spaces of higher derivatives for r ∈ N are written as

Cr(Ω) = { f : Ω→ R : Dα f ∈C0(Ω), for all |α| ≤ r}

with norm

‖ f‖Cr = ∑
|α|≤r

sup
x∈Ω

|Dα f (x)|.

As r→ ∞ we then define smooth functions as

C∞(Ω) =
∞⋂

r=1

Cr(Ω̄).

The support of a function f is defined as

supp f = {x : f (x) 6= 0},

and continuous functions with compact support are denoted as Cr
c(Ω) and C∞

c (Ω), where
we use the double inclusion symbol to indicate compactness:

supp f bΩ.

Note that C∞
c (Ω) is generally not a Banach space. The spaces of Hölder continuous

functions, for 0≤ γ ≤ 1 are defined as

Cr,γ(Ω̄)= { f ∈Cr(Ω̄) :∃c> 0, |Dα f (x)−Dα f (y)| ≤ c|x−y|γ for all x,y,∈X , |α|= r}

with Hölder norm

‖ f‖r,γ = ‖ f‖Cr + sup
|α|=r, x,y,∈Ω

|Dα f (x)−Dα f (y)|
|x− y|γ

.

If Ω is bounded, we have the inclusions

Cr+1(Ω̄)⊂Cr,γ(Ω̄)⊂Cr(Ω̄), 0 < γ ≤ 1.
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2.1.2 Integrable Functions
For 1≤ p < ∞ we define spaces of integrable functions as

Lp(Ω) =

{
f : Ω→ R : ‖ f‖p :=

(∫
Ω

| f (x)|pdx
) 1

p

< ∞

}
,

and the spaces of locally integrable functions

Lp
loc(Ω) := { f : f ∈ Lp(K) for every K bΩ}.

For example, consider the function f (x) = 1 for x ∈ R. We have
∫
R f (x)dx is unbounded,

hence f 6∈ L1(R), but for each compact subset K b R we have∫
K

f (x)dx = |K|< ∞,

hence f ∈ L1
loc(R).

2.1.3 Mollifiers
Mollifiers are approximations by smooth functions.

Theorem 2.1.1 Given f ∈C0
c (Ω). For each ε > 0 there exists a φ ∈C∞

c (Ω) such that

‖ f −φ‖∞ ≤ ε.

Proof. By direct construction. We define the standard mollifier as

ρ(x) =

{
cexp

(
1

|x|2−1

)
, |x| ≤ 1,

0 , |x|> 1,

where c is chosen such that∫
Rn

ρ(x)dx = 1.

As the exponential function is smooth, and converges to 0 as |x| → 1, it follows that
ρ(x) ∈C∞

c (Rn). We define the standard mollifier of size h > 0 as

ρh(x) =
1
hn ρ

(x
h

)
,

where we have∫
Rn

ρh(x)dx = 1. (2.1)

The standard mollifier and the rescaled version is shown in Figure 2.1. Given f ∈C0
c (Ω)

then the mollification fh of f for h < dist(supp f ,∂Ω) is

fh(x) = f ∗ρh(x) =
1
hn

∫
Ω

ρ

(
x− y

h

)
f (y)dy.
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-1 1 x x

Figure 2.1: Sketch of the standard mollifier and its rescaled version.

x

f (x)
(x)

x

Figure 2.2: Sketch of an approximation of f by a smooth function φ .

Since ρ ∈C∞, we immediately have that

fh(x) =
1
hn

∫
Ω

ρ

(
x− y

h

)
f (y)dy ∈C∞(Ω).

Furthermore, if f has compact support, so does fh. For the convergence of fh→ f we use
the fact that ρh integrates to one, (2.1), and write

| fh(x)− f (x)| =

∣∣∣∣ 1
hn

∫
Ω

ρ

(
x− y

h

)
( f (y)− f (x))dy

∣∣∣∣
≤ sup

|x−y|≤h
| f (y)− f (x)|

∣∣∣∣ 1
hn

∫
ρ

(
x− y

h

)
dy
∣∣∣∣ .

Since f is continuous, we can make h small such that | f (y)− f (x)|< ε for all |x− y|< h,
and then let h go to zero. �

2.2 Inequalities
Here we collect a number of inequalities which we will use in later chapters. The first three
are cited from measure theory without proof. They give us conditions such that taking
limits and integration can be interchanged.
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2.2.1 Integral Inequalities

Theorem 2.2.1 — Monotone Convergence. Consider a sequence of measurable
functions 0≤ f1 ≤ f2 ≤ . . . a.e. x ∈Ω. Then

lim
n→∞

∫
Ω

fn(x)dx =
∫

Ω

(
lim
n→∞

fn(x)
)

dx.

Theorem 2.2.2 — Fatou’s Lemma. Assume f j ≥ 0 are measurable functions, then∫
Ω

(
liminf

n→∞
fn(x)

)
dx≤ liminf

n→∞

∫
Ω

fn(x)dx.

Theorem 2.2.3 — Dominated Convergence. Assume f j(x)→ f (x) as j→∞ for all
x ∈Ω, and | f j(x)| ≤ g(x) with g ∈ L1(Ω). Then

lim
n→∞

∫
Ω

fn(x)dx =
∫

Ω

(
lim
n→∞

fn(x)
)

dx.

Proof. The proofs of these Theorems can be found in standard textbooks on measure
theory, or Lebesgue integration [11, 12]. See also [23] p 22 Theorem 1.7. �

2.2.2 Young, Hölder, Minkowski
The Young, Hölder and Minkowski inequalities belong to the standard toolbox of each
mathematician who works in analysis. You should never leave your home without
these!

Theorem 2.2.4 — Young’s inequality. Consider a,b ≥ 0, p,q > 1 and p and q are
conjugate 1

p +
1
q = 1. Then

ab≤ ap

p
+

bq

q
.

If ε > 0 we write

ab≤ εap + ε
− q

p bq.

The most common version of Young’s inequality is the version with p = q = 2:

ab≤ ε

2
a2 +

1
2ε

b2. (2.2)

This last inequality is also known as "Peter-Paul" inequality. You take money from Peter
and pay Paul, i.e. you make the a-term small through a small ε , but you have to pay the
price by making the b-term large with ε−1.

Proof. We rewrite the inequality by multiplying with b−q. Then ap

p + bq

q ≥ ab is equivalent
with

apb−q

p
+

1
q
−ab1−q ≥ 0.
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Since p and q are conjugate indices, we have 1−q =− q
p and we write the above inequality

as (
ab−

q
p

)p

p
+

1
q
−ab−

q
p ≥ 0.

With the function

f (t) =
t p

p
+

1
q
− t

the left hand side is exactly f (ab
−q
p ). Now it is easy to show that f (t) has a global

minimum of 0 at f (1) = 0. Indeed, f ′(t) = t p−1−1 and t = 1 is a critical point. As we
have f ′′(1) = p−1 > 0 we find a global minimum at 1.

Finally, to obtain the Peter-Paul estimate (2.2) we write ab =
√

εa b√
ε

and use Youngs
inequality with p = q = 2. �

Theorem 2.2.5 — Hölder inequality. Let (p,q) be conjugate indices with 1 < p≤ ∞

and suppose f ∈ Lp(Ω) and g ∈ Lq(Ω). Then f g ∈ L1(Ω) and

‖ f g‖1 ≤ ‖ f‖p‖g‖q.

Proof. We first assume 1 < p < ∞ and use Youngs inequality∫
Ω

| f |
‖ f‖p

|g|
‖g‖q

dx ≤
∫

Ω

1
p
| f |p

‖ f‖p
p
+

1
q
|g|q

‖g‖q
q

dx

=
1
p
+

1
q
= 1.

In the case of p = ∞ we simply estimate with the supremum of f :∫
| f g|dx≤ ‖ f‖∞

∫
Ω

|g|dx = ‖ f‖∞‖g‖1.

Hence in both cases
∫
| f g|dx is bounded and f g ∈ L1(Ω). �

Theorem 2.2.6 — Minkowski inequality. Assume 1 ≤ p < ∞ and consider f ,g ∈
Lp(Ω). Then f +g ∈ Lp(Ω) and

‖ f +g‖p ≤ ‖ f‖p +‖g‖p.

Proof. Notice that for a constant c large enough we have

| f (x)+g(x)|p ≤ (| f (x)|+ |g(x)|)p ≤ c(| f (x)|p + |g(x)|p),

which implies f +g ∈ Lp(Ω).
If (p,q) are conjugate, then (p−1)q = p and | f +g|p−1 ∈ Lq(Ω). Now

| f +g|p = | f +g|p−1| f +g|
≤ | f +g|p−1(| f |+ |g|)
= | f +g|p−1| f |+ | f +g|p−1|g|.
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Then, using Hölders inequality on each of these terms, we find

‖ f +g‖p
p ≤ ‖| f +g|p−1‖q(‖ f‖p +‖g‖p)

=

(∫
Ω

| f +g|pdx
) 1

q

(‖ f‖p +‖g‖p)

= ‖ f +g‖
p
q
p (‖ f‖p +‖g‖p),

leading to

‖ f +g‖
p− p

q
p ≤ ‖ f‖p +‖g‖p.

The exponent of the last term on the right hand side is

p− p
q
= p

(
1− 1

q

)
=

p
p
= 1.

�

Theorem 2.2.7 Lp(Ω) for 1≤ p < ∞ is a Banach space.

Proof. To show completeness we assume { fn}⊂ Lp(Ω) converges pointwise fn(x)→ f (x)
a.e. x ∈Ω and that ‖ fn‖p <C for all n. Then by Fatou’s Lemma (Theorem 2.2.2) we have

‖ f‖p
p =

∫
liminf

n→∞
| fn(x)|pdx≤ liminf

n→∞

∫
| fn|pdx

≤ lim
n→∞

∫
| fn|pdx≤Cp.

�

Theorem 2.2.8 Let Ω be bounded, then C0(Ω) is dense in Lp(Ω),

Lp(Ω) =C0
c (Ω)

‖·‖p
,

and Lp(Ω) is separable.

Proof. (Sketch of proof): As indicated in Figure 2.3 we approximate Lp functions with
simple functions of the form

Sn =
n

∑
j=1

c j
(
χI j(x)

)
h ,

where χI j are indicator functions of sub-intervals I j, and the index h denotes their mollifi-
cation. If we choose rational coefficients, we also conclude that Lp is separable. �

With the same argument we show that

Lp(Ω) =C∞
c (Ω)

‖·‖p
.
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Figure 2.3: Sketch of an approximation of u with mollified indicator functions.

Lemma 2.2.1 Let Ω be bounded and p > 1. Then f ∈ Lp(Ω) implies f ∈ Lp′(Ω) for each
1 < p′ < p.

Proof. We use Hölder’s inequality with index p/p′ and q such that

1
p/p′

+
1
q
= 1.

Hence

q =
p

p− p′
.

Then with Hölders inequality we get∫
Ω

| f (x)|p
′
dx ≤ ‖| f |p

′
‖ p

p′
‖1‖q

= |Ω|
(∫

Ω

(
| f |p

′
) p

p′ dx
) p′

p

= |Ω|‖ f‖p′
p .

�

2.3 L∞–spaces
The essential supremum of a function f (x) is defined as

‖ f (x)‖∞ := ess supΩ| f (x)|= inf
{

sup
x∈S
| f (x)| : S⊂ Ω̄, and Ω\S has measure zero

}
.

� Example 2.2 The function

f (x) =
{

2 for x = 0
1 else
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has

ess sup[−1,1]| f (x)|= 1 6= sup
[−1,1]

| f (x)|= 2.

�

� Example 2.3 There is a natural connection between L∞ and C0 in case when functions
are continuous. If f ∈C0(Ω) then

ess supΩ| f (x)|= sup
Ω

| f (x)|.

In this sense we have

‖ f‖L∞ = ‖ f‖C0 = ‖ f‖∞.

�

Theorem 2.3.1 Let Ω have finite volume, then

‖ f‖∞ = lim
p→∞
‖ f‖p

and if ‖ f‖p ≤ K for all p, then ‖ f‖∞ ≤ K.

Proof. We simply compute

‖ f‖p =

(∫
Ω

| f |pdx
) 1

p

≤ ‖ f‖∞

(∫
Ω

1pdx
) 1

p

= |Ω|
1
p‖ f‖∞,

which implies that

limsup
p→∞

‖ f‖p ≤ ‖ f‖∞.

Moreover, for each ε > 0 there exists a set A of non-zero measure such that

| f (x)| ≥ ‖ f‖∞− ε, for all x ∈ A.

Therefore∫
Ω

| f (x)|pdx≥
∫

A
| f (x)|pdx≥ |A|(‖ f‖∞− ε)p ,

which implies

‖ f‖p ≥ |A|
1
p (‖ f‖∞− ε) .

We obtain in the limit that

liminf
p→∞

‖ f‖p ≥ ‖ f‖∞,

proving our claim. �
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Figure 2.4: A part of the Rainbow of Function Spaces for Lp and C j spaces. Ω is a bounded
domain, and the argument (Ω) is suppressed to reduce cluttering the image.

Theorem 2.3.2 L∞(Ω) is complete, i.e. a Banach space.

Proof. Let { fn} be a Cauchy sequence in L∞(Ω). Then

| fn(x)| ≤ ‖ fn‖∞ a.e.

and

| fn(x)− fm(x)| ≤ ‖ fn− fm‖∞ a.e.

Hence for a.e. x ∈Ω the set { fn(x)} is a Cauchy sequence in R, which has a limit

fn(x)→ f (x) a.e. in Ω.

Hence we find a well defined function f (x), which based on the above estimates, is in
L∞(Ω). �

In Figure 2.4 we show the relationships of some of the function spaces that we have
discussed so far. Note that for these inclusions we assume Ω to be bounded. This Rainbow
of Function Spaces will be extended with dual spaces and Sobolev spaces as we carry on
through this course. See Figure 5.3 for the full Rainbow of Function Spaces.

2.4 Differential Inequalities
The arguably most important tool in PDE analysis is the famous Gronwall’s lemma, which
allows to integrate a differential inequality. Here we derive a rather general differential
inequality result, which then as a Corollary, includes the Gronwall Lemma and several of
its cousin results.
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We define a one-sided derivative for a real function x : R→ R
d

dt+
x(t) = lim

h→0+

x(t +h)− x(t)
h

.

Of course, if x ∈C1 then d
dt+ x(t) = d

dt x(t).

Theorem 2.4.1 Assume f (x, t) is Lipschitz continuous and consider the differential
inequality for a real function x : R→ R

d
dt+

x(t)≤ f (x, t), x(0) = x0, (2.3)

and the corresponding differential equation

d
dt

y(t) = f (y, t), y(0) = y0.

If initially x0 ≤ y0, then

x(t)≤ y(t)

for as long as the solution y(t) exists.

Proof. Let {yn(t)}n∈N solve the modified equation

d
dt

yn(t) = f (yn, t)+
1
n
, yn(0) = y0.

The solution exists and is unique, since F is Lipschitz. We claim that for any given n > 0
we have x(t)≤ yn(t).

Assume this is not the case. Then there exists a time t1 where x is bigger: x(t1)> yn(t1).
This means there must be an interval, containing t1 such that x(t1) is bigger, i.e. we find
a t2 ∈ [0, t1) such that x(t2) = yn(t2) and x(t) > y(t) for t ∈ (t2, t1]. Then the one sided
derivative of x(t) at t2 satisfies for h small enough

x(t2 +h)− x(t2)
h

>
y(t2 +h)− y(t2)

h

and

d
dt+

x(t2)≥ f (yn(t2), t2)+
1
n
= f (x(t2), t2)+

1
n
,

which is a contradiction to the differential inequality (2.3). This means that x(t)≤ yn(t)
for all t and all n ∈ N+. By the result on the continuous dependence of the solution on
model parameters, we pass to the limit for n→ ∞ and get limn→∞ yn(t) = y(t). Hence we
keep the inequality:

x(t)≤ y(t)

for all t such that y(t) exists. �

The application of this result to linear differential inequalities is Gronwalls Lemma.
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Corollary 2.4.2 — Gronwall’s Lemma. Consider a real function x : R→ R and two
point-wise defined and integrable functions g(t),h(t) and assume

d
dt+

x(t)≤ g(t)x(t)+h(t).

Then

x(t)≤ x(0)exp
(∫ t

0
g(s)ds

)
+
∫ t

0
exp
(∫ t

s
g(τ)dτ

)
h(s)ds. (2.4)

Corollary 2.4.3 — Special Case. If

d
dt+

x(t)≤ ax(t)+b, x(0) = x0,

then

x(t)≤
(

x0 +
b
a

)
eat− b

a
.

Proof. (of Corollary 2.4.2). The right hand side of (2.4) is the unique solution of

ẏ(t) = g(t)y(t)+h(t), y(0) = x(0).

Hence we apply Theorem 2.4.1. �

2.5 Hilbert Spaces
Besides Banach spaces, Hilbert spaces are the work horses for Applied Functional Analysis.
These are complete normed vector spaces with an inner product.

Definition 2.5.1 An inner product (·, ·) : X×X → R on a vector space X satisfies

(i) (λx+µy,z) = λ (x,z)+µ(y,z) for all x,y,z ∈ X , λ ,µ ∈ R,
(ii) (y,x) = (x,y), for all x,y ∈ X ,

(iii) (x,x)≥ 0, for all x ∈ X and (x,x) = 0 only for x = 0.

The associated norm is

‖x‖=
√
(x,x).

Proposition 2.5.1 — Cauchy-Schwartz Inequality. For all x,y ∈ X we have

|(x,y)| ≤ ‖x‖ ‖y‖.

Proof. If either x or y equals zero then the inequality is trivial. Hence we consider non-zero
x,y ∈ X and a λ ∈ R,λ 6= 0. We have

0≤ ‖x−λy‖2 = (x−λy,x−λy) = ‖x‖2−2λ (x,y)+λ
2‖y‖2,
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which implies for λ > 0 that

|(x,y)| ≤ 1
2λ
‖x‖2 +

λ

2
‖y‖2.

Now we chose a very special λ = ‖x‖
‖y‖ to obtain

|(x,y)| ≤ 1
2
‖x‖‖y‖+ 1

2
‖x‖‖y‖.

�

Definition 2.5.2 A complete inner product space is called a Hilbert Space.

� Example 2.4 The function space L2(Ω) is a Hilbert space with inner product

(x,y) =
∫

Ω

x(t)y(t)dt,

or, if we consider complex valued functions

(x,y) =
∫

Ω

x̄(t)y(t)dt.

When working in L2 we will often use the single line for the L2-norm:

| f |= ‖ f‖2 = ‖ f‖L2 =
√

( f , f ).

�

If M ⊂ H is a subset, then we define the orthogonal complement

M⊥ := {u ∈ H : (u,v) = 0, for all v ∈M}.

Proposition 2.5.2 If M ⊂ H is a closed linear subspace, then each x ∈ H has a unique
decomposition as

x = u+ v, u ∈M, v ∈M⊥.

Proof. Suppose x ∈ H. If x ∈M then we chose u = x and v = 0 and we are done. So we
assume x 6∈M. Then, since M is closed, we can find a point u ∈M of minimal distance to
x (see Figure 2.5):

‖x−u‖= δ := inf
y∈M
‖x− y‖.

Then we define v = x−u. Now we want an explicit parametrization of this minimum. For
that we take a y ∈M and consider

D(t) := ‖x− (u− ty)‖2 = ‖v+ ty‖2 = ‖v‖2 +2t(v,y)+ t2‖y‖2.
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Figure 2.5: Sketch of the shortest distance from x to a point u ∈M.

We know that D(t) is minimal for t = 0, hence

D′(t) = 2(v,y) = 0, for all y ∈M.

This means v ∈M⊥.
To show uniqueness of this decomposition, we assume that there are two decomposi-

tions

x = u1 + v1 = u2 + v2, u1,u2 ∈M, v1,v2 ∈M⊥.

Then v1− v2 = u2−u1 and

‖v1− v2‖2 = (v1− v2,v1− v2) = (v1− v2,u2−u1) = 0.

�

The above proposition allows us to define orthogonal projections of x onto M as

PM : H→M, PMx = PM(u+ v) = u,

where x = u+ v is the unique decomposition of Proposition 2.5.2. The projection has the
property

P2
M = PM, and ‖PM‖op ≤ 1,

where we will introduce the operator norm in the next chapter.
We can take this orthogonal decomposition to the extreme, by decomposing with

respect to one-dimensional subspaces. Doing this we quite naturally arrive at a Hilbert
basis.

Definition 2.5.3 An orthogonal set {ei}i∈N is called a Hilbert basis, if

x =
∞

∑
j=1

(x,e j)e j, for all x ∈ H.

Proposition 2.5.3 An orthonormal set {ei}i∈N is a Hilbert basis if and only if

‖x‖2 =
∞

∑
j=1

(x,e j)
2, for all x ∈ H. (2.5)
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Proof. We prove this equivalence in two parts:

“=⇒:” Let {ei} be a Hilbert basis. Then for each finite n we have∥∥∥∥∥ n

∑
j=1

(x,e j)e j

∥∥∥∥∥
2

=
n

∑
j=1

(x,e j)
2

and the claim follows for n→ ∞.
“⇐=:” Assume (2.5). We define a set

Y :=

{
x : x =

∞

∑
j=1

(x,e j)e j

}
and we aim to show that Y = H. For that we show that Y is closed in H and also that Y is
dense in H. Together this implies Y = H.
Claim: Y is closed. Consider a Cauchy sequence {yn}⊂Y . Each member of this sequence
can be identified with its coefficients, which are elements of the sequence space l2:

yn ∼ ((yn,e1),(yn,e2), . . . ,(yn,en), . . .)⊂ l2.

Since l2 is complete, the sequence has a limit in l2, lets call it

y∗ ∼ (a1,a2, . . . ,an, . . .).

Then

y∗ =
∞

∑
j=1

a je j and a j = (y∗,e j),

i.e. y∗ ∈ Y . Hence Y is closed.
Claim: Y is dense. Assume it is not dense. Then H\Y contains a non-zero vector and since
Y is closed, this means that Y⊥ contains a non-trivial element x ∈ Y⊥. But by definition, x
is perpendicular to all basis vectors, i.e.

‖x‖2 = ∑
i
(x,ei)

2 = 0.

Then Y⊥ = {0}, which is a contradiction to the assumption that Y is not dense. Hence Y
must be dense. �

Proposition 2.5.4 H is separable if and only if it has a countable basis.

Proof. Again, we consider both directions.
“⇐=:” If we have a countable basis, we construct a countable dense subset by linear
combinations of basis functions with rational coefficients.
“=⇒:” If H is separable, then it has a countable dense subset {xn}n∈N, where we assume
that 0 6∈ {xn}. We turn this into a countable basis as follows.

e1 =
x1

‖x1‖
,

en =
yn

‖yn‖
, yn = xn−

n−1

∑
i=1

(xn,ei)ei.

�
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Proposition 2.5.5 The unit ball in an infinite dimensional Hilbert space is not compact.

Proof. Let {ei} be an orthonormal basis of the Hilbert space. Then each ei ∈ B1(0) for all
i ∈ N. But

‖en− em‖2 = (en− em,en− em) = ‖en‖2 +‖em‖2 = 2

for all n 6= m. Hence, {e j} is a bounded sequence, but not a Cauchy sequence, and it does
not converge in B1(0). �

2.6 Exercises
As a guideline about the difficulty of these exercises, I add a level to the problems. Level 1
indicates elementary and straight forward questions, level 2 are of intermetiate difficulty
and level 3 problems are hard.

Exercise 2.1 (Equivalent norms) (level 1)
Let ‖.‖p denote the p-norm in R2.

1. Show that ‖.‖1,‖.‖2,‖.‖∞ are equivalent norms.
2. Let Bp denote the closed unit ball in the norm p = 1,2,∞. Show that

B1 ( B2 ( B∞.

3. Plot the unit balls B1,B2,B∞ .
�

Exercise 2.2 (Spectral theorem for matrices) (level 1)
Prove the following theorem for a real matrix A:
(a) If µ is an eigenvalue of a real matrix A, then λ = eµ is an eigenvalue of eA.
(b) Reµ < 0 if and only if |λ |< 1. �

Exercise 2.3 (Example of convergence) (level 2)
Consider the family of functions { fn}n∈N that are piecewise defined as

fn(t) =


0 0≤ t ≤ 1

2 −
1
n ,

1
2 +

n
2

(
t− 1

2

) 1
2 −

1
n < t ≤ 1

2 +
1
n ,

1 1
2 +

1
n < t ≤ 1.

Plot fn(t) for general n, and show that this family { fn}n converges in L2([0,1]) but not
in L∞([0,1]). �

Exercise 2.4 (All those functions) (level 2)
1. Find a function f ∈C∞

c (R) with supp f ⊂ [a,b], where a < b ∈ R.
2. Let Ω⊂ Rn be bounded. Show that if f ∈ L2(Ω), then it follows that f ∈ L1(Ω).
3. If Ω is unbounded the above statement is not true. Show that ρ(x) = 1

1+x is
contained in L2([0,∞)) but not in L1([0,∞)).
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4. Show that ρ(x) = e−xx−
2
3 is contained in L1([0,∞)) but not in L2([0,∞)).

5. Find a value γ∗ ∈ [0,1] such that the function f (x) = x
3
2 is element of the Hölder

space C1,γ([0,1]) for γ ≤ γ∗ and f (x) is not contained in C1,γ([0,1]) for γ > γ∗.
�

Exercise 2.5 (Mollifier) (level 1)
1. The mollification of a function can be written in two ways. Show that

1
hn

∫
Rn

ρ

(
x− z

h

)
u(z)dz =

1
hn

∫
Rn

ρ

( z
h

)
u(x− z)dz.

2. Assume a Lipschitz continuous function u ∈ C0,1(Rn) is uniformly Lipschitz
continuous with constant K:

|u(x)−u(y)| ≤ K|x− y|.

Show that each mollification uh = ρh ∗u is uniformly Lipschitz continuous with
the same constant K.

�

Exercise 2.6 (Fourier Transform) (level 1)
The Fourier transform

f̂ (ω) =C
∫

∞

−∞

eiωx f (x)dx

is used by different authors with all kind of constants, like C = 1,C = (2π)−1,C =√
(2π)

−1
etc; very much confusing beginning students. The Fourier transform can be

seen as a map of L2(−∞,∞) into itself, where L2(−∞,∞) is a complex Hilbert space,
with inner product 〈 f ,g〉=

∫
f (x)ḡ(x)dx. For which constant C is the Fourier transform

an isometry? Justify your answer.
Hint: You might use the identity∫

∞

−∞

eiωxdω = 2πδ0(x).

�

Exercise 2.7 (Interpolation Inequality) (level 2)
Use Hölder’s inequality to show the interpolation inequality: Assume 1≤ p≤ q≤ r <∞

and consider λ ∈ (0,1) such that 1
q = λ

1
p +(1−λ )1

r . Show

‖u‖Lq ≤ ‖u‖λ
Lp‖u‖(1−λ )

Lr .

�
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3.1 Introduction
Operators, in particular linear operators, are the key focus of functional analysis. Oper-
ators connect function spaces with each other, describe properties of physical systems,
describe cost functions, and solve partial differential equations (PDEs). This text is mostly
concerned with linear operators on Banach spaces with one exception in the chapter on
Fixed-Point theorems (Chapter 6), where we also consider fixed points of non-linear
operators.

During this chapter1, and then continuing through the entire text, we will see four

1I am very grateful to Pablo Venegas Garcia for his help in writing this chapter.
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types of operators as standard examples: (i) a matrix A on Rn, which is used to relate the
abstract theory back to what we know from linear algebra; (ii) the Laplacian operator ∆, is
of central importance for the analysis of PDEs, and it is and unbounded linear operator
with its own challenges; (iii) an integral operator, which is compact. Compactness will, of
course, make many arguments much easier. Finally, (iv) the first derivative ∂

∂x arises as an
unbounded generator of the shift semigroup (see Chapter 9).

3.2 Linear Operators
Definition 3.2.1 Let (X ,‖ · ‖X) and (Y,‖ · ‖Y ) be two Banach spaces and A : X → Y
a map. A is linear if A(αx+βy) = αAx+βAy for each x,y ∈ X and α,β ∈ R. It is
bounded if ‖Ax‖Y ≤M‖x‖X for all x ∈ X and some M > 0. We denote the set of all
linear and bounded operators as

L (X ,Y ) := {A : X → Y,A is linear and bounded }.

This space can be equipped with the operator norm

‖A‖op := inf{M : ‖Ax‖Y ≤M‖x‖Y for all x ∈ X}

= sup
x 6=0

‖Ax‖Y
‖x‖X

= sup
‖x‖=1

‖Ax‖Y .

Proposition 3.2.1 L (X ,Y ) is a Banach space.

Proof. Let {An} be a Cauchy sequence in L (X ,Y ). Given ε > 0 there exists an N such
that

‖Am−An‖op ≤ ε for all m,n≥ N.

Now for fixed x ∈ X we have

‖Amx−Anx‖ ≤ ‖(Am−An)x‖ ≤ ‖Am−An‖op‖x‖ ≤ ε‖x‖.

Hence {Anx} is a Cauchy sequence in Y and since Y is complete, we have a limit

Anx→ y in Y.

As we do this for each x ∈ X we define a mapping A : X → Y : Ax = y. A is the candidate
for the limit of {An}. We see that A is linear and bounded. Indeed,

lim
n→∞

An(αx1 +βx2) = α lim
n→∞

Anx1 +β lim
n→∞

anx2 = αy1 +βy2

and

‖An−A‖op ≤ ε for all n > N.

Hence, An→ A ∈L (X ,Y ). �
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The next proposition records a central fact for linear operators.

Proposition 3.2.2 Let A : X → Y be linear, then

A is bounded ⇐⇒ A is continuous.

Proof. “⇒” If A is bounded, then for all xn,x ∈ X

‖A(xn− x)‖Y ≤ ‖A‖op‖xn− x‖X ,

hence A is continuous.
“⇐” Now let A be continuous and assume A is not bounded. Then for each n ∈ N there

exists yn ∈ X with

‖Ayn‖Y ≥ n2‖yn‖X .

Define xn := yn
n‖yn‖ . Then ‖xn‖X → 0 for n→ ∞. But ‖Axn‖ ≥ n→ ∞ so A is not

continuous, which is a contradiction.
�

Here we introduce two of our standard examples, an integral operator K, and the
Laplacian ∆:

� Example 3.1 Let Ω be a bounded domain. The integral operator K : L2(Ω)→ L2(Ω)
given by

Ku(x) =
∫

Ω

k(x,y)u(y)dy with
∫

Ω

∫
Ω

|k(x,y)|2dxdy = c < ∞

is bounded on L2(Ω) �

Proof. We consider the L2-norm of K and use the Cauchy Schwarz inequality:

‖Ku‖2
2 =

∫
Ω

∣∣∣∣∫
Ω

k(x,y)u(y)dy
∣∣∣∣2 dx

≤
∫

Ω

(∫
Ω

|k(x,y)|2dy
)(∫

Ω

|u(y)|2dy
)

dx

= c‖u‖2
2.

Hence ‖K‖op ≤
√

c. �

� Example 3.2 We consider the second derivative A :=− d2

dx2 on L2[0,1]. Since C2[0,1] is
dense on L2[0,1] we define A only on its domain

D(A) = { f ∈C2[0,1] : A f ∈ L2[0,1]}.

Then A : D(A)→ L2[0,1] is unbounded. �
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Proof. We apply A to a decaying exponential:

‖Ae−kx‖2 =

∥∥∥∥− d2

dx2 e−kx
∥∥∥∥

2
= k2‖e−kx‖2 = k

3
2

1− e−2k

2
,

which is certainly unbounded at k→ ∞. �

An important lesson learned from these two examples is that for an unbounded operator
the domain belongs to the operator. We write (A,D(A)). Here are some specific examples.

(
A =− d2

dx2 , D(A) from above
)
,

or
(

A =− d2

dx2 , D(A) =
{

f ∈C2[0,1],A f ∈ L2[0,1], f (0) = 0, f (1) = 0
})

,

or
(

A =− d2

dx2 , D(A) =
{

f ∈C2[0,1],A f ∈ L2(0,1),
∂ f
∂x

(0) = 0,
∂ f
∂x

(1) = 0
})

.

Although all three operators have the same A as negative second derivative, they need to
be considered as different operators simply because the domains are different.

The range of an operator A : D(A)→ Y is defined as

R(A) = {g ∈ Y : g = A f , f ∈ D(A)}

and the kernel or nullspace is

Ker(A) = { f ∈ D(A) : A f = 0}.

Proposition 3.2.3 A : D(A)→ R(A) is invertible if and only if Ker(A) = {0}.

Proof. For each y ∈ R(A) find a unique solution x ∈ X with Ax = y.

If Ker(A) 6= {0} then there exists a ϕ 6= 0, ϕ ∈ Ker(A) and Aϕ = 0. But also A(0) = 0,
which means A is not invertible.

Now assume Ker(A) = {0}. A is surjective by assumption. To show injectivity assume
Ax1 = y, Ax2 = y. Then A(x1− x2) = y− y = 0, which implies x1− x2 ∈ Ker(A), i.e.
x1 = x2. �
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3.3 The Baire Category Theroem
We borrow the Baire Category Theorem from topology to show the uniform boundedness
principle for linear operators.

Theorem 3.3.1 — The Baire Category Theorem. If Gi is a countable family of dense
open sets of a Banach space X , then,

G =
∞⋂

n=1

Gn

is dense in X.

Proof. We need to show that for any x ∈ X and any r > 0, Br(x)
⋂

G 6= /0, where Br(x)
denotes an open ball and Br(x) denotes the closed ball. Since all Gn are dense and open
we have a y ∈ Gn and a smaller radius s < r with

Br(x)∩Gn ⊇ B2s(y)⊇ Bs(y)

We form a sequence of nested sets:

x1 ∈ X , r1 <
1
2 : Br1(x1)⊆ G1∩Br(x)

x2 ∈ X , r2 <
1
22 : Br2(x2)⊆ G2∩Br1(x1)

...
xn ∈ X , rn <

1
2n : Brn(xn)⊆ Gn∩Brn−1(xn−1).

Then, as illustrated in Figure 3.1

Br1(x1)⊇ Br2(x2)⊇ ·· ·Brn(xn)⊇ ·· ·

and

∞⋂
n=1

Brn(xn) converges to a point {x0}.

Hence x0 ∈ Br1(x1)⊆ Br(x) and x0 ∈ Gn for all n.

⇒ x0 ∈ Br(x)∩G and Br(x)∩G 6= /0.

�

In other words, a countable collection of open dense sets has many common points.

� Example 3.3 An example for Baire’s category theorem. Consider X = R mod 2π , i.e.
the interval [0,2π) with its periodic extension. Then X is a Banach space. Now define the
family of dense sets as

Gn = [0,2π)\
{

1
n

}
.



38 Chapter 3. Linear Operators

Figure 3.1: Illustration of the nested balls in the proof of Baire’s Category Theorem.

Then ⋂
n

Gn = [0,2π)\
{

1,
1
2
,
1
3
, . . .

}
,

which is still dense in X . �

The original Baire’s Theorem was actually formulated for nowhere dense sets.

Corollary 3.3.2 — Original Baire Category Theorem. F is called nowhere dense in
X (of the first category) if F contains no nonempty open sets. Let Fj be a countable
sequences of nowhere dense sets. Then

∞⋃
j=1

Fj 6= X .

Proof. Define G j = X \F j, then G j is open and dense. Indeed consider x ∈ X . If x /∈ F j
then x ∈ G j. If x ∈ F j then there exists points in X that are arbitrary close. Hence G j is
dense in X . Then, by the Baire Category Theorem 3.3.1,

⋂
G j is dense in X and

G =
⋂

G j =
⋂

X \F j = X \
⋃

F j.

Hence
⋃

F j 6= X . �

After our excursion to topology, we come back to linear operators.
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Theorem 3.3.3 — The Uniform Boundedness Principle. Let X be a Banach-space
and Y a normed space. Consider S⊂L (X ,Y ) where

sup
T∈S
‖T x‖Y < ∞ for all x ∈ X .

Then

sup
T∈S
‖T‖op < ∞.

Proof. We define closed sets Fj = {x ∈ X : ‖T x‖Y ≤ j for all T ∈ S}. Then by the above
assumption, we have

⋃
j Fj = X . By Corollary 3.3.2 at least one of the Fj is not nowhere

dense, i.e., it has non empty interior. We call this set Fn with

Br(y)⊂ Fn.

This means that y+ x ∈ Fn with ‖x‖X ≤ r and

‖T x‖Y = ‖T (y+ x)+T (−y)‖ ≤ n+‖Ty‖Y ≤ R

for some R > 0. In particular for ‖x‖= r, we have

‖T x‖Y ≤
R
r
‖x‖X for all T ∈ S.

Since for arbitrary x ∈ X we can consider x̃ = r x
‖x‖ with ‖x̃‖= r, and have

‖T x‖= ‖x‖
r
‖T x̃‖ ≤ ‖x‖

r
R
r
‖x̃‖= R

r
‖x‖.

Hence we conclude that ‖T‖op ≤ R
r . �

3.4 Compact Operators
Definition 3.4.1 An operator K : X → Y between normed spaces is compact if for each
bounded U ⊂ X the set K(U) is compact in Y .

⇐⇒ K(U) is relative compact in Y.
⇐⇒ {un} ⊆ X bounded sequence ⇒{Kun}n∈N has a convergent subsequence in Y.

Proposition 3.4.1 A compact operator is bounded.

Proof. The set B1(0) ⊂ X is bounded, hence by compactness of the operator K the set
K(B1(0)) is compact and hence bounded in Y . This implies that

sup
‖x‖≤1

‖Kx‖X ≤M

for some M > 0. Then ‖K‖op ≤M and K is bounded. �

Next we find that the limit of compact operators is again a compact operator.
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Theorem 3.4.2 Let X be a normed space and Y a Banach space and consider a sequence
{Kn} of compact operators in L (X ,Y ). Assume Kn −→K for n→∞ in the ‖·‖op-norm.
Then K is also compact.

Proof. We want to show that for each bounded sequence {xn} ∈ X , the limit operator K
maps the bounded sequence into a pre-compact sequences. For this we use a diagonal
argument. Let {xn} ⊆ X be a bounded sequence. Then

{K1(xn)} has a convergent subsequence {K1(xn1 j)},
{K2(xn1 j)} has a convergent subsequence {K2(xn2 j)},

...
...

...
{Kl(xn(l−1) j)} has a convergent subsequence {Kl(xnl j)},

...
...

...

Consider the diagonal sequence y j = xn j j . Then

‖K(yi)−K(y j)‖Y ≤ ‖K(yi)−Kn(yi)‖+‖Kn(yi)−Kn(y j)‖+‖Kn(y j)−K(y j)‖

≤ ε

3
+

ε

3
+

ε

3

for n and i, j large enough. So {K(yn)} is a Cauchy sequence in Y and it converges, i.e., K
is compact. �

As a consequence:

Corollary 3.4.3 Let K (X ,Y ) denote the set of linear compact operators from a normed
space into a Banach space, then K (X ,Y ) is a Banach space.

� Example 3.4 Our standard example of the second derivative operator

A =− d2

dx2 : D(A)−→ L2(0,1)

is unbounded, hence not compact. �

Proposition 3.4.4 If a bounded operator A : X −→ Y has finite dimensional range, then A
is compact.

Proof. {Axn}is a bounded sequence in a finite dimensional vector space R(A). By Bolzano-
Weierstrass it has a convergent subsquence. �

� Example 3.5 Our second standard example

K f (x) :=
∫

Ω

k(x,y) f (y)dy K : L2(Ω)−→ L2(Ω),

with k ∈ L2(Ω×Ω) is compact. �
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Proof. We choose {φ j} as an orthonormal base (ONB) of L2(Ω). Then {φ jφi} is ONB of
L2(Ω×Ω). Write

k(x,y) =
∞

∑
i, j=1

ki jφi(x)φ j(y) with ‖k‖2
L2(Ω×Ω) =

∞

∑
i, j=1
| ki j |2 .

We consider finite truncations

kn(x,y) :=
n

∑
i, j=1

ki jφi(x)φ j(y),

with corresponding intergal operators

Knu :=
∫

Ω

kn(x,y)u(y)dy.

If u = ∑
∞
l=1 clφl(x), then

Knu =
∫

Ω

n,n,∞

∑
i, j,l=1

ki j cl φi(x)φ j(y)φl(y)dy

=
n

∑
i, j=1

ki j c j φi(x).

Hence Kn has finite dimensional range (rank= n), which means all operators Kn are
compact. These compact operators approximate K:

‖K−Kn‖2 ≤
∫

Ω

∫
Ω

| k(x,y)− kn(x,y) |2 dxdy =
∞

∑
i, j=n+1

| ki j |2 → 0

for n→ ∞. Hence Kn −→ K for n→ ∞ and hence K is compact as well. �

� Example 3.6 — Solution of Poisson’s equation. We consider the Poisson equation
with homogeneous Neumann boundary conditions on the interval [0,L].

−u′′ = f , u′(0) = u′(L) = 0,

where f (x) is a given function in L2(0,L). We see immediately that if u(x) is a solution,
then u(x)+ c is also a solution for any constant c. Hence, to obtain unique solutions, we
specify the total mass of the solution∫ L

0
u(x)dx = M.

The corresponding differential operator is

(A,D(A)) =
(
− d2

dx2 ;D(A) = {u ∈C2 : u′(0) = u′(L) = 0,
∫ L

0
u(x)dx = M}

)
.

Then the solution to the Poisson equation with mass M is written as

u = A−1 f ,
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Figure 3.2: Application of Fubini’s theorem.

and A−1 is compact.
To show this claim we explicitly solve the Poisson equation by integrating twice

−u′(y)+u′(0) =
∫ y

0
f (s)ds,

where u′(0) = 0. We integrate once more

−u(x)+u(0) =
∫ x

0

∫ y

0
f (s)ds dy.

We do not know u(0), and we compute it later from the mass condition. By Fubini (see
Figure 3.2) we have

u(x) = −
∫ x

0

∫ y

0
f (s)ds dy+u(0)

= −
∫ x

0

∫ x

s
f (s)dy ds+u(0)

= −
∫ x

0
(x− s) f (s)ds+u(0)

=
∫ x

0
(s− x) f (s)ds+u(0). (3.1)

Integrating this further, we get the total mass

M =
∫ L

0
u(x)dx =

∫ L

0

∫ x

0
(s− x) f (s)ds dx+u(0)L

=
∫ L

0

∫ L

s
(s− x) f (s)dx ds+u(0)L

=
∫ L

0

(
sL− L2

2
− s2 +

s2

2

)
f (s)ds+u(0)L

= −
∫ L

0

(L− s)2

2
f (s)ds+u(0)L.

Hence,

u(0) =
M
L
+

1
2L

∫ L

0
(L− s)2 f (s)ds.
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Then from (3.1) we write u(x) as an integral operator:

u(x) =
M
L
+
∫ x

0
(s− x) f (s)ds+

1
2L

∫ L

0
(L− s)2 f (s)ds

=
M
L
+
∫ L

0
k(x,s) f (s)ds,

with integral kernel

k(x,s) = χ[0,x](s)(s− x)+
(L− s)2

2L
.

This integral kernel satisfies k ∈ L2((0,L)× (0,L)), hence the integral operator is compact.
Then

A−1 : f 7→ M
L
+
∫ L

0
k(x,s) f (s)ds,

is compact. �

3.5 Symmetry and Positivity
Another important property for operators on Hilbert spaces is symmetry.

Definition 3.5.1 Let A : D(A)−→ H on a Hilbert space H. A is symmetric, if

(Ax,y) = (x,Ay) for all x,y ∈ D(A).

� Example 3.7 if k(x,y) = k(y,x), then K is symmetric on L2(Ω)

(K f ,g) =
∫ ∫

k(x,y) f (y)g(x)dydx

=
∫ ∫

f (y)k(y,x)g(x)dxdy

= ( f ,Kg).

�

� Example 3.8 Consider

A =− d2

dx2 , D(A) =
{

f ∈ L2[0,1], A f ∈ L2[0,1],
d f
dx

(0) = 0,
d f
dx

(1) = 0
}

Then

(Au,v) =
∫ 1

0
− d2

dx2 u(x)v(x)dx

= − d
dx

uv
∣∣∣1
0
+
∫ 1

0

d
dx

u
d
dx

vdx

= u
d
dx

v
∣∣∣1
0
−
∫ 1

0
u

d2

dx2 vdx

= (u,Av),

hence (A,D(A)) is symmetric. �
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Definition 3.5.2 An operator A on a Hilbert space is positive if there is a constant k > 0
such that

(Au,u)≥ k‖u‖2, u ∈ D(A)

In this case, all its eigenvalues are positive (see Spectral Theory in Chapter 8).

� Example 3.9 If k(x,y)≥ δ > 0, then K is positive on L2
+.

(Ku,u) =
∫ ∫

k(x,y)u(x)u(y)dxdy

≥ δ

∫ ∫
u(x)u(y)dxdy

≥ δ

∫ ∫
{y=x}

u(x)u(y)dydx

= δ‖u‖2
2.

�

� Example 3.10 A =− d2

dx2 , D(A) as above is positive.

(Au,u) =
∫ 1

0
− d2

dx2 u(x)u(x)dx

=
∫ 1

0

d
dx

u
d
dx

udx

=
∫ 1

0

∣∣∣ d
dx

u
∣∣∣2dx

(Poincaré Inequality) ≥
∫ 1

0
|u|2dx

= ‖u‖2.

�

3.6 Closed Operators
The fact that an unbounded operator is only defined once its domain of definition is given,
leads to some interesting relationship between operators. First of all there is the question
of what is the natural domain for a given operator. For example the second derivative:

� Example 3.11 We define A =− d2

dx2 on L2(0,1) with

D1(A) =
{

f ∈C2[0,1] + boundary conditions
}
.

Is this the best choice of D(A)? What about

D2(A) = { f has two weak derivatives + boundary conditions }
= H2

0 (0,1) ( see Sobolev spaces in chapter 5).

How are (A,D1(A)) and (A,D2(A)) related? The answer lies in the following definition. �
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Definition 3.6.1 An operator (Â,D(Â)) is an extension of (A,D(A)) if

D(Â)⊃ D(A) and Â
∣∣∣
D(A)

= A.

The closed extension arises by including limit points:

If xn︸︷︷︸
∈D(A)

→ x︸︷︷︸
∈X

and Axn︸︷︷︸
∈X

→ y︸︷︷︸
∈X

then we define y = Âx

and x ∈ D(Â).

Definition 3.6.2 A is closed if {xn} ∈ D(A) xn −→ x in X implies

x ∈ D(A) and Ax = y = lim
n→∞

Axn.

Proposition 3.6.1 If A is a symmetric operator on a Hilbert space with dense domain D(A),
then it has a unique closed extension (Â,D(Â)) which is also symmetric. The extension is
usually also called (A,D(A))

Proof. Consider xn −→ x with xn ∈ D(A) and Axn −→ y in Y . We define the extension as
follows

D(Â) := {x ∈ X : there exists a sequence {xn} ⊂ D(A) : xn −→ x} .

Define Â by y = Âx. Â is well-defined from the above limits. If there are two sequences
xn→ x and x∗n→ x with Axn→ y, Ax∗n→ y∗ then for each u ∈ D(A) we have

(y∗− y,u) = lim
n→∞

(Ax∗n−Axn,u)

= lim
n→∞

(x∗n− xn,Au)

= 0 for all u ∈ D(A).

Since D(A) is dense it follows that y∗ = y and the extension Â is well defined and x ∈D(Â)
and Â is closed. �

3.7 A Glance Ahead to Spectral Theory
In Chapter 8, we will discuss the spectral theory for linear operators in detail. Here we
present some of the main results on eigenvalues and spectral bounds. As we discussed
the two standard examples of the second derivative operator and the integral operator
as examples of unbounded versus compact operators, respectively, a discussion of their
spectra fits very naturally in this chapter. The proofs of the spectral results are given later
in Chapter 8.

The integral operator K is our example of a compact operator. It satisfies the Hilbert-
Schmidt theorem:
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Theorem 3.7.1 — Hilbert-Schmidt. Let A : H → H be a linear, symmetric, compact
operator on a Hilbert space H. Then

1. All eigenvalues of A are real and there is at most one accumulation point at 0.
2. The eigenvectors {w j} can be chosen to form an orthonormal basis and A has a

spectral representation

Au =
∞

∑
j=1

λ j(u,w j)w j.

The second derivative is an unbounded operator. Depending on the boundary conditions
we often are in a situation where the solution operator of a Poisson equation is compact
(see our previous example 3.6). Hence the next spectral theorem is a typical situation for a
Laplace operator problem.

Theorem 3.7.2 — Spectral Theorem. Let A : D(A)→ H,R(A) = H be symmetric,
linear, and unbounded, and let A−1 exists and be compact. Then

1. There exists an infinite set {λn} of real eigenvalues with

lim
n→∞
| λn |=+∞.

2. The eigenvectors {w j} can be chosen to form an orthonormal basis and

Au =
∞

∑
j=1

λ j(u,w j)w j.

� Example 3.12 An example for the Hilbert-Schmidt spectral theorem. Consider the
simple integral operator K : L2(0,L)→ L2(0,L) given by

K( f ) =
∫ 1

0
f (s)ds.

Then the eigenvalue problem for K reads∫ 1

0
f (s)ds = λ f (x), for all x ∈ [0,1],

which is only true for constant functions f (x) = c, and the eigenvalue is λ1 = 1. The
normalized eigenfunction is w1 = 1, and these are all the eigenfunctions. Writing out the
spectral representation of K, we have

K( f ) = λ1( f ,w1)w1 =
∫ 1

0
f (s)ds,

as it should be. �

3.7.1 Fractional Powers
The above spectral representations provide a natural way to define fractional operators
such as

√
−∆ for example. Fractional operators are feared by some and loved by others.

They are popular in the analysis of non-standard random walks such as Levy flights [21].
The analysis of fractional power operators is tricky, and the spectral representation below
gives us a powerful tool for their analysis.



3.8 Exercises 47

Definition 3.7.1 If a positive operator A on a Hilbert space has a representation as

Au =
∞

∑
j=1

λ j(u,w j)w j

then we define the fractional powers of A as

Aαu =
∞

∑
j=1

λ
α
j (u,w j)w j

for α ∈ R, α ≥ 0 with domain

D(Aα) = {u : ‖Aαu‖< ∞}=

{
u : u =

∞

∑
j=1

c jw j,
∞

∑
j=1
|c j|2λ

2α
j < ∞

}
.

It can be shown that D(Aα) is a Hilbert space with inner product.

(u,v)D(Aα ) := (Aαu,Aαv)

with the norm

‖u‖D(Aα ) = ‖Aαu‖.

� Example 3.13 Consider A =−∆. Then we define A
1
2 as operator on L2 with domain

D(A
1
2 ) =

{
u = ∑c jw j,

∞

∑
j=1
| c j | λ 2

j < ∞

}
and norm ‖u‖ 1

2
=

∞

∑
j=1
| c j | λ 2

j .

�

3.8 Exercises
Exercise 3.1 (Closed nullspace) (level 1)
Let X be a Banach space and A : X→ X a bounded linear map. Show that the null-space
ker(A) is closed.

�

Exercise 3.2 (Closed range) (level 1)
Let X be a Banach space and A : X→ X a bounded linear map. Assume there is a K > 0
such that

‖x‖ ≤ K‖Ax‖, for all x ∈ X .

Show that the range of A is closed. �
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Exercise 3.3 (Spectral representation) (level 2)
Let A be a symmetric linear operator on a Hilbert space H with R(A) = H and with
compact inverse A−1. The natural domain of definition is

D(A) = {u ∈ H;Au ∈ H}.

Show that there exists an orthonormal basis {w j} of H such that

D(A) =
{

u;u = ∑c jw j, ∑ |c j|2λ
2
j < ∞

}
.

�

Exercise 3.4 (Normal Integral Operators) (level 2)
For k ∈ L2(Ω×Ω) consider the integral operator

u 7→ Ku(x) :=
∫

Ω

k(x,y)u(y)dy.

1. Find a condition on the kernel k such that the integral operator K is normal.
2. Find an example of a normal integral operator that is not symmetric. Make sure

to chose k and Ω so that k ∈ L2(Ω×Ω).
�

Exercise 3.5 (Root of Laplacian) (level 1)
For A =−∆ show that on a bounded domain the norm on D(A

1
2 ) is equivalent to the

norm on H1
0 . (Hint: If A is symmetric, (Au,v) = (u,Av), then also A

1
2 ). �
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A key tool in functional analysis is the concept of a dual space. Instead of looking at
elements of a Banach space directly, we look at all linear maps from the Banach space to
the real numbers. Imagine that the elements of a Banach space represent something real,
for example cars. The dual space would then contain all measurements that we can make
on a car, i.e. size, make, horsepower, color, engine etc. This example is a bit flawed, since
most of these measurements would not be linear maps, for example, what is 2*blue + 3*red,
but you get my idea. We plan to associate an object (car) with all its properties (color,
horsepower, make, ...). Once we know all its specifications, we can uniquely identify the
car. This is, in essence, the Hahn-Banach theorem.

4.1 Dual Spaces
Definition 4.1.1 Let X be a Banach space. The dual space X∗ is the space of all linear
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all chains in P 
have a maximal 
element

Figure 4.1: Illustration of Zorn’s Lemma.

functionals from X → R. This space has the operator norm and it is a Banach space

(X∗,‖.‖∗), ‖A‖∗ = ‖A‖op.

4.1.1 Zorn’s Lemma
In any advanced theory comes the moment, where a new concept needs to be based on very
deep classical results from set theory or topology. This moment is here as we prepare for
the famous Hahn-Banach Theorem of dual spaces. We will use Zorn’s Lemma on partially
ordered sets.

Let P be a set with a partial order ≤. A partial order satisfies
• a≤ a for all a ∈ P,
• a≤ b and b≤ c implies a≤ c,
• if a≤ b and b≤ a then a = b.

A set C ⊂ P is a chain if any two objects can be compared. An upper bound M satisfies
a≤M for all a ∈ P and a maximal element m ∈ P satisfies that m≤ a implies a = m.

Proposition 4.1.1 — Zorn’s Lemma. Let P be a partially ordered set such that all chains
in P have an upper bound. Then P has a maximal element.

To illustrate Zorn’s lemma we consider a domain P as indicated in Figure 4.1, where
each chain has a maximal element.

Theorem 4.1.2 — Hahn-Banach. Let X be a Banach space and M ⊂ X a linear sub-
space. Consider f ∈L (M,R) with | f (x)| ≤ k‖x‖ for all x ∈M. Then there exists an
extension F of f on X and

F ∈L (X ,R), |F(x)| ≤ k‖x‖, for all x ∈ X .

Proof. We define a set

E := {(g,G) : g is an extension of f on G and |g(x)| ≤ k‖x‖, for all x ∈G,M ⊂G}.

We have that E 6= /0 since ( f ,M) ∈ E. The set E can be partially ordered as (h,H)≤ (g,G),
if g is an extension of h with H ⊂ G and g

∣∣∣
H
= h.

We take a chain C = (gi,Gi) in E and find an upper bound (u,U) with

u(x) = gi(x), for x ∈ Gi\Gi−1, and U = ∪iGi.
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Hence by Zorn’s Lemma there exists a maximal element (F,W ) ∈ E.
Now we need to show that W = X . Assume not, then there exists a non-trivial element

z ∈ X\W , which we use to define another extension. We define Z :=W + span(z) and each
x ∈ Z can be written as x = w+αz with w ∈W , and α ∈ R. We define an extension of F
as

g(w+αz) = F(w)+αc,

for an appropriately chosen constant c > 0. We need to specify c such that |g(x)| ≤ k‖x‖
in Z. This means

|F(w)+αc| ≤ k‖w+αz‖, for all w ∈W,α ∈ R.

If F(w)+αc > 0 then F(w)+αc≤ k‖w+αz‖ and

αc≤ k‖w+αz‖−F(w), for all w ∈W. (4.1)

In the other case, when F(w)+αc < 0, then −F(w)−αc ≤ k‖w+αz‖ which leads to
F(−w)−αc≤ k‖−w−αz‖. As this needs to hold for all w∈W , we simply name v =−w
and write the above as condition for v: If −F(v)+αc≤ 0 then

−αc≤ k‖v−αz‖−F(v), for all v ∈W. (4.2)

If α < 0 then (4.2) becomes (4.1) with α replaced by −α , and vice versa. Hence we only
need (4.1) and (4.2) for α > 0. Then the condition becomes

− k
α1
‖v−α1z‖+ F(v)

α1
≤ c≤ k

α2
‖w+α2z‖− F(w)

α2
for all v,w ∈W,α1,α2 > 0.

The left hand side must be less than the right hand side, which we write as

α2F(v)+α1F(w) ≤ α1k‖w+α2z‖+α2k‖v−α1z‖
F(α2v+α1w) ≤ k (‖α2v−α1α2z‖+‖α1w+α1α2z‖) .

This last inequality is true, since

|F(α2v+α1w)≤ k‖α2v+α1w‖ ≤ k (‖α2v−α1α2z‖+‖α1w+α1α2z‖) .

We can indeed further extend (F,W ), which contradicts (F,W ) being the maximal element.
Consequently, W = X and we are done. �

R Note that M could be one-dimensional and we can still extend it to all of X .

The following corollary is often called The Hahn-Banach Theorem:

Corollary 4.1.3 — Hahn-Banach version II. Let x,y ∈ X . If f (x) = f (y) for all
f ∈ X∗ then x = y.

Proof. Assume f (x) = f (y) for all f ∈ X∗, but x 6= y. Then on span(x,y) we define a
functional φ(αx+βy) = α|x|. Note, φ is a linear map and φ(x) = |x| 6= φ(y) = 0. By the
Hahn-Banach Theorem (Theorem 4.1.2) we can extend φ to a linear form f ∈ X∗ giving
f (x) 6= f (y), contradicting the assumption. Hence x = y. �
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� Example 4.1 — Car example. Let us come back to the illustrative example of car
characterizations. We view the set of all cars to be the original space, and the set of all
car characteristics (horse power, color, make, size, engine size, fuel consumption etc., ) as
elements of the dual space. Now, Hahn-Banach in this context says that if you have two
cars x and y and you find that ALL characteristics are the same, i.e. same horse power,
same color, same age, same key, same mileage, etc. Then x and y must be the same car. �

The following version of the Hahn-Banach theorem is also very useful.

Corollary 4.1.4 — Hahn-Banach version III. For each x ∈ X there exists an f ∈ X∗

with

f (x) = |x| and ‖ f‖op = 1.

Proof. We define f (x) = |x| on span(x) and extend it to X∗. �

� Example 4.2 On Rn we have (Rn)∗ = Rn. Given a vector x ∈ Rn we find the dual
element fx ∈ Rn by fx(y) = x · y. This means to the row-vector x we assign the column
vector fx = xT . Then, naturally, ‖ fx‖op = ‖xT‖= ‖x‖. �

� Example 4.3 For a bounded smooth set Ω and for 1 < p < ∞ we use Hahn-Banach to
show that (Lp(Ω))∗ = Lq(Ω), where p and q are conjugate. For f ∈ Lq(Ω) we define a
linear functional through integration

L f (g) =
∫

Ω

f (x)g(x)dx.

By Hölders inequality we have

|L f (g)| ≤ ‖ f‖q‖g‖p.

This shows that L f ∈ (Lp(Ω))∗ and that ‖L f ‖op ≤ ‖ f‖q. But we can get more. We
can show that we have an isometry between Lq and (Lp)∗. To show this we choose
g(x) = | f (x)|q−2 f (x). Then

‖g‖p
p =

∫
Ω

∣∣| f (x)q−2 f (x)
∣∣p dx =

∫
Ω

| f (x)|qdx = ‖ f‖q
q.

Hence ‖g‖p = ‖ f‖
q
p
q . Now

|L f (g)|=
∫

Ω

f (x)| f (x)|q−2 f (x)dx =
∫

Ω

| f (x)|qdx = ‖ f‖q
q = ‖ f‖q‖ f‖

q
p
q = ‖ f‖q‖g‖p.

Hence

‖L f ‖(Lp)∗ = ‖L f ‖op = ‖ f‖q,

and the map Lq(Ω)→ (Lp(Ω))∗ is an isometry.
What is missing is to show that each element in (Lp)∗ can be written as an integral

operator. This is done via measure theory, and not covered in this book, but can be found
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in [11]. However, in case of p = 2 we can prove this result using the Riesz Representation
Theorem 4.2.1. In any case, we have

(Lp(Ω))∗ ' Lq(Ω)

and we simply write

(Lp(Ω))∗ = Lq(Ω).

�

� Example 4.4 L∞ is the dual of L1 but not vice versa. For f ∈ L∞(Ω) we again define an
integral operator as

L f (g) =
∫

Ω

f (x)g(x)dx,

with

|L f (g)| ≤ ‖ f‖∞‖g‖1.

Similar as before we show that

‖L f ‖(L1)∗ = ‖L f ‖op = ‖ f‖∞

and we get an isometry

(L1(Ω))∗ = L∞(Ω).

However, as we will not explicitly show here, we only have

L1(Ω)$ (L∞)∗.

The dual space M(Ω) = (L∞(Ω))∗ is a measure space equipped with the total variation
norm [11]). �

4.2 Dual of Hilbert Spaces
In a Hilbert space the dual can be identified with the original space. This is the key result
of the Riesz Representation Theorem.

Theorem 4.2.1 — Riesz Representation Theorem. Let H be a Hilbert space then

H∗ ' H.

1. Each x ∈H has an associated dual element lx ∈H∗ defined by lx(y) = (x,y). Then
‖lx‖∗ = ‖x‖.

2. For every l ∈ H∗ there exists a unique xl ∈ H such that l(y) = (x,y) for all y ∈ H
and ‖l‖∗ = ‖xl‖. The map l 7→ xl is continuous.
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Figure 4.2: Orthogonal decomposition on K.

Proof. 1. By definition lx is a linear functional on H and from the Cauchy Schwartz
inequality we find

|lx(y)|= |(x,y)| ≤ ‖x‖‖y‖.

Hence ‖lx‖op ≤ ‖x‖. If we chose y = x then we get lx(x) = ‖x‖2, and ‖lx‖op = ‖x‖.
2. Suppose l ∈H∗ is given. The linear space K := ker(l) is a closed subspace of H and

we claim that K⊥ is one dimensional. Indeed, if we have two elements u,v ∈ K⊥,
then the linear combination is also in K⊥: l(v)u− l(u)v ∈ K⊥. However,

l(l(u)v− l(v)u) = l(v)l(u)− l(u)l(v) = 0.

Hence l(v)u− l(u)v ∈ K. This means l(v)u− l(u)v = 0 and u and v are linear
dependent.
Now we chose a unit vector z ∈ K⊥, and decompose H = K⊕K⊥ as (see Figure 4.2)

y ∈ H, y = (z,y)z+w, w ∈ K.

Then l(y) = (z,y)l(z). So we define xl := l(z)z, which gives

(xl,y) = (l(z)z,y) = l(z)(z,y) = l(y).

�

4.3 Reflexive Spaces
Let us consider some examples first.

� Example 4.5 Let H be a Hilbert space with inner product (·, ·). For x,y∈H we interpret
the inner product in two ways: Firstly

( x︸︷︷︸
acts on y

,y) x ∈ H∗,y ∈ H

and secondly

( x︸︷︷︸
∈H∗

, y︸︷︷︸
acts on x

), x ∈ H∗,y ∈ (H∗)∗.

Hence in a natural way we identify the bi-dual H∗∗ with the original space H. �
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� Example 4.6 For 1 < p < ∞ we consider the duality of Lp and Lq, where p and q are
conjugate. Let f ∈ Lp(Ω) and g ∈ Lq(Ω).∫

Ω

f (x)︸︷︷︸
∈Lp

g(x)︸︷︷︸
∈(Lp)∗

dx or
∫

Ω

f (x)︸︷︷︸
∈(Lp)∗∗

g(x)︸︷︷︸
∈(Lp)∗

dx.

�

Definition 4.3.1 A Banach space X is reflexive if

X∗∗ ' X .

� Example 4.7 Some well known examples of reflexive spaces:
• Rn is reflexive.
• Hilbert spaces are reflexive.
• Lp(Ω) is reflexive for 1 < p < ∞ and Ω bounded and smooth.
• L1 and L∞ are not reflexive.

�

4.4 Weak Convergence
In a Banach space, in particular in spaces of infinite dimension, we find a large variety of
notions of convergence. The default notion of convergence would be using the norm in a
Banach space, i.e. a sequence {xn} ⊂ X converges strongly to x ∈ X , if and only if

‖xn− x‖→ 0, as n→ ∞.

A weaker form of convergence is the following definition, which uses the dual space as the
judge of convergence.

Definition 4.4.1 — Weak convergence. Let X be a Banach space. A sequence
{xn} ⊂ X converges weakly to x, which we denote as

xn ⇀ x,

if f (xn)→ f (x) for all f ∈ X∗ as n→ ∞.

We see immediately that weak convergence is weaker than strong convergence in the next
Lemma:

Proposition 4.4.1 Strong convergence xn→ x implies weak convergence xn ⇀ x.

Proof. Each f ∈ X∗ is continuous by definition, hence as xn→ x we automatically have
f (xn)→ f (x), which implies weak convergence. �

On the other hand, a weak convergent sequence does not necessarily have to be strongly
convergent as the following example shows.

� Example 4.8 — weak does not imply strong. Let H be a separable Hilbert space
with countable orthonormal basis {ei}. We will show that ei ⇀ 0 as i→ ∞. We test with
elements from H∗. By the Riesz Representation Theorem 4.2.1 each f ∈ H∗ has a unique
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representation x f ∈ H such that f (x) = (x f ,x) for all x ∈ H and ‖ f‖= ‖x f ‖. In particular
f (ei) = (x f ,ei). The norm of x f can be expressed as

‖ f‖2 = ‖x f ‖2 =
∞

∑
i=1
|(x f ,ei)|2,

which is a convergent series. Hence |(x f ,ei)|→ 0 for i→∞ and we have weak convergence
to 0.

On the other hand ‖ei−0‖= ‖ei‖= 1 for all i, hence ei does not converge strongly to
0. �

Proposition 4.4.2 Weak convergent sequences are bounded and weak limits are unique.

Proof. Assume xn ⇀ x and xn ⇀ y. Then f (x) = f (y) for all f ∈ H∗ and by the Hahn-
Banach Theorem 4.1.3 we find x = y, i.e. uniqueness.

To show boundedness we consider a test function f ∈ X∗. Then { f (xn)} is a convergent
sequence in R, hence it is bounded | f (xn)| ≤ C f for all n. Now we associate xn with
an element Gn ∈ X∗∗ as Gn( f ) = f (xn) for all f ∈ X∗. Then |Gn( f )| ≤ C f for all n.
By the Uniform Boundedness Principle 3.3.3 it follows that ‖Gn‖∗∗ is bounded. But
‖Gn‖∗∗ = ‖xn‖ by definition, hence {xn} is bounded. �

Theorem 4.4.3 — weak + compact implies strong . Suppose A : X → Y is compact
and xn ⇀ x. Then Axn→ Ax in Y .

Proof. For each of f ∈ X∗ we have f (xn)→ f (x). Now consider g ∈ Y ∗. Then gA ∈ X∗

and

g(Axn) = (gA)(xn)→ (gA)(x) = g(Ax), for n→ ∞,

hence we have already weak convergence Axn ⇀ Ax. Now {xn} is bounded and A is
compact. Hence {Axn} has a convergent subsequence which converges strongly in Y . But
such a strong convergent sequence is also weakly convergent, and weak limits are unique.
Hence we must have that Axn→ Ax in Y . �

4.5 Weak∗ Convergence
Weak∗ convergence is often perceived of something very strange. I hope to convince you
that this is not true. It is a close cousin to weak convergence with the only difference that
test functions are not chosen from the dual but from the pre-dual. Let us look at this in
detail.

Definition 4.5.1 Let X be a Banach space. A sequence { fn} ⊂ X∗ is weak∗ convergent,
denoted by

fn
∗
⇀ f ,

if fn(x)→ f (x) for all x ∈ X .
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Proposition 4.5.1 Weak∗ convergent sequences are bounded and weak∗ limits are unique.

Proof. The proof is essentially the same as the proof of Proposition 4.4.2 �

Compared to weak convergence in Definition 4.4.1, it seems we simply switched the
roles of x and f . That’s a good way to see it. In applications, you need to understand if
you are currently working in the function space X or in its dual space X∗. In X , you would
use weak convergence and in X∗ you would by default, use weak∗ convergence.

However, as X∗ is again a Banach space, we can use test functions in X∗∗ and still talk
about weak convergence in X∗. If the Banach space is reflexive X∗∗ = X , then chosing test
functions in X or in X∗∗ is the same, hence then weak convergence = weak∗ convergence.

Weak∗ convergence has one special gem, which does not hold in general for weak
convergence, and that is a compactness result.

Theorem 4.5.2 — Alaoglu weak∗-compactness. Let X be a separable Banach space
and { fn} ⊂ X∗ a bounded sequence in the dual space. Then { fn} has a weak∗ convergent
subsequence.

Proof. The proof uses a very classical diagonal sequence argument. Let {xk} ⊂ X denote
a countable dense subset of X . For the first element x1 we consider the sequence { fn(x1)}.

• { fn(x1)} is a bounded sequence in R and it has a convergent subsequence { fn1 j(x1)} j.

We take this subsequence and evaluate it at x2 and so forth.

• { fn1 j(x2)} is a bounded sequence in R and it has a convergent subsequence { fn2 j(x2)} j.

• ...
• { fnk j(xk+1)} is a bounded sequence in R and it has a convergent subsequence
{ fn(k+1) j(xk+1)} j.

We obtain nested sequences

{ fn} ⊇ { fn1 j}︸ ︷︷ ︸
convergent at x1

⊇ { fn2 j}

︸ ︷︷ ︸
convergent at x1,x2

⊇ ·· · ⊇ { fnk j}

︸ ︷︷ ︸
convergent at x1,...,xk

⊇ ·· ·

Hence we define a diagonal sequence g j := fn j j such that {g j(xk)} converges for each
xk. In ε−δ notation this means that for each ε > 0 we can find an index J > 0 such that

|g j(xn)−gl(xn)|< ε, for all j, l > J.

Now for x ∈ X we can always find an xk ∈ X with ‖x− xk‖< ε . By assumption all g j are
bounded and continuous, hence

|g j(xk)−g j(x)| ≤ ‖g j‖op‖xk− x‖ ≤Mε,
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where M denotes the bound on the fn. Taking all these estimates together we find

|g j(x)−gl(x)| ≤ |g j(x)−g j(xk)|+ |g j(xk)−gl(xk)|+ |gl(xk)−gl(x)|
≤ Mε + ε +Mε = (2M+1)ε.

Then {g j(x)} j is a Cauchy sequence in R for each x ∈ X . Hence, by definition, {g j} is
weak∗ convergent g j

∗
⇀ g. It is now easy to show that the limit g is linear and bounded,

hence g ∈ X∗.
�

A direct consequence is the reflexive-weak compactness result.

Corollary 4.5.3 Let X be a reflexive Banach space and {xn} ⊂ X a bounded sequence.
Then {xn} has a weak convergent subsequence.

Proof. We know that (X∗)∗ = X , hence by Alaoglu a bounded sequence in X is a bounded
sequence in the dual of the dual (X∗)∗, and has a weak∗ convergent subsequence with test
functions in X∗. But this is weak convergence in X . �

� Example 4.9 Let { fk} ⊂ Lp(Ω) be bounded for a smooth bounded domain Ω and
1 < p < ∞. Then

(Lp(Ω))∗ = Lq(Ω),
1
p
+

1
q
= 1, (Lp(Ω))∗∗ = Lp(Ω).

Hence { fk} has a weak convergent subsequence { fnk}. This means there exists an f ∈
Lp(Ω) such that∫

Ω

g fnkdx→
∫

Ω

g f dx as k→ ∞, for all g ∈ Lq(Ω).

�

� Example 4.10 The spaces L1 and L∞ are not reflexive, hence there is a real difference
between weak and weak∗ convergence. If we consider a bounded sequence { fn} ⊂ L∞(Ω),
then we understand L∞(Ω) = (L1(Ω))∗ as dual space of L1. Hence { fn} is a bounded
sequence in (L1(Ω))∗ and from Alaoglu’s Theorem 4.5.2 we get a weak∗ convergent
subsequence { fnk} such that∫

Ω

fnkgdx→
∫

Ω

f gdx for all g ∈ L1(Ω).

�
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4.6 Exercises
Exercise 4.1 (Orthogonal Complements) (level 2)
Let M be a subspace of a Hilbert space. Show that (M⊥)⊥ = M if and only if M is
closed.

�

Exercise 4.2 (Projections) (level 2)
Let H be a Hilbert space with orthonormal basis (ONB) {ψi}i≥1. For each n≥ 1 define
the projection operator Pn as

Pnu =
n

∑
i=1

(ψi,u)ψi.

1. Show that Pn is a projection, i.e. P2
n = Pn.

2. Show that Pn is self-adjoint.
3. The orthogonal complement of Pn is Qn = I−Pn. Show that for each u:

lim
n→∞
‖Qnu‖= 0.

�

Exercise 4.3 (Dense Subspaces) (level 3)
Let V be a linear subspace of a Banach space X . Show that V is not dense in X if and
only if there exists l ∈ X∗, l 6= 0 such that l(x) = 0 for all x ∈V . �

Exercise 4.4 (weak convergence) (level 1)
Let T ∈L (X ,Y ) and X ,Y are Banach spaces. Let xn be a weak convergent sequence in
X . Show that T xn converges weakly in Y . �

Exercise 4.5 (strong convergence) (level 1)
Let H be a Hilbert space. Let xn converge weakly to x and assume in addition that the
norms converge as well: ‖xn‖→ ‖x‖. Show that xn→ x strongly in H.

�
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5.1 Distributional and Weak Derivatives
First we define distributions and the distributional derivative. We consider Ω ⊂ R and
define the set of test functions as

D(Ω) :=C∞
c (Ω).

Note that D(Ω) is not a Banach space, since it is not closed with respect to the sup-norm.

Definition 5.1.1 1. A distribution (generalized function) f ∈D ′(Ω) is continuous
in the following sense: If φn→ φ in D(Ω), then f (φn)→ f (φ) in R. We often
write the linear map induced by f as

( f ,φ) = f (φ).

2. Given f ∈D ′(Ω). The distributional derivative of f is defined as a distribution
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v ∈D ′(Ω) that satisfies

(v,φ) =−
(

f ,
dφ

dx

)
, for all φ ∈D(Ω).

We can relax the assumption of compact support on the test functions by making it a bit
bigger. Then we can introduce a norm and define the Schwartz space of functions that
decay quickly enough as |x| → ∞:

S (R)=
{

φ ∈C∞(R) :
∥∥∥∥|x|k( d

dx

)α

φ

∥∥∥∥
∞

< ∞, for all k ≥ 0,α ≥ 0 multiindex.
}
.

Elements of the dual space S (Ω) are then called tempered distributions. Note that

D(Ω)⊂S (Ω), hence S ′(Ω)⊂D ′(Ω),

each tempered distribution is automatically a distribution. We call the distributional
derivative a weak derivative, if it is integrable:

Definition 5.1.2 Consider f ∈ L1
loc(Ω). If the distributional derivative of f satisfies

f ′ ∈ L1
loc(Ω), then we call it the weak derivative of f .

We then use integration to express the linear map of the derivative as∫
Ω

vφdx =−
∫

Ω

f
dφ

dx
dx for all φ ∈D(Ω).

We write

v = f ′ =
d f
dx

= D f .

If u is differentiable and φ has compact support, then from integration by parts we have∫
Ω

du
dx

φdx =−
∫

Ω

u
dφ

dx
dx,

hence weak and classical derivative coincide for differentiable functions.
If α is a multiindex, then the weak derivative can be generalized as∫

Ω

Dαu φdx = (−1)|α|
∫

Ω

uDα
φdx, for all φ ∈D(Ω).

� Example 5.1 Consider the function on the left of Figure 5.1

u(x) =
{

x2, 0≤ x < 1
1, 1 < x≤ 2

.

Then, using the definition of the weak derivative, we find for each test function φ ∈D([0,2])
that ∫ 2

0

du
dx

φdx = −
∫ 2

0
uφ
′dx =−

∫ 1

0
x2

φ
′dx−

∫ 2

1
φ
′dx

= −x2
φ |10 +

∫ 1

0
2xφdx−φ(2)+φ(1)

= −φ(1)+
∫ 1

0
2xφdx+φ(1)

=
∫ 1

0
2xφdx+

∫ 2

1
0 ·φdx.
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Figure 5.1: Graphs for the examples 5.1 and 5.2.

Hence the distributional derivative is

u′(x) =
{

2x, 0≤ x < 1
0, 1 < x≤ 2 .

This is clearly integrable on [0,2], hence it is also the weak derivative of u. �

� Example 5.2 Consider a slightly modified example as shown on the right of Figure 5.1

u(x) =
{

x2, 0≤ x < 1
2, 1 < x≤ 2

Then, for each test function φ ∈D([0,2]) we have∫ 2

0

du
dx

φdx = −
∫ 2

0
uφ
′dx =−

∫ 1

0
x2

φ
′dx−

∫ 2

1
2φ
′dx

= −x2
φ |10 +

∫ 1

0
2xφdx−2φ(2)+2φ(1)

= −φ(1)+
∫ 1

0
2xφdx+2φ(1)

=
∫ 1

0
2xφdx+

∫ 2

1
0 ·φdx+φ(1).

Here the question arises how to write the evaluation φ(1) as a linear map φ 7→ φ(1). The
Dirac delta distribution is the answer. We define δ ∈D ′(Ω) by its action

(δx,φ) = φ(x), for all φ ∈D(Ω).

Then the distributional derivative is

u′(x) = δ1(x)+
{

2x, 0≤ x < 1
0, 1 < x≤ 2 .

This is not integrable on [0,2], since δ1 it is not a measurable function, it is a distribution.
Hence we find a distributional derivative which is not a weak derivative of u. �
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5.2 Sobolev Spaces
Definition 5.2.1 Let k ∈ N and 1≤ p≤ ∞. A Sobolev space W k,p(Ω) is defined as

W k,p(Ω) := {u ∈ L1
loc(Ω) : Dαu ∈ Lp(Ω), 0≤ |α| ≤ k},

with norm

‖u‖k,p =

(
∑

0≤|α|≤k
‖Dαu‖p

p

) 1
p

.

For p = 2 we define Hilbert spaces Hk(Ω) =W k,2(Ω) with inner product

(u,v)Hk = ∑
0≤|α|≤k

(Dαu,Dαv)

and norm

‖u‖Hk =

(
∑

0≤|α|≤k
‖Dαu‖2

2

) 1
2

.

Theorem 5.2.1 W k,p(Ω) is a separable Banach space.

Proof. Let {un} be a Cauchy sequence in W k,p(Ω). Then {un} and {Dαun} for all 0 ≤
|α| ≤ k are Cauchy sequences in the Banach space Lp(Ω). Hence they converge in Lp:

un→ u, Dαun→ uα as n→ ∞.

We take a test function φ ∈C∞
c (Ω) and evaluate the weak dervative∫

Ω

Dαuφdx = (−1)|α|
∫

Ω

uDα
φdx

= (−1)|α| lim
n→∞

∫
Ω

unDα
φdx

= lim
n→∞

∫
Ω

Dαun φdx

=
∫

Ω

uαφdx.

Hence Dαu = uα almost everywhere in Ω. Since in Lp(Ω) functions are only unique
almost everywhere, these two functions are identical in Lp(Ω): Dαu = uα . This implies
u ∈W k,p(Ω).

To prove separability, we consider the map

u 7→ {uα}|α|≤k.

This map is an isometry that maps W k,p(Ω) to the product space Π|α|≤kLp(Ω), which is a
finite product of separable Banach spaces. Hence it is again separable. �
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Another useful space is a Sobolev space for functions that are zero at the boundary.

Definition 5.2.2

Hk
0(Ω) =C∞

c (Ω)
Hk

= {u ∈ Hk(Ω) : u|∂Ω = 0}.

For convenience we will often ignore the argument (Ω) on the Sobolev spaces when the
domain Ω is clear. For example

W k,p =W k,p(Ω), H1
0 = H1

0 (Ω).

Theorem 5.2.2 — Poincaré Inequality. Let Ω be bounded in at least one direction.
Without loss of generality this is the x1-direction and |x1| ≤ d < ∞. Then there is a
constant C > 0 such that for u ∈ H1

0 we have

‖u‖2 ≤C‖∇u‖(L2)n,

Where the index (L2)n indicates that each component of the gradient ∇u is an element
of L2(Ω).

Proof. We consider u ∈C∞
c (Ω). Then

‖u‖2
2 =

∫
Ω

|u(x)|2dx =−
∫

Ω

x1
∂

∂x1
|u(x)|2dx

= −
∫

Ω

2x1u(x)
∂

∂x1
u(x)dx

≤ 2d‖u‖2

∥∥∥∥ ∂

∂x1
u
∥∥∥∥

2
.

Hence

‖u‖2 ≤ 2d
∥∥∥∥ ∂

∂x1
u
∥∥∥∥

2
≤ 2d‖∇u‖(L2)n.

Since Hk
0 is the closure of C∞

c in the Hk norm, the same estimates apply to u ∈ Hk
0 . �

Using the Poincare inequality, we write for a function u ∈ H1
0 (Ω)

‖Du‖2
2 ≤ ‖u‖2

H1 = ‖u‖2
2 +‖Du‖2

2 ≤ (1+C)‖Du‖2
2.

Hence ‖Du‖2 and ‖u‖H1
0

are equivalent norms on H1
0 . We define

‖u‖H1
0

:= ‖Du‖2,

‖u‖2
Hk

0
:= ∑

|α|=k
‖Dαu‖2

2,

(u,v)Hk
0

:= ∑
|α|=k

(Dαu,Dαv).
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Definition 5.2.3 The dual space of Hk
0 is defined as the (Hilbert-) dual space

H−k :=
(

Hk
0(Ω)

)∗
.

We find that functions in H−k are k-times weak derivatives of L2 functions.

Lemma 5.2.1 Let f ∈ H−k. Then there are functions gα ∈ L2 such that

f = ∑
|α|=k

Dαgα .

Proof. Since H−k is the dual of a Hilbert space, it is also a Hilbert space. Then by the
Riesz Representation Theorem 4.2.1 there is a representative u f ∈ Hk

0 such that the action
of f can be written as

f (v) = (u f ,v)Hk
0

for all v ∈ Hk
0 .

In particular for φ ∈C∞
c we have

f (φ) = (u f ,φ)Hk
0
= ∑
|α|=k

(Dαu f ,Dα
φ) = ∑

|α|=k
(−1)|α|(D2αu f ,φ).

Hence we have the representation of f as

f = ∑
|α|=k

(−1)|α|D2αu f = ∑
|α|=k

Dα

(
(−1)|α|Dαu f

)
,

where

gα = (−1)|α|Dαu f ∈ L2.

�

Lemma 5.2.1 implies that for u∈Hk(Ω) we have Dαu∈Hk−|α|. Using the dual spaces,
we extend our rainbow of function spaces as shown in Figure 5.2

5.3 Embeddings
Definition 5.3.1 An embedding for X into Y is a structure preserving injective map Ψ.
In case of Banach spaces, the structure that is preserved is the norm in the sense that
‖Ψ(u)‖Y ≤ ‖u‖X . We write an embedding as

X ↪→ Y.

A compact embedding

X ↪↪→ Y

maps bounded sets in X into relatively compact sets in Y .
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Figure 5.2: A part of the Rainbow of Function Spaces for square integrable Sobolev spaces
and their duals. Ω is a bounded domain, and the argument (Ω) is suppressed to reduce
cluttering the image.

Here we list some inclusion and embedding theorems for Sobolev spaces without giving
proofs. The embedding theory is rather involved and technical and can be found in Adams
[1] and Robinson [23].

Lemma 5.3.1 1. C∞(Ω)∩Hk(Ω) is dense in Hk(Ω).
2. C∞

c (Rn) is dense in Hk
0(Rn).

Theorem 5.3.1 — Sobolev Embedding Theorem. Let Ω ⊂ Rn be bounded with
smooth boundary ∂Ω ∈Ck. Suppose u ∈ Hk. Then

1. If k < n
2 , then u ∈ L

2n
n−2k and

‖u‖ 2n
n−2k
≤C‖u‖Hk .

The exponent 2n
n−2k is called the Sobolev exponent.

2. If k = n
2 , then u ∈ Lp for all 1≤ p < ∞ and

‖u‖p ≤C(p)‖u‖Hk .

3. If k > j+ n
2 , j ∈ N, then u ∈C j(Ω̄) and

‖u‖C j ≤C j‖u‖Hk .

The following Theorem of Rellich Kondrachov is an important compactness result, which
we will use often in later chapters. Compactness is a strong property and it has to come
from somewhere. In this case it comes from the Arzela-Ascoli theorem, making a strong
connection to Real Analysis.
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Theorem 5.3.2 — Rellich-Kondrachov Compactness. Let Ω be a bounded C1 do-
main, then

H1(Ω) ↪↪→ L2(Ω).

Proof. Take a bounded sequence {uk} ⊂ H1(Ω) and extend it to a bounded sequence
{vk} ⊂ H1(Rn) with compact support U . Now we mollify all those functions vk to (vk)h,
also with compact support, which we call again U . As before, we denote the standard
mollifier as ρh(x) and we find

|vk(x)− (vk)h(x)| ≤
∫

B1(0)
ρh(z)|vk(x)− vk(x−hz)|dz

=
∫

B1(0)
ρh(z)

∣∣∣∣∫ h|z|

0

∂

∂ r
vk(x− r

z
|z|

)dr
∣∣∣∣dz

≤
∫

B1(0)
ρh(z)

∫ h|z|

0

∣∣∣∣ ∂

∂ r
vk(x− rs)

∣∣∣∣dr dz,

where we used a abbreviation of s = z
|z| . Integrating this inequality over the compact

support U we find∫
U
|vk(x)− (vk)h(x)|dx ≤ h

∫
U
|Dvk|dx

∫
B1(0)
|z|ρ(z)dz

≤ h|U |1/2‖Dvk‖2

≤ Ch.

Thus (vk)h→ vk uniformly on L1(Ω). Using the interpolation inequality (Exercise 2.7) we
also estimate the L2 norm as

‖vk− (vk)h‖2 ≤ ‖vk− (vk)h‖
r−2

2(r−1)
1 ‖vk− (vk)h‖

r
2(r−1)
r ,

where the first term converges to zero, and the second term is bounded for r > 0 large
enough such that H1(U)⊂ Lr(U). Then we obtain that (vk)h→ vk uniformly on L2.

Finally we employ an Arzela-Ascoli argument and we show that for fixed h the sequence
{(vk)h} is uniformly bounded and equicontinuous. Indeed

|(vk)h(x)| ≤
∫

B1(0)
ρ(z)|vk(x− zh)|dz

≤ h−n‖ρ‖∞‖vk‖1

≤ Ch−n

and

|D(vk)h(x)| ≤
∣∣∣∣∫B1(0)

ρ(z)(Dxvk)(x− zh)dz
∣∣∣∣

= h−1
∣∣∣∣∫B1(0)

ρ(z)(Dzvk)(x− zh)dz
∣∣∣∣

= h−1
∣∣∣∣∫B1(0)

Dρ(z)vk(x− zh)dz
∣∣∣∣

≤ h−n−1‖Dρ‖∞‖vk‖1.
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Hence by the Arzela-Ascoli Theorem, there exists a convergent subsequence of {(vk)h}
for reach h>0, which uniformly converges in U . Then, by our previous estimates, we build
a diagonal sequence . We find subsequences such that

{(vk1 j)1} convergent for h = 1

{(vk2 j)h} convergent for h = 1,
1
2

...

{(vkl j)h} convergent for h = 1,
1
2
, . . . ,

1
l
.

...

We set w j := vk j j , where {(w j) 1
j
} converges for all h in L2. Then for n > m we have

‖wn−wm‖2 ≤ ‖wn− (wn) 1
n
‖2 +‖wm− (wm) 1

n
‖2 +‖(wn) 1

n
− (wm) 1

n
‖2,

where all terms converge in L2. �

R In Figure 5.3 the Rainbow of Function Spaces, we summarize all the inclusions and
embeddings that we discussed so far. We obtain a scale of spaces from the largest
measure space D ′ to the smallest function space here, which is C∞

c . The spaces are
related by inclusions, embeddings and as dual spaces and they include spaces of
differentiable funcitons, spaces of Hölder continuous functions, spaces of integrable
functions and Sobolev spaces. Sobolev embeddings make interesting short-cuts
between these spaces.

5.4 Trace Theorem
For integrable functions, or for Sobolev functions on bounded domains Ω, it is not entirely
clear how these functions are defined on the domain boundary ∂Ω. In particular, Lp

functions are unique only up to sets of measure zero. The boundary ∂Ω is a set of measure
zero, hence an Lp function can have any value on the boundary. Functions in Sobolev
spaces benefit from the Sobolev embeddings into continuous functions (see Theorem 5.3.1).
In particular if p > n then we have the embedding (see [1, 17, 22]

W 1,p(Ω) ↪→C0(Ω).

In such cases the functions are continuous as we approach the boundary and they are well
defined on ∂Ω. However, when p≤ n, we need to define what the boundary (trace) of a
function is. This is done via the trace operator Tr : W 1,p(Ω)→ Lq(∂Ω).



70 Chapter 5. Sobolev Spaces

Dual

Dual
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 ⊇ 

S' 
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 ⊇ L
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2

Figure 5.3: The Rainbow of Function Spaces. A visual tool to help to understand the
relationships between the function spaces that were mentioned. Note that this is a schematic
for pedagogical purposes. Many details are left out. For example, inclusion here is
understood as embedding, where the norms are respected. For example H1

0 ⊂ L2 means
that elements of H1

0 are also elements of L2 and a bounded H1
0 norm implies a bounded L2

norm. Also the use of the index p as compared to the Sobolev index 2n
n−2k is ambiguous,

since there are p that are less than the Sobolev index as well, indicated by the dots. All
spaces here are Banach spaces, except the space of test functions D. I am very grateful to
George Shyntar, who prepared this beautiful rendering of the rainbow.
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Theorem 5.4.1 — Trace Theorem. Let Ω⊂Rn for n > 1 be a smooth bounded domain
and p∈ (1,∞). If p> n let q∈ [p,∞) and if p≤ n then let q= p(n−1)

n−p . Then there exists a
bounded linear operator Tr : W 1,p(Ω)→ Lq(∂Ω) such that for each u∈W 1,p(Ω)∩C0(Ω)
we have

Tr[u] = u|∂Ω.

Proof. The proof of the trace theorem is more involved than is healthy for this text. A
challenge arises as we need to define the corresponding measure on the n−1-dimensional
manifold ∂Ω. We can, for example, use the n−1 dimensional Hausdorff measure. But
then we have to understand Lq(∂Ω) in the right way, which leads to the introduction of
Besov spaces, which exceeds the purpose of this text. Detailed proofs of the trace theorem
can be found in the [7, 17, 22]. �

5.5 Banach-Space Valued Functions
Banach-space valued function become important when we solve partial differential equa-
tions (PDEs). As an example let us look at a reaction diffusion equation for a physical or
biological quantity u(x, t):

∂u
∂ t

= D∆u+ f (u). (5.1)

If u(x, t) denotes the solution, then for each time t ≥ 0 we have a function of space x:
u(t) : x 7→ u(x, t), hence this map is in some functions space and we write u(t) ∈ X for all
t ≥ 0. Typical function spaces in the context of PDEs are given below.

For a given time T , we denote a time interval I as either (0,T ) or [0,T ]. Then

C0(I,X) = {u : I→ X , continuous in t with respect to the norm in X}.

For example C0(0,T ;Lp(Ω)) has the norm

‖u‖C0(0,T ;Lp(Ω)) = sup
0≤t≤T

‖u(t)‖p.

The space Lp(0,T ;Lq(Ω)) has the norm

‖u‖Lp(0,T ;Lp(Ω)) =

(∫ T

0
‖u(t)‖p

qdt
) 1

p

.

The norm in Lp(0,T ;Lp(Ω) can be written in two ways

‖u‖Lp(0,T ;Lp(Ω)) =

(∫ T

0
‖u(t)‖p

pdt
) 1

p

=

(∫ T

0

∫
Ω

|u(x, t)|pdxdt
) 1

p

= ‖u‖Lp([0,T ]×Ω).

The space L2(0,T ;L2(Ω)) is a Hilbert space with inner product

(u,v)2 =
∫ T

0

∫
Ω

u(x, t)v(x, t)dxdt.

We even prove a Fundamental Theorem of Calculus for Banach-space valued func-
tions.
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Theorem 5.5.1 — Fundamental Theorem for Sobolev Spaces. Let X be a Banach
space and u ∈W 1,p(0,T ;X), 1≤ p≤ ∞. Then

u(t) = u(s)+
∫ t

s

du
dt

(τ)dτ, 0≤ s≤ t ≤ T. (5.2)

Furthermore u ∈C0([0,T ],X) and

sup
0≤t≤T

‖u(t)‖X ≤C‖u‖W 1,p(0,T ;X).

Proof. If p = ∞ then u ∈W 1,p̃(0,T ;X) for some p̃ < ∞. Hence we consider p < ∞ right
away. We mollify u to be equal to zero outside of the interval [0,T ] and call the mollification
uh. It is easy to check that

duh(t)
dt

=

(
du(t)

dt

)
h

and

uh→ u, and
duh

dt
→ du

dt
in Lp for h→ 0.

For h > 0 the function uh is continuously differentiable and we use the Fundamental
Theorem of Calculus:

uh(t) = uh(s)+
∫ t

s

duh

dt
(τ)dτ.

Taking the limit as h→ 0 gives equation (5.2).
For the sup-norm estimate we chose t = 0 and s = t and find

‖u(0)‖X ≤ ‖u(t)‖X +
∫ t

0
‖u′(τ)‖X dτ,

which integrated from 0 to T becomes

T‖u(0)‖X ≤
∫ T

0
‖u(t)‖X dt +

∫ T

0

∫ t

0
‖u′(τ)‖X dτdt

≤ ‖u‖L1(0,T ;X)+T‖u′‖L1(0,T ;X)

≤ T
1
q‖u‖Lp(0,T ;X)+T

1+q
q ‖u′‖Lp(0,T ;X),

where we used Hölders inequality and the fact that 1+q
q = 1

q +1 in the last step. We use
(5.2) again and the previous estimates to get

‖u(t)‖X ≤ ‖u(0)‖X +
∫ t

0
‖u′(τ)‖X dτ

≤ ‖u(0)‖X +T
1
q‖u′‖Lp(0,T ;X)

≤ T
1−q

q ‖u‖Lp +2T
1
q‖u′‖Lp

≤ C‖u‖W 1,p(0,T ;X),

which proves the last estimate of the Theorem. �
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� Example 5.3 If we apply the Fundamental Theorem for Sobolev Spaces 5.5.1 to reaction
diffusion equations

ut = D∆u+ f (u)

we often have that

u ∈ L2(0,T ;H1
0 (Ω)) and ut ∈ L2(0,T ;H−1).

Since H1 ⊂ H−1 it follows that

u ∈ H1(0,T ;H−1).

Then, by the above Theorem 5.5.1 we find

u ∈C0([0,T ];H−1).

In this context, the reaction diffusion equation presents itself as an equality in H−1:

ut︸︷︷︸
H−1

= D∆ u︸︷︷︸
H1︸ ︷︷ ︸

H−1

+ f (u)︸︷︷︸
H−1

.

Of course, we made no assumptions here on the growth term f (u). But it is clear what the
assumptions of f should be. One possibility is to assume that the map f : H1→ H−1 is
globally Lipschitz continuous. �

We cite one more result in this context without giving a proof. The proof can be found in
Robinson page 214 ff. [23].

Theorem 5.5.2 Let X ⊂⊂ H ⊂ Y be Banach spaces, and H reflexive. Suppose {un} ⊂
L2(0,T ;X) is uniformly bounded and the time derivatives {unt} ⊂ Lp(0,T ;Y ) are uni-
formly bounded for some p > 1. Then there exists a subsequence that converges strongly
in L2(0,T ;H).

� Example 5.4 The previous theorem opens the door for numerical approximations of
partial differential equations such as the Galerkin Method. For the Galerkin method we
consider a finite set of n orthogonal basis functions, for example sine and cosine functions,
and project the differential equation onto the subspace spanned by those basis functions.
Since this subspace is finite dimensional, the projection gives us an n-dimensional ordinary
differential equation (ODE). We call the solution un. We are often able to show that

un ⊂ L2(0,T ;H1
0 ) un,t ⊂ L2(0,T ;H−1)

is uniformly bounded in those spaces. Then chosing X =H1
0 ,H = L2,Y =H−1 the previous

Theorem provides us with a convergent subsequence

unk → u in L2((0,T )×Ω).

This limit is then a candidate for a solution of the original reaction diffusion equation.
This is the essential step of the Galerkin method. However, the set of basis functions
need to be chosen carefully. Also, more work is needed to show that the time derivative
converges, and that the limit function is continuous in the right spaces. Here we refer to
other textbooks such as [23], where the entire proof of the Galerkin method occupies about
6 pages. We develop a simpler case in Exercise 5.3.

�
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5.6 Exercises
Exercise 5.1 (Conserved integral) (level 2)
Let V be the subspace of H1(Ω), consisting of functions with zero integral

V :=
{

u ∈ H1(Ω) :
∫

Ω

u(x)dx = 0
}
.

Arguing by contradiction, use Rellich-Kondrachov compactness to show that there
exists a constant C > 0 such that we have a Poincaré inequality

‖u‖2 ≤C‖∇u‖2.

�

Exercise 5.2 (Distributions) (level 1)
For ψ ∈C∞

c (Ω) and u ∈ D′(Ω) we define a distribution uψ by

〈ψu,φ〉= 〈u,ψφ〉, for all φ ∈C∞
c (Ω).

Show that indeed ψu ∈ D′(Ω) and that

D(ψu) = uDψ +ψDu.

�

Exercise 5.3 (Galerkin method) (level 3)
Consider the reaction-diffusion equation on Ω:

ut = ∆u+αu,
u|∂Ω = 0, (5.3)

u(x,0) = u0(x),

with u0 ∈ L2(Ω). Let {ψi}i≥0 denote an ONB of L2(Ω) of eigenfunctions of ∆ with
eigenvalues λi. To construct a solution for (9.25), we apply projections Pn to (9.25) and
pass to the limit for large n:

1. Apply the projections Pn to (9.25) and argue that the resulting system has a unique
solution un for each n≥ 1.

2. Derive the estimate

d
dt
‖un‖2

2
2

+‖∇un‖2
2 ≤ α‖un‖2

2. (5.4)

3. Use Gronwall’s Lemma to show that for each T > 0 un is uniformly bounded in
L∞(0,T ;L2(Ω)).

4. Integrate (5.4) from 0 to T and show that un is uniformly bounded in the space
L2(0,T ;H1(Ω)).
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5. Show that un has a convergent subsequence with limit u. Identify the type of
convergence and the function space of the limit function u.

6. Explain in which sense Pn jun j converges to u?
7. Explain in which sense ∆un j converges to ∆u?

8. Use (9.25) and explain in which sense
∂un j

∂ t converges to ∂u
∂ t ?

9. Conclude that the limit u is indeed a weak solution of (9.25).
�
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Fixed point theorems are an important tool in applied mathematics. They are used
in many different contexts. For example in existence theories, a linear or non-linear
map is defined such that a fixed-point corresponds to a solution of the problem. In other
cases, these results can be used to compute spectra of operators. In this chapter, we cover
some of the most important fixed-point theorems of Banach, Brouwer, Schauder, and the
Leray-Schauder Principle.

Definition 6.0.1 Given a map T : X→ X from a Banach space into itself. Each solution
of T (x) = x is called a fixed point.

6.1 The Banach Fixed-Point Theorem
The main idea is to solve a fixed-point problem x = T x iteratively, i.e., start at some x0 and
build a sequence

x0 ∈ X , xn+1 = T xn

and show that xn converges to x in some appropriate sense.
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Definition 6.1.1 Let (X ,d) be a metric space and M⊂X . A (nonlinear) map T : M→ X
is called
• k-contractive if and only if

d(T (x),T (y))≤ k d(x,y), for all x,y ∈M, 0 < k < 1,

• contractive if and only if

d(T (x),T (y))< d(x,y), for all x,y ∈M, x 6= y.

The main theorem of this section is:

Theorem 6.1.1 — Banach’s fixed-point theorem. Let M ⊂ X be a non-empty, closed
subset of a complete metric space X , and let T : M→M be k-contractive with k < 1.
Then

1. T has exactly one fixed point in M.
2. The sequence xn+1 = T xn converges to the fixed point x for each initial point

x0 ∈M.

Proof. Consider x0 ∈M and xn+1 = T xn. Then

d(xn+1,xn) = d(T (xn),T (xn−1))≤ k d(xn,xn−1)≤ ·· · ≤ knd(x1,x0).

and then

d(xn+m,xn) ≤ d(xn+m,xn+m−1)+d(xn+m−1,xn+m−2)+ · · ·+d(xn+1,xn)

≤
(
kn+m−1 + kn+m−2 + · · ·+ kn)d(x1,x0)

≤ kn
m−1

∑
j=0

k j d(x1,x0)

≤ kn

1− k
d(x1,x0)

→ 0, for n→ ∞.

Hence {xn}n is a Cauchy sequence, and since X is complete, it converges to a point x ∈ X .
Moreover, T : M → M and M is closed, hence the limit x ∈ M. While T is a k-

contraction, it is also continuous, hence T (x) = x and x is a fixed point.
To show uniqueness, we assume there is another fixed point y ∈M. Then

d(x,y) = d(T (x),T (y))≤ k d(x,y)

and k < 1, hence d(x,y) = 0, and we find x = y. �

� Example 6.1 — Ordinary differential equations. Arguably, the most known applica-
tion of the Banach Fixed Point Theorem 6.1.1 is the Theorem of Picard and Lindelöff to
solve ordinary differential equations. We invite the readers to consult standard text books
on ODEs [20]. �
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6.2 The Brouwer and Schauder fixed-point theorems
The Brouwer fixed point theorem is a central piece in algebraic topology in finite di-
mensions Rn. It is equivalent to the negative retraction principle, and this is where we
start our arguments. The Brouwer fixed point theorem is a rather general result for finite
dimensional spaces. We lift it to the infinite dimensional setting in Schauders fixed-point
theorem, where we employ some sense of compactness.

Definition 6.2.1 Let X be a topological space and T : X →M a continuous map with
M ⊂ X . T is called a retraction on M if T (x) = x for all x ∈M. In this case M is called
a retract of X .

� Example 6.2 For example X = Rn,M = BR(0) and

T (x) =
{

x if x ∈ BR(0),
R x
|x| if x 6∈ BR(0),

is a continuous retraction of X to M. �

Theorem 6.2.1 — Negative retract principle. In Rn there is no continuous map
T : B̄1(0)→ ∂B1(0), which leaves the boundary points fixed, i.e.

T (x) = x, for all x ∈ ∂B1(0).

Proof. See textbooks on topology, for example [25]. �

Theorem 6.2.2 — Brouwer’s fixed point theorem. Each continuous map T : B̄1(0)→
B̄1(0) in Rn has a fixed point.

Proof. Assume otherwise, i.e. T (x) 6= x for all x ∈ B̄1(0). Then we construct a continuous
map from the ball to the boundary r : B̄1(0)→ ∂B1(0) as follows. For each x ∈ B1(0) we
follow the line segment from T (x) to x to the boundary. Since T (x) 6= x for all x, this line
segment is well defined, and it has a unique intersection with the boundary, called r(x).
This map is continuous, since T is continuous, and it satisfies r(x) = x for all x ∈ ∂B1(0).
This is a contradiction to the negative retract principle in Theorem 6.2.1. �

Corollary 6.2.3 If M ⊂ Rn is homeomorphic to B̄1(0), then each continuous map
T : M→M has a fixed point.

Proof. Let φ : M→ B̄1(0) denote the homeomorphism and φ−1 its continuous inverse.
Then we apply Brouwers fixed point theorem to the conjugate map

f := φ ◦T ◦φ
−1 : B̄1(0)→ B̄1(0).

�

� Example 6.3 The previous corollary includes nonempty convex compact sets in Rn,
star-shaped domains, and p-norms. �

Before we proceed to Schauder’s fixed point theorem, we need a technical Lemma about
convex combinations.
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Proposition 6.2.4 Let K b X be a compact subset and let ε > 0 be given. Let A denote a
finite set A⊂ K such that

K ⊂
⋃
a∈A

Bε(a)

is a finite open covering of K. We define a convex combination of the elements of A as a
map φA : K→ K as

φA(x) =
∑a∈A ma(x) a
∑a∈A ma(x)

, where ma(x) =
{

0 for ‖x−a‖ ≥ ε

ε−‖x−a‖ for ‖x−a‖< ε
.

The function φA(x) denotes a weighted average of the anchor points ai ∈ A, weighted by
the distance to x. Then φA(x) is continuous on K and for each x ∈ K we have

‖φA(x)− x‖< ε.

Proof. Note that ma(x) ≥ 0 and for each x ∈ K there is at least one a ∈ A such that
x∈ Bε(a). Hence ∑a∈A ma(x)> 0 and φA(x) is well defined on K. The map ma : K→ [0,ε]
is continuous, hence φA is continuous on K. Now, if x ∈ K then

φA(x)− x =
∑a∈A ma(x)(a− x)

∑a∈A ma(x)
,

and for those ma with ma(x)> 0 we have ‖x−a‖< ε . Hence

‖φA(x)− x‖ ≤ ∑a∈A ma(x) ε

∑a∈A ma(x)
= ε.

�

Theorem 6.2.5 — Schauder’s fixed point theorems. Let X be a Banach space and
M⊂ X a nonempty, bounded, and convex subset. Consider a continuous map T : M→M.

1. If M is compact, then T has a fixed point.
2. If T is compact, then T has a fixed point.

Proof. We define K = T (M). In both cases the set K is compact and for each n ∈ N we
can find a finite covering with balls of radius 1/n:

K ⊂
⋃

a∈An

B 1
n
(a),

where An is a finite set. We use the above function φA to define φAn .
The element φAn(x) ∈ X is a convex combination of elements a ∈ An, hence

φn(K)⊂ convex hull(K)⊂M,

since T : M→M and M is convex. Then we define maps Tn = φAn ◦T : M→M with

‖Tn(x)−T (x)‖ ≤ 1
n
,
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by Proposition 6.2.4.
We define Mn := M∩ span(An). Since span(An) is a finite dimensional subspace, the

sets Mn are a bounded, closed and convex subsets of a finite dimensional subspace, and
Tn : Mn→Mn is continuous. By the Corollary to Brouwers fixed point theorem (Corollary
6.2.3) we have a fixed point xn for each n: Tn(xn) = xn.

1. If M is compact, then the bounded sequence {xn}n has a convergent subsequence

xn j → x, for j→ ∞,

and since T is continuous we have T (x) = x.
2. If T is compact, then {T (xn)}n has a convergent subsequence, and the result is the

same as under item 1.
�

� Example 6.4 — Elliptic equations. Schauder theory is an important tool to solve elliptic
partial differential equations. Please see the comprehensive introduction [8]. �

6.3 The Leray-Schauder Principle
The Leray-Schauder principle shows how a-priori estimates can be used to find solutions
to equations and fixed-points of operators.

Theorem 6.3.1 Let X be a Banach space and A : X→ X a compact linear map. Suppose
each solution of u = γ Au satisfies an a-priori estimate

‖u‖ ≤ c for all γ ∈ [0,1].

Then u = Au has a solution.

Proof. Set M := {u ∈ X ,‖u‖ ≤ 2c} and

Lu :=
{

Au if ‖Au‖ ≤ 2c,
2c Au
‖Au‖ if ‖Au‖> 2c.

Then ‖Lu‖ ≤ 2c for all u ∈ X and L : M→ M. The map L is continuous and compact,
since A is continuous and compact. By Schauder’s fixed point theorem, L has a fixed point
Lu = u, u ∈M. If ‖Au‖ ≤ 2c, then Au = Lu = u and we are done. If ‖Au‖> 2c, then

‖u‖= ‖Lu‖= 2c
‖Au‖
‖Au‖

= 2c.

On the other hand we find that

u = Lu =
2c
‖Au‖

Au = γ Au, for some γ ∈ (0,1).

Hence the a-priori estimate applies to u and we find ‖u‖ ≤ c, which is a contradiction. The
fixed point of L satisfies ‖Au‖ ≤ 2c and it is also a fixed point of A. �
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6.4 The Lax Milgram Lemma
(The presentation is adapted from L.C. Evans’ book [7])

The Lax Milgram Lemma is not really a fixed-point theorem, but it deals with solutions
to nonlinear equations, in particular quadratic operator equations. It is a generalization of
Riesz representation theorem.

Theorem 6.4.1 — Lax Milgram. Let H be a Hilbert space and B : H ×H → R a
continuous, bilinear mapping. We assume that here are two constants α,β > 0 such that

|B(u,v)| ≤ α‖u‖ ‖v‖ for all u,v ∈ H,

B(u,u) ≥ β‖u‖2 for all u ∈ H.

The second condition is known as the coercivity condition. Then for each f ∈ H∗ there
exists a solution u ∈ H of

B(u,v) = f (v), for all v ∈ H.

Proof. We proceed in several steps.
1. For each fixed u ∈ H, the mapping v 7→ B(u,v) is linear and bounded, hence in H∗.

By the Riesz representation theorem 4.2.1, there exists a unique representative w∈H
such that

(w,v) = B(u,v), for all v ∈ H.

We write Au = w, defining a map A : H→ H such that

B(u,v) = (Au,v).

To prove the Lax-Milgram results, we need to show that A is invertible.
2. We show first that A : H→ H is linear and bounded. By direct computation we get:

(A(a1u1+a2u2),v) =B(a1u1+a2u2,v) = a1B(u1,v)+a2B(u2,v) = (a1Au1+a2Au2,v).

Furthermore

‖Au‖2 = (Au,Au) = B(u,Au)≤ α‖u‖ ‖Au‖.

Hence

‖Au‖ ≤ α‖u‖ and ‖A‖ ≤ α.

3. From the coercivity condition we get

β‖u‖2 ≤ B(u,u) = (Au,u)≤ ‖Au‖ ‖u‖.

Hence

β‖u‖ ≤ ‖Au‖.

This implies that the mapping A is injective and the range R(A) is closed.
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4. We now show that R(A) = H. If not, then since the range is closed, we find a
nontrivial orthogonal element z ∈ R(A)⊥. For this z we have

β‖z‖2 ≤ B(z,z) = (Az,z) = 0,

which is a contradiction. Hence R(A) = H and we can invert A.
5. Then for each f ∈ H∗, we find w ∈ H and u ∈ H such that

f (v) = (w,v) = (Au,v) = B(u,v),

which was to be shown.
6. The last step is to prove uniqueness of the solution u. Assume we have two solutions

u and ũ. Then B(u− ũ,v) = 0 for all v ∈ H. But by coercivity

β‖u− ũ‖2 ≤ B(u− ũ,u− ũ) = 0

and u = ũ.
�

� Example 6.5 — Application to PDEs. Suppose that we want to solve a nonhomoge-
neous PDE of the form

Lu+µu = f

where L is a general second order differential operator. Using weak formulation with test
functions v we write∫

Lu v dx+µ

∫
uvdx︸ ︷︷ ︸

=B(u,v)

=
∫

f vdx︸ ︷︷ ︸
=( f ,v)

,

and the problem becomes: given f ∈ X∗, find u ∈ X to solve B(u,v) = f (v), i.e. a Lax-
Milgram situation. The details of the estimates in Theorem 6.4.1 need to be worked out,
depending on the second order differential operator and possible boundary conditions. �
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7.1 Introductory Examples
The Calculus of Variations is a rather traditional area of Analysis. It was developed in
the context of mechanics, but it has grown from there to cover most areas of applied
mathematics, including PDE analysis, financial markets, math biology, etc. While teaching
Calculus of Variations, we want to ensure that the roots in mechanics as well as the use for
other areas of applied mathematics are covered. We begin with some classical examples.

7.1.1 The Catenary (Hanging Chain)
We consider a chain hanging between two points (x0,y0) and (x1,y1). The mass per unit
length is denoted by m and the height is parameterized as y(s), s ∈ [0,L] with y(0) = y0
and y(L) = y1, and L denotes the length of the chain.

The potential energy in a gravitational field is

Wp(y) =
∫ L

0
mgy(s) ds.

We transform the integral from arc-length s to the x-coordinate by using the arc-length
formula

ds =
√

1+ y′(x)2 dx,

which gives

Wp(y) =
∫ x1

x0

mgy(x)
√

1+ y′(x)2dx,

where m and g are constants. To find the profile y(x) of the hanging chain, we minimize
the potential energy, i.e. we minimize

J(y) :=
∫ x1

x0

y
√

1+ y′2dx, y(x0) = y0, y(x1) = y1,

where we ignore the constant factors m and g. The question arises: How to find the
minimum profile y(x)? We come back to this question in Example 7.4.
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7.1.2 The Brachystochrone (The Fastest Roller)
Here we are interested of the fastest path that a rolling frictionless object can take to get
from a point (x0,y0) to a lower point (x1,y1) with x0 < x1 and y0 > y1. Again we use s for
the arc-length along the path and we denote the speed of the ball as v(s), s ∈ [0,L], where
L is the length of the path. The differential time element is dt = ds

v(s) , such that the total
time is

T (y) =
∫ L

0

ds
v(s)

.

Since there is no friction, we conserve the total energy

1
2

mv2(x)+mgy(x) =C, for all x ∈ [x0,x1],

where the constant C is given from the initial condition as

C =
1
2

mv2(x0)+mgy0.

Then

v(x) =

√
2C
m
−2gy(x).

Using again the transformation into the local coordinate x, as was done for the catenary,
we find the total time to be

T (y) =
∫ x1

x0

√
1+ y(x)′2√

2C
m −2gy(x)

dx.

We combine some of the constants and y into a new function

w(x) =
1

2g

(
2C
m
−2gy(x)

)
,

such that w′ =−y′ and we find the optimization problem is to minimize

J(y)=
∫ x1

x0

√
1+w′2√

w
dx, w(x0)=

1
2g

(
2C
m
−2gy0

)
, w(x1)=

1
2g

(
2C
m
−2gy1

)
.

Again we find a complicated minimization problem and we will show how this is solved in
Example 7.5.

7.1.3 Motivation from PDEs
An abstract, nonlinear, time independent PDE can be written as

A[u] = 0.

Here we would like to understand the differential equation as a chracterization of some
energy minimizers. In this case we are looking for cases where A is something like a
“derivative” of some “energy functional” J with J′=A so the differential equations becomes

J′[u] = 0.
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Solving this equation then corresponds to finding local maxima, minima and saddle points
of J. The Calculus of Variations, as we develop here, is exactly the method that connects
abstract energy functional J with a functional derivative J′ = A. Finding minimum and
maximum then reduces to solving the Euler-Lagrange equations. Once such a relation is
established we encounter two cases in the literature. Sometimes it is easier to optimize
J than to solve the Euler-Lagrange PDEs, while in other cases it is easier to solve the
Euler-Lagrange PDEs rather than to optimize J. We will discuss examples for both of
these cases.

If the functional gradient of J is defined, we can also study the gradient flow

ut =−J′[u], or ut =−A[u].

For example when A =− ∂ 2

∂x2 we get the heat equation as gradient flow. But what is the
corresponding energy J ? To answer this question we need to understand what J′ actually
means, and then make a formal connection between the PDE and the optimization problem.

7.2 First Variation and the Euler-Lagrange Equations
Suppose that Ω⊂ Rn is bounded with smooth boundary ∂Ω.

7.2.1 Lagrangian
The Lagrangian is twice continuously differentiable function

L : Rn×R×Ω→ R.

We apply L to a real function u(x) and its gradient ∇u(x) =
(

∂u
∂x1

, . . . , ∂u
∂xn

)
as L(∇u,u,x).

In the abstract formulation we often use the symbol p for the gradient and z for u and
write L(p,z,x). In this notation ∇pL denotes the gradient of L as it depends on the vector
component p, and similarly ∂

∂ zL denotes the derivative of L with respect to the second
entry z, and for short we write L ∈C2.

We define the action or energy as

J(u) =
∫

Ω

L(∇u,u,x)dx,

and we stipulate boundary conditions

u
∣∣∣
∂Ω

= g.

7.2.2 First Variation
Assume now that u(x) is a minimizer of J(u) and assume that it is smooth u ∈ C2(Ω̄).
Choose any perturbation function v ∈C∞

c (Ω) and consider the perturbed energy J(u+ εv)
for small ε . Now ε 7→ J(u+ εv) is a real function and we can use real calculus to find a
minimum. A necessary condition is

d
dε

J(u+ εv)
∣∣∣
ε=0

= 0.
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This derivative is simply called the First Variation for J and denoted as

δJ(u) =
d

dε
J(u+ εv)

∣∣∣
ε=0

.

Let us compute the first variation:

d
dε

J(u+ εv)

=
∫

Ω

∇pL(∇u+ ε∇v,u+ εv,x) ·∇v+
∂

∂ z
L(∇u+ ε∇v,u+ εv,x) v dx (7.1)

= −
∫

Ω

∇(∇pL(∇u+ ε∇v,u+ εv,x))vdv

+
∫

Ω

∂

∂ z
L(∇u+ ε∇v,u+ εv,x) v dx,

where we used that v has compact support, hence there are no boundary terms through
integration by parts. Then

δJ(u) =
d

dε
J(u+ εv)

∣∣∣
ε=0

=
∫

Ω

[
−∇(∇pL(∇u,u,x))+

∂

∂ z
L(∇u,u,x)

]
v dx,

for all test function v ∈C∞
c (Ω). Hence, the first variation is zero when the Euler-Lagrange

Equation

−∇
(
∇pL(∇u,u,x)

)
+

∂

∂ z
L(∇u,u,x) = 0 (7.2)

is satisfied, in the sense of distributions. Since we assumed that u and L are smooth, the
equation holds in the classical sense as well. Note that we use ∇ for the spatial gradient
and ∇p for the partial derivative of L with respect to the vector quantity p.

� Example 7.1 — Dirichlet’s Principle. We consider the Lagrangian

L(∇u,u,x) =
1
2
|∇u|2.

The corresponding energy is called the Dirichlet energy, or the Dirichlet integral

J(u) =
1
2

∫
Ω

|∇u|2dx

(and sometimes the factor 1/2 is not used). Let us compute the Euler-Lagrange equation
(7.2) of this energy.

∂

∂ z
L = 0

and

∇pL =
1
2

∇p|p|2

=
1
2

(
∂

∂ p1
(p2

1 + · · ·+ p2
n), . . . ,

∂

∂ pn
(p2

1 + · · ·+ p2
n)

)
= (p1, p2, . . . , pn) = p = ∇u.
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Then the Euler-Lagrange equation (7.2) becomes

−∇
(
∇pL

)
+

∂

∂ z
L =−∇∇u =−∆u = 0,

i.e. we get the Poisson equation

∆u = 0.

�

� Example 7.2 — Generalized Dirichlet Principle. We can generalize the above Dirich-
let principle for any quadratic Lagrangian. In the general form we have

L(∇u,u,x) =
1
2

n

∑
i, j=1

ai j(x)
∂u
∂xi︸︷︷︸

pi

∂u
∂x j︸︷︷︸

p j

− f (x)u

Then

∂

∂ pi
L =

n

∑
j=1

ai j(x)
∂u
∂x j

, and
∂

∂ z
L = f (x).

The energy is

J(u) =
∫

Ω

1
2

n

∑
i, j=1

ai j(x)
∂u
∂xi

∂u
∂x j
− f (x)u dx

and the Euler-Lagrange equation becomes

n

∑
i=1

∂

∂xi

n

∑
j=1

ai j(x)
∂

∂x j
u(x) = f (x).

Using matrix notation we write this as

∇

(
A∇u

)
= f , A(x) =

(
ai j(x)

)
i, j,

which is an anisotropic Helmholtz equation in the Fickian form.
�

7.3 Special Cases
7.3.1 Special Case I: no u-dependence

Here we assume that the Lagrangian is independent of u(x), where x is a one-dimensional
variable. Then

L(u′,x), J(u) =
∫ x1

x0

L(u′,x)dx.

In this case the Euler-Lagrange equation (7.2) simplifies to

∂

∂x

(
∂L
∂u′

)
= 0.
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This is integrated to find

∂L
∂u′

= constant = c1.

We call this relationship the First Integral. Here is an example:

� Example 7.3 Consider

L(u′,x) = ex
√

1+u(x)′2, and J(u) =
∫ x1

x0

ex
√

1+u(x)′2dx.

The first integral of the Euler-Lagrange equation becomes

∂L
∂u′

=
exu′√
1+u′2

= c1,

which is transformed to read

u′ =
c1√

e2x− c2
1

. (7.3)

Note here that

c1 =
exu′√
1+u′2

< ex,

hence there is no concern about the sign of the square root term in (7.3) The equation (7.3)
is integrated to find an explicit solution

u(x) = sec−1
(

ex

c1

)
+ c2.

�

7.3.2 Special Case II: no x-dependence
Again, we consider a one-dimensional spatial variable x, but now, L does not explicitly
depend on x:

L(u,u′), J(u) =
∫ x1

x0

L(u,u′)dx. (7.4)

In this case we also find a first integral, which turns out to be a Hamiltonian of the
system.

Theorem 7.3.1 The function

H(u,u′) = u′
∂L(u,u′)

∂u′
−L(u.u′)

is a Hamiltonian of system (7.4), i.e., H is conserved along solution curves u(x).
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Proof. We compute the derivative of H:

d
dx

H(u,u′) =
d
dx

(
u′

∂L
∂u′
−L
)

= u′′
∂L
∂u′

+u′
d
dx

∂L
∂u′
− ∂L

∂u
u′− ∂L

∂u′
u′′

= u′
(

d
dx

∂L
∂u′
− ∂L

∂u

)
= 0,

using the Eurler-Lagrange equation in the last step. �

With these techniques in place we can come back to the initial examples of the hanging
chain (catenary) and the rolling ball (brachystochrone).

� Example 7.4 — Hanging chain. For the hanging chain problem, we found the energy

J(u) =
∫ x1

x0

u
√

1+u′2dx.

Here the Lagrangian does not explicitly depend on x, hence we define the Hamiltonian as
in Theorem 7.3.1:

H(u,u′) = u′
∂L
∂u′
−L

= u′
uu′√

1+u′2
−u
√

1+u′2

= c1,

which implies

u2

1+u′2
= c2

1.

For c1 6= 0 this is written as

u′ =

√
u2

c2
1
−1.

Using separation of variables this integrates to

x =
∫ du√

u2

c2
1
−1

= c1 ln

u+
√

u2− c2
1

c1

+ c2.

Then we rearrange terms to find

c1 exp
(

x− c2

c1

)
= u+

√
u2− c2

1,

c1 exp
(
−x− c2

c1

)
=

c2
1

u+
√

u2− c2
1

.
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It follows that

c1

(
exp
(

x− c2

c1

)
+ exp

(
−x− c2

c1

))
= u+

√
u2− c2

1 +
c2

1√
u2− c2

1

= 2u.

Hence we obtain an explicit optimum, the catenary:

u(x) = c1 cosh
(

x− c2

c1

)
,

where the constants c1 and c2 are given from the boundary conditions

u(x0) = y0, u(x1) = y1.

�

� Example 7.5 — Rolling ball. For the rolling ball problem we found an action integral
as

J(u) =
∫ x1

x0

√
1+u′2

u
dx,

and again the Lagrangian does not explicitly depend on x. Therefore we compute the
Hamiltonian

H(u,u′) = u′
∂L
∂u′
−L

= u′
2u′/u

2
√

1+u′2
u

−
√

1+u′2

u

=
u′2√

u(1+u′2)
−
√

1+u′2

u

= − 1√
u(1+u′2)

= c1,

leading to the equation

u(1+u′2) = c̃1.

This is solved using the transformation

u′ = tanψ, with 1+u′2 = sec2
ψ

and

u =
c̃1

sec2 ψ
= c̃1 cos2

ψ. (7.5)

The last relation implies

du =−2c̃1 cosψ sinψ dψ.
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Further from y′ = tanψ we find the differential element for dx as

dx =
1

tanψ
du

= cotψdu
= −2c̃1 cos2

ψdψ

= −c̃1(1+ cos(2ψ))dψ.

We integrate the last equation with respect to ψ to find

x = c2− c̃1

(
ψ +

1
2

sin(2ψ)

)
, (7.6)

where c2 is a constant of integration. The combined equations (7.5) and (7.6) give then an
explicit parametric representation of the brachystochrone, which is also called the cycloid
curve, parameterized in ψ . The two integration constants c̃1 and c2 are found from the
boundary conditions. �

7.4 Systems
The entire variational calculus can be lifted to systems of variables. We will not delve into
this in detail, but just briefly mention the analogy. Consider

~u = (u1, . . . ,um)︸ ︷︷ ︸
Rm

, ∇u1, . . . ,∇um︸ ︷︷ ︸
Rm×n

, x1, . . . ,xn︸ ︷︷ ︸
Rn

and a Lagrangian L(∇~u,~u,x) with

L : Rm×n×Rm×Rn→ R.

The energy functional is

J(~u) =
∫

Ω

L(∇~u,~u,x)dx

and the Euler-Lagrange equation becomes an Euler-Lagrange system

−∇x

(
∇pkL(∇~u,~u,x)

)
+Lzk(∇~u,~u,x) = 0, for all k = 1, . . . ,m.

7.5 Hamilton’s Principle
Variational Calculus originated in mechanics and the mechanical formulation is widespread
in science. It is worthwhile to study variational calculus from the point of moving objects
in space and to make the connection to what we have done in the previous sections. The
principle of energy minimization is then called Hamilton’s Principle. Let us start with an
example of a moving body in three dimensions.
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� Example 7.6 We describe a moving particle in 3-dimensional space through their x,y,z
coordinates

r(t) = (x(t),y(t),z(t)).

The kinetic and potential energies are

T =
1
2

m(ẋ2 + ẏ2 + ż2), and V (x,y,z, t), respectively.

We define the Lagrangian as balance between kinetic and potential energy

L = T −V.

When a particle moves from r(t0) to r(t1) we define the action or action integral as

J(r) =
∫ t1

t0
L(t,r, ṙ)dt.

Hamilton’s principle now ascertains that a physical orbit is a minimizer of this energy. �

To consider a general mechanical system, we introduce generalized coordinates q(t) =
(q1(t), . . . ,qn(t)). These coordinates often include location, momentum and energy terms.
The derivative q̇(t) describes the time change of these quantities. We define a corresponding
kinetic energy as

T (q, q̇) =
1
2

n

∑
j,k=1

c j,kq̇ jq̇k = q̇TCq̇, C = (c jk) j,k,

and general potential energy V (t,q). Then the general Lagrangian is

L(t,q, q̇) = T (q, q̇)−V (t,q).

The following Theorem is a basic axiom, which relates the mathematical formulation of
generalized coordinates and kinetic and potential energies to physical reality:

Theorem 7.5.1 — Hamilton’s Principle. The motion of a mechanical system q(t) is a
critical point of the action

J(q) =
∫ t1

t0
L(t,q, q̇)dt,

i.e., a local minimum, or maximum, or a saddle point.

Assume that L is twice continuously differentiable and define a set of all smooth paths
from q(t0) = q0 to q(t1) = q1:

S = {q ∈C2(t0, t1) : q(t0) = q0, q(t1) = q1},

then q ∈ S is a critical point of J, if it satisfies the Euler-Lagrange system

− ∂

∂ t

(
∂L
∂ q̇k

)
+

∂L
∂qk

= 0, k = 1, . . . ,n, (7.7)
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where the derivation is the same as the derivation of the cousin equation (7.2). If we
compare this mechanical Euler-Lagrange equation (7.7) to the previously derived Euler-
Lagrange equation (7.2), we see that they have the same structure, but they convey different
meanings. While in (7.2) we are looking for distributions in space, here in (7.7) we are
concerned about the optimal path of a mechanical system.

� Example 7.7 — Harmonic Oscillator. A standard example of a variational mechanical
system is the harmonic oscillator. It can be realized through a mass attached to a spring,
which moves frictionless up and down. Let x(t) denote the height relative to the resting
position of the mass m. Then kinetic and potential energy are given as

T =
1
2

mẋ2, V =
1
2

kx2,

where k denotes the spring constant. The Lagrangian becomes

L = T −V =
1
2

mẋ2− 1
2

kx2

and the corresponding Euler-Lagrange equation is

− ∂

∂ t

(
∂L
∂ ẋ

)
+

∂L
∂x

= 0,

leading to

mẍ =−kx,

which is the differential equation for a harmonic oscillator. �

7.6 The Second Variation
In the general case, we were looking at a Lagrangian L(p,z,x) with L ∈C2 to minimize an
energy

J(u) =
∫

Ω

L(∇u,u,x)dx.

We found a necessary condition in the first variation

δJ(u) = 0

with

δJ(u) =
d

dε
J(u+ εv)

∣∣∣
ε=0

=
∫

Ω

[−∇x(∇pL(∇u,u,x))+Lz(∇u,u,x)]vdx.

We compute the second variation in the same way. In this calculation it is beneficial to use
Einstein’s summation convention for repeated indices. Also for this calculation we use ∂z
for ∂

∂ z . From (7.1) we find

d
dε

J(u+ εv) =
∫

Ω

∂piL(∇u+ ε∇v,u+ εv,x)∂xiv+∂zL(∇u+ ε∇v,u+ εv,x) v dx.
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We differentiate again to obtain

d2

dε2 J(u+ εv) =
∫

Ω

∂p j∂piL(∇u+ ε∇v,u+ εv,x)∂x jv ∂xiv dx

+
∫

Ω

∂z∂piL(∇u+ ε∇v,u+ εv,x) v ∂xiv dx

+
∫

Ω

∂p j∂zL(∇u+ ε∇v,u+ εv,x)∂x jvv dx

+
∫

Ω

∂z∂zL(∇u+ ε∇v,u+ εv,x) vv dx.

Setting ε = 0, we obtain the second variation

δ
2J(u) =

d2

dε2 J(u+ εv)
∣∣∣
ε=0

=
∫

Ω

(∂p j∂piL)∂x jv ∂xiv+2(∂pi∂zL)∂xiv v+(∂ 2
z L)v2 dx.

Now we revert back to vector notation and find

δ
2J =

∫
Ω

(∇v)T (HesspL)∇v+2
(

∇p
∂

∂ z
L
)
·∇v v+

(
∂ 2

∂ z2 L
)

v2 dx,

where HesspL denotes the Hessian matrix of L(p,z,x) with respect to derivative in p.
Hence for a local minimum we require

δ
2J(u)≥ 0, (7.8)

for each test function v ∈C∞
c (Ω).

We consider now a particular test function, which is not in C∞
c (Ω), but it gives us a

good understanding of the convexity condition that we need later. We define

v(x) = εγ

(
x ·ξ

ε

)
ζ (x), ζ ∈C∞

c (Ω), ξ ∈ Rn,

with

γ(x) =
{

x 0≤ x≤ 0.5
1− x 0.5≤ x≤ 1 , γ(x+1) = γ(x) periodic.

Then |γ ′|= 1 a.e. and

vxi(x) = γ
′
(

x ·ξ
ε

)
ξiζ + εγ

(
x ·ξ

ε

)
ζxi(x)︸ ︷︷ ︸

O(ε)

.

Substituting this test function in the condition for the second variation (7.8) gives the
condition that

0≤
∫

Ω

ξ
T (HesspL)ξ γ

′2
ζ

2 +O(ε)dx.



98 Chapter 7. Calculus of Variations

Now sending ε → 0 and appreciating that ζ is an arbitrary test function, we obtain that

ξ
T (HesspL)ξ ≥ 0 for all ξ ∈ Rn.

A more common way to write down this convexity condition is

n

∑
i, j=1

Lpi p j(∇u,u,x)ξiξ j ≥ 0. for all ξ ∈ Rn. (7.9)

We will encounter this condition again in the proof for the existence of a minimizer. If
applied to the PDE context, this condition is also known as ellipticity condition.

7.7 Existence of a Minimizer
Given L ∈C2, when does

J(u) =
∫

Ω

L(∇u,u,x)dx,

u = g on ∂Ω

have a minimizer? To answer this question we need a few new (and some old) concepts
such as coercivity, compactness, lower semicontinuity, and convexity.

7.7.1 Coercivity

We first need a condition that says something like “ J(u) is large for large values of u”. To
make this precise, we define a coercivity condition.

Definition 7.7.1 The functional J(u) satisfies a coercivity condition, if there exist
α,β > 0,1 < q < ∞ such that

L(p,z,x)≥ α|p|q−β , for all p ∈ Rn,z ∈ R,x ∈Ω. (7.10)

To “coerce” also means to intimidate or to bully somebody. However, coercivity is not
meant to intimidate the reader, it rather "bullies" the Lagrangian L to become large for
large values of p.1

If we integrate the coercivity condition (7.10) we find a condition for J:

J(u)≥ α‖∇u‖q
q−β |Ω|

and J(u)→∞ as ‖∇u‖q→∞. Since the ‖∇u‖q-norm arises, it is natural to work from now
on in W 1,q(Ω).

Definition 7.7.2 We introduce an admissible set

A = {u ∈W 1,q(Ω) : u = g on ∂Ω}.

1The word coercivity is spoken as “co-er-civity”.
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7.7.2 Compactness
If f : R→ R is a continuous function that satisfies a coercivity condition, then it does
attain a minimum. This is not necessarily the case for J(u). For example set

m := inf
u∈A

J(u)

and chose a minimizing sequence uk ∈A with

J(uk)→ m as k→ ∞.

We want to show that {uk} or a subsequence {uk j} converges to a minimizer u. So in W 1,q

we need some form of compactness. Using coercivity, we can show that
• {un} lies in a bounded set in W 1,q(Ω), i.e. {un} is bounded in Lq(Ω),
• and {∇un} is bounded in Lq(Ω).

By the reflexive weak compactness result Corollary 4.5.3 or by the Alaoglu weak∗ com-
pactness Theorem 4.5.2 we find weakly convergent subsequences

uk j ⇀ u in Lq(Ω),

∇uk j ⇀ χ in Lq(Ω).

We will show later that indeed χ = ∇u, that u|∂Ω = g in the sense of traces (Theorem 5.4.1)
and that uk j ⇀ u in A . Before we can prove this, we need one more property, which is
lower semi-continuity.

7.7.3 Lower semi-continuity
In general, the functional J(u) will not be continuous with respect to weak convergence,
i.e. it is not clear if lim j→∞ J(uk j) = J(u) and we need a weaker form of continuity. As we
are looking for minimizers of J(u), it is suffiucient to require

J(u)≤ liminf
j→∞

J(uk j).

If that is true, then J(u) ≤ m. But since, by definition, m ≤ J(u) we conclude m =
J(u).

Definition 7.7.3 The functional J(u) is (weakly) lower semi-continuous on W 1,q(Ω)
when

J(u)≤ liminf
k→∞

J(uk),

for all uk ⇀ u in W 1,q(Ω).

This leaves the question: when is J(u) weakly lower semi-continuous? The answer is
given through convexity.
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7.7.4 Convexity
Theorem 7.7.1 — Weak lower semi-continuity. Assume L is bounded below and
convex in p, i.e., the Hessian HesspL is positive semi definite

n

∑
i, j=1

Lpi p jξiξ j ≥ 0 for all ξ ∈ Rn.

Then J(u) is weakly lower semi-continuous in W 1,q(Ω).

Proof. 1. Choose a sequence uk ⇀ u in W 1,q(Ω) and set

l := liminf
k→∞

J(uk).

This exists since J(u) is bounded below. We must show that J(u)≤ l.
2. The above sequence can be seen as a family of linear forms on the dual of W 1,q.

Since each member is bounded when applied to a test-function (weak convergence)
the uniform boundedness principle (Theorem 3.3.3) applies and it follows that

sup
k
‖uk‖W 1,q(Ω) < ∞.

Hence {J(uk)} is a bounded sequence of real numbers and we can find a subsequence
such that

lim
k→∞

J(uk) = l.

Since W 1,q(Ω) ↪→ Lq(Ω) (similar to the Rellich-Kondrachov result), we have uk→ u
in Lq(Ω), i.e. uk→ u a.e. in Ω.

3. We cite a result from measure theory:

Theorem 7.7.2 — Egoroff’s Theorem. Let {uk},u be measurable and assume
uk→ u a.e. in Ω, with |Ω| < ∞. Then for each ε > 0 there exists a measurable
subset E ⊂Ω such that |Ω\E| ≤ ε and uk→ u uniformly in E.

We apply Egoroff’s Theorem to the subsequence we just constructed in item 2. For
each ε > 0 we can find a set Eε ⊂Ω with |Ω\Eε | ≤ ε such that

uk→ u uniformly on Eε .

Define

Fε =

{
x ∈Ω : |u(x)|+ |∇u(x)| ≤ 1

ε

}
.

Then

|Ω\Fε | → 0 as ε → 0.

We set Gε = Eε ∩Fε and we also have

|Ω\Gε | → 0 as ε → 0.
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4. If L is convex in the variable p, then we us a second order Taylor expansion

L(p,z,x) = L(q,z,x)+∇pL(q,z,x) · (p−q)+
1
2

ξ
T (HesspL)ξ︸ ︷︷ ︸

≥0

for some increment vector ξ . Then

L(p,z,x)≥ L(q,z,x)+∇pL(q,z,x)(p−q)

and
J(uk) =

∫
Ω

L(∇uk,uk,x)dx

≥
∫

Gε

L(∇uk,uk,x)dx

≥
∫

Gε

L(∇u,uk,x)dx+
∫

Gε

∇pL(∇u,uk,x)(∇uk−∇u)dx.

On Gε we know that

lim
k→∞

∫
Gε

L(∇u,uk,x)dx =
∫

Gε

L(∇u,u,x)dx.

Moreover, ∇pL(∇u,uk,x) is uniformly bounded on Gε , and we know from step 1.
that ∇uk ⇀ ∇u. This implies that

lim
k→∞

∫
Gε

∇pL(∇u,uk,x)(∇uk−∇u)dx = 0.

Then

l = lim
k→∞

J(uk)≥
∫

Gε

L(∇u,u,x)dx for all ε > 0.

Letting ε → 0 and using the monotone convergence result (Theorem 2.2.1) we find

l ≥
∫

Ω

L(∇u,u,x)dx = J(u).

�

7.7.5 Existence
Theorem 7.7.3 — Existence of a Minimizer. Assume L is coercive, convex in p and
the admissible set A is not empty. Then there exists at least one minimizer u ∈A with

J(u) = min
w∈A

J(w).

Proof. 1. Set m := infw∈A J(w). If m = +∞, then J(w) = +∞ for all w ∈A and we
are done. So we assume now that m < ∞ and select a minimizing sequence {uk},
J(uk)→ m for k→ ∞.
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2. J is coercive and we can always choose β = 0, by possibly adding a constant to L,
i.e. L(p,z,x)≥ α|p|q. Then

J(uk)≥ α

∫
Ω

|∇uk|qdx

and since {J(uk)} converges, we have

sup
k
‖∇uk‖q < ∞.

3. Take another w ∈ A , then w|∂Ω = g and uk −w ∈W 1,q
0 (Ω). Hence a Poincaré-

inequality applies
‖uk‖q ≤ ‖uk−w‖q +‖w‖q

≤ c1‖∇uk−∇w‖q + c2

≤ c3,
for appropriate constants c1,c2,c3 > 0, where we used step 2 in the last estimate.
This implies that {uk} is bounded in W 1,q.

4. Using reflexive weak compactness for uk ⇀ u and ∇uk ⇀ χ in Lq(Ω) and uniqueness
of weak limits, we find a subsequence such that

uk j ⇀ u in W 1,q(Ω).

On the boundary we use a trace argument (Theorem 5.4.1). It justifies restriction of
a function in W 1,q onto a smooth domain boundary. See also [7, 22]. We get

(uk j−w)
∣∣∣
∂Ω

= 0 =⇒ u ∈A .

5. Finally, since J(u) is weakly lower semi-continuous we have

m≤ J(u)≤ liminf
j→∞

J(uk) = m.

�

7.7.6 Uniqueness
We prove uniqueness of the minimizer only for the case that L does not depend on z and
we assume uniform convexity in p:

n

∑
i, j=1

Lpi p j(p,x)ξiξ j ≥ θ |ξ |2, for θ > 0 and for all ξ ∈ Rn. (7.11)

In other words

ξ
T (HesspL(p,x))ξ ≥ θ |ξ |2, for all ξ ∈ Rn.
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Theorem 7.7.4 — Uniqueness of Minimizer. Suppose that (7.11) holds. Then the
minimizer u ∈A of J(u) is unique.

Proof. Assume the minimizer is not unique and we have two minimizers u, ũ ∈A , with
u 6= ũ. We will show that the mean value of those two has even less energy, which would
be a contradiction. We claim

v :=
u+ ũ

2
∈A and J(v)<

J(u)+ J(ũ)
2

. (7.12)

Using the uniform convexity (7.11) we estimate for arbitrary p,q ∈ Rn that

L(p,x)≥ L(q,x)+∇pL(q,x)(p−q)+
θ

2
|p−q|2.

We set

p = ∇u and q =
1
2
(∇u+∇ũ),

and we integrate the above inequality over Ω.

J(u) ≥ J(v)+
∫

Ω

∇pL
(

1
2
(∇u+∇ũ),x

)(
∇u− 1

2
(∇u+∇ũ)

)
dx

+
∫

Ω

θ

2

∣∣∣∣∇u− 1
2
(∇u+∇ũ)

∣∣∣∣2 dx

≥ J(v)+
∫

Ω

∇pL
(

1
2
(∇u+∇ũ),x)

)
1
2
(∇u−∇ũ)dx+

θ

8

∫
Ω

|∇u−∇ũ|2dx.

Similarly, we set

p = ∇ũ and q =
1
2
(∇u+∇ũ),

and obtain a similar estimate

J(ũ)≥ J(v)+
∫

Ω

∇pL
(

1
2
(∇u+∇ũ)

)
1
2
(∇ũ−∇u)dx+

θ

8

∫
Ω

|∇ũ−∇u|2dx.

Adding these two equations and dividing by 2 yields

J(u)+ J(ũ)
2

≥ J(v)+
θ

8

∫
Ω

|∇u−∇ũ|2dx.

Now, if ∇u 6= ∇ũ on a set of non-zero measure, then we obtain the contradiction (7.12).
Hence ∇u = ∇ũ a.e., which implies, u = ũ in A .

�



104 Chapter 7. Calculus of Variations

7.8 Minimizer is a Weak Solution of the E-L Equations
So far we simply assumed that the mimizer of J(u) and the solution of the Euler-Lagrane
equation coincide. However, as we are arguing in infinite dimensional function spaces,
the relation is actually not so clear. We need additional arguments to really prove that the
energy minimizer is indeed a weak solution of the Euler-Lagrange equation. We bascically
need a growth bound for L and its derivatives. For some q > 1 we assume

|L(p,z,x)| ≤ c(|p|q + |z|q +1) ,
|∇pL(p,z,x)| ≤ c

(
|p|q−1 + |z|q−1 +1

)
, (7.13)

|Lz(p,z,x)| ≤ c
(
|p|q−1 + |z|q−1 +1

)
.

We let q′ denote the conjugate index of q. These bounds basically define the underlying
function space W 1,q(Ω), and as we will see, it also defines a natural relation between the
minimizer u and a small perturbation v. In this framework, it is convenient to slightly
modify the definition of a weak solution by reducing the set of test functions. In the general
weak formulation, we would employ the dual space (W 1,q(Ω))∗, which is some non-trivial
measure space. Instead, we restrict test functions to be in W 1,q

0 (Ω):

Definition 7.8.1 We say that u ∈A is a weak solution of the Euler-Lagrange equation

−∇(∇pL)+Lz = 0,

u
∣∣∣
∂Ω

= g,

if ∫
Ω

∇pL(∇u,u,x) ·∇v+Lz(∇u,u,x) v dx = 0,

for all v ∈W 1,q
0 (Ω).

Theorem 7.8.1 — Weak solution. Assume (7.13) and assume that u∈A is a minimizer
of J(u), i.e.

J(u) = min
w∈A

J(w).

Then u is a weak solution of the Euler-Lagrange equation,

−∇(∇pL(∇u,u,x))+Lz(∇u,u,x) = 0.

Proof. Notice that A ⊂W 1,q(Ω), where q is now the exponent from assumption (7.13).
We consider a perturbation v ∈W 1,q

0 (Ω) and study V (τ) = J(u+ τv). Because of the
bounds in (7.13), V (τ) is bounded for all τ ≥ 0.

For τ 6= 0 we define

L(τ) :=
1
τ

(
L(∇u+ τ∇v,u+ τv,x)−L(∇u,u,x)

)
and write the differential quotient for V as

V (τ)−V (0)
τ

=
∫

Ω

L(τ)(x)dx.
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As τ → 0 we have

L(τ)→ ∇pL(∇u,u,x) ·∇v+Lz(∇u,u,x)v,

hence
V (τ)−V (0)

τ
→

∫
Ω

∇pL ·∇v+Lzv dx

=
∫

Ω

[
−∇(∇pL)+Lz

]
vdx. (7.14)

We want to show that the limit of the differential quotient exists, hence we estimate the
right hand side, using assumption (7.13) and a Hölder inequality with (q,q′):∣∣∣∣∫

Ω

∇pL ·∇v+Lzvdx
∣∣∣∣ ≤ ∫

Ω

c
(
|∇u|q−1 + |u|q−1 +1

)
(|∇v|+ |v|)dx

≤ c
(
‖|∇u|q−1‖q′+‖uq−1‖q′+1

)
‖v‖W 1,q

= c
(
‖u‖q−1

W 1,q +1
)
‖v‖W 1,q

< ∞,

using q′= q
q−1 . Hence V ′(τ) exists, and since it has a minimum at τ = 0, we have V ′(0)= 0.

This implies from (7.14) that∫
Ω

[
−∇(∇pL)+Lz

]
vdx = 0,

for all test functions v ∈W 1,q
0 (Ω). Hence u is a weak solution. �

7.9 Solutions of the E-L-equations are (sometimes) Minimizers
It is also not clear if solutions of the Euler-Lagrange equations are minimizers of J(u). For
this we need to come back to convexity, which we used already for the uniqueness above.
But we need a bit more:

Theorem 7.9.1 Assume that L(p,z,x) is convex in p as defined in (7.11) and in addition
the map z 7→ L(p,z,x) is convex for all p,x. Then each weak solution of the Euler-
Lagrange equation is a minimizer of J(u).

Proof. Assume u ∈W 1,q(Ω) is a weak solution of

−∇(∇pL)+Lz = 0,

u
∣∣∣
∂Ω

= g,

then u ∈A . Consider another w ∈A . Since L is convex in both variables p and z we have

L(r,y,x)≥ L(p,z,x)+∇pL(p,z,x) · (r− p)+Lz(p,z,x)(y− z).

We choose

p = ∇u, r = ∇w, z = u, y = w,
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and integrate over Ω

J(u)+
∫

Ω

∇pL(∇u,u,x)(∇w−∇u)+Lz(∇u,u,x)(w−u)dx︸ ︷︷ ︸
=0

≤ J(w).

Notice that the bracket equals zero, since u is a weak solution and we test with the test
function w−u ∈W 1,q

0 (Ω). Hence J(u)≤ J(w), and u is a minimizer. �

7.10 Constraints
From optimization theory we are quite familiar with constraint optimization problems and
the Method of Lagrange multipliers is a powerful tool. The variational calculus developed
here also deals with optimization, and it is a natural extension to include constraints.
We will see that also in the abstract case, we can introduce Lagrange multipliers, and a
modified Lagrangian, such that modified Euler-Lagrange equations result. Before doing
the detailed analysis, let us review the classical Lagrange Multiplier approach.

7.10.1 Review: Lagrange Multiplier Method
We are interested to find the extreme values of a real function f (x,y),(x,y) ∈ R2 under the
constraint g(x,y) = k. We assume f and g are smooth functions and we define the k-level
set of g as

G := {(x,y) : g(x,y) = k}.

The formal construction is as follows:
• We first draw the level-curve G and a whole lot of level curves { f (x,y) = c} for

various c.
• We find the largest value of c such that the level curves of f intersect the level curve

of g.
• We find that at the maximum c the level sets touch each other. If they do not touch,

then we can make c even bigger.
• Hence, at the intersection point (a,b), the level curves have the same tangent, i.e.

they have the same gradient:

∇ f (a,b) = λ∇g(a,b),

where λ is an unknown constant of proportionality, called the Lagrange multiplier.

Theorem 7.10.1 — Method of Lagrange Multiplier. To find the minima of a smooth
real function f (~x),~x ∈ Rn subject to constraints g(~x) = k, we

1. find all values (~x,λ ) such that

∇ f (~x) = λ∇g(~x), g(~x) = k

and
2. evaluate f (~x) at all those points to find the minimum.

Note that the equations have (n+1) unknowns and (n+1) equations. Hence a solution is
expected. Also note that λ can be multidimensional, such that each constraint gets its own
Lagrange multiplier. Let us try to develop a similar principle in the abstract framework.
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7.10.2 Isoperimetric Constraints
Given a Lagrangian L(∇u,u,x) we are now interested in a constraint minimization problem
to minimize

J(u) =
∫

Ω

L(∇u,u,x)dx (7.15)

under the integral constraint or isoperimetric constraint

V (u) =
∫ x1

x0

g(∇u,u,x)dx =V0. (7.16)

Let us perform a similar perturbation approach as we used for the First Variation in Section
7.2.2. We consider a perturbation of the minimizer ū of the form u = ū+ εη . In doing
this for an arbitrary perturbation η , we might violate the constraint (7.16). To compensate
for this, we include a second small perturbation, which is used to push us back onto the
constraint, i.e., we consider an ansatz

u = ū+ ε1η1 + ε2η2,

where ū is the minimizer with V (ū) =V0 and η1,η2 ∈C2
c . We consider a function of two

real variables:

G(ε1,ε2) =V (ū+ ε1η1 + ε2η2).

By the implicit function theorem we can find functions ε1(ε2) and ε2(ε1) such that

G(ε1(ε2),ε2) =V0 = G(ε1,ε2(ε1)),

provided

∇εG
∣∣∣
(0,0)
6= 0.

We use this as a definition
Definition 7.10.1 A point ū is called a rigid extremum, if ū is an extremum of the
constraint optimization problem (7.15, 7.16) and

∇εG
∣∣∣
(0,0)
6= 0.

Now, for given minimizer ū, we write the above optimization problem (7.15, 7.16) as an
optimization problem in (ε1,ε2).

F(ε1,ε2) = min J(ū+ ε1η1 + ε2η2)

G(ε1,ε2) = V (ū+ ε1η1 + ε2η2) =V0.

We can apply the standard Lagrange multiplier method from Theorem 7.10.1. There is a
constant λ such that

∇ε

(
F−λ (G−V0)

)
= 0.
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Let us compute the gradients.

∂

∂ε1
F
∣∣∣
(0,0)

=
∂

∂ε1

∫
Ω

L(∇ū+ ε1∇η1 + ε2∇η2, ū+ ε1η1 + ε2η2,x)dx
∣∣∣
(0,0)

=
∫

Ω

(
∇pL ·∇η1 +Lzη1

)
dx

=
∫

Ω

η1

(
−∇(∇pL)+Lz

)
dx.

Similarly for G we get

∂

∂ε1
G
∣∣∣
(0,0)

=
∫

Ω

η1

(
−∇(∇pg)+gz

)
dx.

Hence we define a constraint Lagrangian as

L (∇u,u,x) = L(∇u,u,x)−λg(∇u,u,x)

and find the Eurler-Lagrange equation of the constraint Lagrangian:

−∇(∇pL (∇u,u,x))+Lz(∇u,u,x) = 0.

We call constraints to be

holonomic constraints, if g(u,x) = 0,
nonholonomic constraints, if g(∇u,u,x) = 0.

More examples on holonomic and nonholonomic constraints can be found in many
textbooks about mechanics and variational methods.

7.11 Summary: Variational Calculus
A variational problem is something like

min J(u) =
∫

Ω

L(∇u,u,x)dx, L ∈C2,

u
∣∣∣
∂Ω

= g.

The admissible set is

A = {u ∈W 1,q(Ω) : u|∂Ω = g}.

1. Convexity: ∑Lpi p jξiξ j ≥ 0 for all ξ ∈Rn =⇒ J(u) is weakly lower semicontinuous
2. plus coercivity: L(p,z,x)≥ α|p|q−β =⇒ Each minimizing sequence {uk} has a

convergent subsequence in W 1,q (compactness)
3. plus A 6= /0 =⇒ Existence of a minimizer
4. plus uniform convexity ∑Lpi p jξiξ j ≥ θ‖ξ‖2 =⇒ Uniqueness of the minimizer
5. plus

|L(p,z,x)| ≤ c(|p|q + |z|q +1) ,
|∇pL(p,z,x)| ≤ c

(
|p|q−1 + |z|q−1 +1

)
,

|Lz(p,z,x)| ≤ c
(
|p|q−1 + |z|q−1 +1

)
.

=⇒Minimizer is a weak solution of the Euler-Lagrange equation
6. plus L(z, p,x) is convex in (p,z) =⇒ A weak solution of the Euler-Lagrange equa-

tions is a minimizer.
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7.11.1 A Note on Weak Formulations

In this section, we found another definition of a weak formulation in Definition (7.8.1). In
fact, so far we used four different definitions for a weak formulation:

1. In Chapter 4 on Dual Spaces, we defined weak convergence as convergence with
respect to test functions from the dual space.

2. Also in Chapter 4, we defined weak∗ convergence, where the set of test functions is
now the pre-dual space.

3. Later, in Chapter 5 on Sobolev Spaces, we defined a weak derivative as a derivative
with respect to test functions in C∞

c , and tempered distributions through the dual of
the Schwartz space.

4. In this Chapter on Variational Calculus, we define weak solutions in W 1,q through
test functions in essentially the same space W 1,q

0 .
These weak formulations are not equivalent and the choice of weak formulation is often
guided by the methods that are available for the analysis. Indeed, the choice of appropriate
function spaces is often an important and challenging part of analysis in applied mathe-
matics. The basic idea of a weak formulation is always the same, we test an equation with
test functions. However, a weak formulation that works for one model might have to be
modified for a different situation.

7.12 Exercises
Exercise 7.1 (Minimizing) (level 1)
Minimize the functional

J(u) =
∫ 1

0

(1
2

y′2 + yy′+ y′+ y
)

dx,

with the side conditions

y(0) = 2, y(1) = 3.

Give an argument that ensures that the result is indeed a minimum. �

Exercise 7.2 (Constraints) (level 1)
For a function y(x) with y(0) = 0 and y(1) = 2 , find the extremals of

J(u) =
∫ 1

0
y′2dx

under the constraint∫ 1

0
ydx = L.

Are these extrema maxima or minima?
�
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Exercise 7.3 (Geodesics) (level 2)
Geodesics in the plane are the shortest connections between two points. We use a
variational method to show that these are straight lines: Let the curve y(x) connect (0,0)
with (1,1). Minimize the arc length

J(u) =
∫ 1

0

√
1+ y′2 dx

and find the shortest connection ȳ(x). �

Exercise 7.4 (Lagrangian) (level 2)
Find a Lagrangian L(∇u,u,x) such that the functional J(u) =

∫
Ldx has the Euler-

Lagrange equation

−∆u+∇φ ·∇u = f

for given smooth functions φ and f .
�

Exercise 7.5 (Lagrangian in time and space) (level 2)
Find a Lagrangian L(∇u,ut ,u,x, t) such that the functional J(u) =

∫ t
0
∫

Ldxdt has the
Euler-Lagrange equation

ut−∆u+ εutt = 0

for a given parameter ε > 0.
�

Exercise 7.6 (Non-existence) (level 1)
Consider the energy functional

J(u) =
∫

Ω

√
1+ |∇u|2 dx.

It turns out that the general theory for the existence of a minimizer (Theorem 7.20) does
not work here. Why not?

�

Exercise 7.7 (Existence of PDEs) (level 3)
Let Ω be a smooth, bounded domain. Use variational methods and Sobolev embedding
results to show the existence of a non-trivial solution u ∈ H1

0 (Ω) of the PDE

−∆u = |u|q−1u
u
∣∣
∂Ω

= 0

for 1 < q < n+2
n−2 and n > 2. �
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8.1 Point, Continuous, and Residual Spectrum
When working with unbounded operators in infinite dimensional Hilbert spaces, the
spectrum contains more than just eigenvalues. This relates to the fact that there is more
than one way the operator Aλ = A−λ I is not invertible.

Definition 8.1.1 Let X be a complex Banach space and A : X → X a linear operator
with domain D(A). We define

Aλ = A−λ I and the resolvent Rλ (A) =
(

A−λ I
)−1

.

Note that in several text books the resolvent is defined as (λ I−A)−1, which adds a minus
sign to all the calculations. I do not have any preference, but a choice needs to be made,
and I am using Rλ (A) = (A−λ I)−1.
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Definition 8.1.2 Consider three conditions:
(a) Rλ (A) exists
(b) Rλ (A) is bounded
(c) the domain of Rλ (A) is dense in X .

The resolvent set is then

ρ(A) = {λ ∈ C : (a),(b), and (c) hold}.

Each λ ∈ ρ(A) is called a regular value. The spectrum

σ(A) = C\ρ(A)

consists of three parts

σ(A) = σp(A)+σc(A)+σr(A) :

the point spectrum σp(A) = {λ ∈ C : (a) does not hold}
the continuous spectrum σc(A) = {λ ∈ C : (a),(c) hold but (b) does not hold}

the residual spectrum σr(A) = {λ ∈ C : (a) holds but (c) does not hold}.

If X is a Hilbert space we call dim({Range(Aλ )}⊥) the deficiency of λ ∈ C.

� Example 8.1 On a finite dimensional space A : Rn→ Rn, we simply have

σp(A) = {eigenvalues}, σc(A) = /0, σr(A) = /0.

This fact will follow from Corollary 8.4.2, once we have further developed the spectral
theory. �

In the next sections we analyse the spectrum for more and more involved operators,
starting with bounded operators, proceeding to unbounded operators, to self-adjoint opera-
tors, to compact operators and to Fredholm operators.

8.2 Bounded Operators
For linear bounded operators that map from X to X we shorten the notation as write
L (X)=L (X ,X). An important tool in operator theory is the Neumann series:

Theorem 8.2.1 — Neumann series. Suppose A ∈L (X),‖A‖ < 1. Then (I−A)−1

exists and

(I−A)−1 =
∞

∑
k=0

Ak,

where the series converges in the operator norm.

Proof. We compute∥∥∥∥∥ ∞

∑
k=0

Ak

∥∥∥∥∥≤ ∞

∑
k=0
‖Ak‖ ≤

∞

∑
k=0
‖A‖k =

1
1−‖A‖

.



8.2 Bounded Operators 113

To see the inverse property, we multiply (I−A) with the Neumann series from left and
from the right.

(I−A)
∞

∑
k=0

Ak =
∞

∑
k=0

Ak−
∞

∑
k=0

Ak+1 = A0 = I,

and similarly

∞

∑
k=0

Ak(I−A) = I.

Hence

(I−A)−1 =
∞

∑
k=0

Ak.

�

Corollary 8.2.2 Let A ∈L (X) and λ ∈ σ(A), then

|λ | ≤ ‖A‖.

Proof. Consider |λ |> ‖A‖. Then

Rλ (A) = (A−λ I)−1 =− 1
λ

(
I− 1

λ
A
)−1

=− 1
λ

∑

(
A
λ

)k

. (8.1)

Since ‖A
λ
‖< 1 this resolvent exists. Hence λ ∈ ρ(A). �

Definition 8.2.1 The spectral radius of A is defined as

rσ (A) = sup
λ∈σ(A)

|λ |.

Corollary 8.2.2 implies that

rσ (A)≤ ‖A‖,

and we also have the useful inclusion (see Figure 8.1)

σ(A)⊂ Brσ (A)(0).

Also note that for normal operators (A∗A = AA∗) we have that

rσ (A) = ‖A‖.

The next result shows that the residual set ρ(A) is an open set, and it gives an explicit
representation of the resolvent as function of another resolvent.



114 Chapter 8. Spectral Theory

Figure 8.1: Sketch of point spectrum and spectral radius of a bounded operator.

Theorem 8.2.3 Consider A ∈L (X) and λ0 ∈ ρ(A). Then

λ ∈
◦
B 1
‖R

λ0
‖
(λ0)

implies that λ ∈ ρ(A) and

Rλ (A) =
∞

∑
k=0

(λ −λ0)Rλ0(A)
k+1.

Proof. We write

A−λ I = A−λ0I− (λ −λ0)I = (A−λ0I)
(
I− (λ −λ0)Rλ0(A)

)︸ ︷︷ ︸
=B

. (8.2)

By the choice of λ we have that

‖(λ −λ0)Rλ0(A)‖< 1,

hence B has a bounded inverse using the Neumann series

B−1 =
∞

∑
k=0

(λ −λ0)
k (Rλ0(A)

)k
.

Then from (8.2) we find

Rλ (A) = (A−λ I)−1 = B−1(A−λ0I)−1 =
∞

∑
k=0

(λ −λ0)
k (Rλ0(A)

)k+1
.

�

An illustration of Theorem 8.2.3 is given in Figures 8.2 and 8.3. In Figure 8.2 we chose
two values λ1,λ2 ∈ ρ(A) and indicate that a ball of radius (‖Rλ‖)−1 is still contained in
the resolvent set. From this image we also conclude that the resolvent diverges to ∞ when
we approximate the spectrum, as indicated in Figure 8.3.
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Figure 8.2: Illustration of Theroem 8.2.3. The inverse of the operator norm of the resolvent
defines the radius of a ball that is still contained in the resolvent set.

Figure 8.3: Illustration of the norm of the resolvent ‖Rλ‖ as λ gets close to the spectrum
σ(A) .
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Corollary 8.2.4 For A ∈L (X), the resolvent set ρ(A) is open and the spectrum σ(A)
is closed.

Definition 8.2.2 Let B(λ ) denote a family of operators which depend on a parameter
λ ∈ C. We say the map λ 7→ B(λ ) is analytic in λ0 ∈ C if

lim
λ→λ0,λ∈C

B(λ )−B(λ0)

λ −λ0
exists.

Theorem 8.2.5 If A ∈L (X) then Rλ (A) is analytic in the resolvent set ρ(A).

Proof. We compute the differential quotient at λ0 ∈ ρ(A) and use Theorem 8.2.3 plus the
fact that ρ(A) is open:

Rλ (A)−Rλ0(A)
λ −λ0

=
1

λ −λ0

(
∞

∑
k=0

(λ −λ0)
kRλ0(A)

k+1−Rλ0(A)

)

=
1

λ −λ0

∞

∑
k=1

(λ −λ0)
kRλ0(A)

k+1

=
∞

∑
k=1

(λ −λ0)
k−1Rλ0(A)

k+1

= Rλ0(A)
∞

∑
k=0

(λ −λ0)
kRλ0(A)

k+1

= Rλ0(A)Rλ (A),

which exists and is bounded. �

Corollary 8.2.6 If A ∈L (X) and A 6= 0 then σ(A) 6= /0.

Proof. If σ(A) = /0 then Rλ (A) would be analytic in C. Earlier in 8.1 we found

Rλ (A) =−
1
λ

∞

∑
k=0

(
1
λ

A
)k

, for λ ∈ ρ(A).

We chose |λ | ≥ 2‖A‖ and find

‖Rλ (A)‖ ≤
1

2‖A‖

∞

∑
k=0

(
A

2‖A‖

)k

=
1

2‖A‖
1

1− ‖A‖
2‖A‖

=
1
‖A‖

.

Hence ‖Rλ (A)‖ is uniformly bounded on C. By the Liouville Theorem every bounded
analytic function in C is constant, i.e. for some c1:

Rλ (A) = c1I.
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Then

(A−λ I)−1 = c1I
I = c1(A−λ I)

=⇒ A =
1− c1λ

c1
I,

which depends on λ , unless c1 = 0. But if c1 = 0, then A is unbounded, which is a
contradiction. �

Theorem 8.2.7 Let A : X → X be a linear operator. Then the spectral radius is

r(A) = lim
n→∞
‖An‖

1
n .

Proof. We know from Theorem 8.2.5 that the map λ 7→ Rλ (A) is analytic and by the
Neumann series (8.1) we have

Rλ (A) =−
1
λ

∞

∑
n=0

An

λ n .

This converges for

‖An‖
λ n < 1, i.e., for λ > ‖An‖

1
n .

Taking the limsup, this implies that

r(A)≥ limsup
n→∞

‖An‖
1
n .

On the other hand we have for λ ∈ C that

(λ nI−An) = (λ I−A)(λ n−1I +λ
n−2A+ · · ·+An−1)

= (λ n−1I +λ
n−2A+ · · ·+An−1)(λ I−A).

Hence if λ I−A is invertible, then also λ nI−An and vice versa. This implies that for
λ ∈ σ(A), the n-th iterate (λ nI−An) is not invertible and λ n ∈ σ(An). This implies that

|λ n| ≤ ‖An‖, i.e. |λ | ≤ ‖An‖
1
n .

Taking the infimum, we find

r(A)≤ liminf
n→∞

‖An‖
1
n .

Taking both arguments together we have

r(A)≤ liminf
n→∞

‖An‖
1
n ≤ limsup

n→∞

‖An‖
1
n ≤ r(A).

�
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8.3 Adjoint Operators
In this section we prove the spectral theorem for symmetric operators. For this we need
the concept of an adjoint operator.

Definition 8.3.1 Let A : X → Y be linear with dense domain D(A). We define the
adjoint operator on the dual spaces Ax : Y ∗→ X∗ by

Ax(y) = w if and only if y(Au) = w(u), y ∈ Y ∗,w ∈ X∗,u ∈ X ,

i.e., Axy has the action of y ◦A on u ∈ X . We call (Ax,D(Ax)) the adjoint operator,
where D(Ax) denotes the natural domain of definition of Ax.

Adjoint operators for bounded operators A are easily controlled.

Theorem 8.3.1 Let A ∈L (X ,Y ). Then D(Ax) = Y ∗ and Ax is bounded with

‖Ax‖= ‖A‖.

Proof. This is a direct consequence of the Corollay 4.1.4 of the Hahn-Banach Theorem.
�

In Hilbert spaces the adjoint can be expressed through the inner product. In that case we
use the more common notation of A∗ for the adjoint.

Definition 8.3.2 Let A : H1 → H2 be a linear map between Hilbert spaces. Then
A∗ : H2→ H1 such that

(v,Au)H2 = (A∗v,u)H1.

(A∗,D(A∗)) is called the Hilbert adjoint, or simply the adjoint of A.

The formal difference between Ax and A∗ is that Ax lives on the dual spaces and A∗ on the
Hilbert spaces:

Ax : H∗2 → H∗1 , A∗ : H2→ H1.

By the Riesz representation theorem 4.2.1, these maps can be identified in a natural way.
Let us consider range and null space of the adjoint operator.

Theorem 8.3.2 Assume (A,D(A)) is given on a Hilbert space H with a dense domain
D(A). Then

(Range(A))⊥ = N(A∗).

If in addition Range(A) is closed, then the reverse is also true:

Range(A) = N(A∗)⊥.

Proof. If z ∈ (Range(A))⊥ then (z,Au) = 0 for all u ∈ H. This implies (A∗z,u) = 0, i.e.
A∗z = 0 and z ∈ N(A∗). On the other hand, if z ∈ N(A∗) then (z,Au) = (A∗z,u) = 0 and
z ∈ (Range(A))⊥. Finally, if Range(A) is closed, then

Range(A) = Range(A)⊥⊥ = N(A∗)⊥.
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�

Definition 8.3.3 A is symmetric if (Au,v) = (u,Av) for all u,v ∈D(A). A is self-adjoint
if it is symmetric and D(A) = D(A∗).

� Example 8.2 Consider A =−∆ on L2(Ω), where Ω is a smooth domain. In the case of
Dirichlet boundary conditions, we define A on

D(A) = {u ∈ H1
0 (Ω)∩H2(Ω) : u

∣∣∣
∂Ω

= 0}.

Then we have

(u,Av) =−
∫

Ω

u∆vdx =
∫

Ω

∇u∇vdx =−
∫

Ω

∆u vdx = (Au,v).

Hence A∗ = A and we can chose D(A∗) = D(A) to obtain a self-adjoint operator. �

� Example 8.3 Let A = ∂

∂x in L2(R) and D(A) = H1
0 (R). Then

(u,Av) =
∫

uv′dx =−
∫

u′vdx =−(Au,v).

Hence A∗ =−A and D(A∗) = D(A) and we call A to be skew-adjoint. �

Before we prove the important spectral theorem for symmetric operators, we need a
small technical result on bounds for the resolvent:

Proposition 8.3.3 Assume A : X →Y is a linear and surjective operator, which is bounded
below ‖Ax‖ ≥ δ‖x‖> 0 for all x ∈ X . Then A−1 exists and is bounded.

Proof. Since A is surjective, for each y ∈ Y there exists an x ∈ X such that Ax = y. We call
this x = A−1y. Then

‖A−1‖= sup
y∈Y

‖A−1y‖
‖y‖

= sup
x∈X

‖A−1(Ax)‖
‖Ax‖

= sup
x∈X

‖x‖
‖Ax‖

≤ 1

infx
‖Ax‖
‖x‖

≤ 1
δ
.

The inverse is well defined, since when there are two x1,x2 with Ax1 = Ax2 = y, then

‖x1− x2‖= ‖A−1y−A−1y‖= 0,

since A−1 is bounded. �

Corollary 8.3.4 Assume A−λ I is invertible and bounded below away from 0, then

‖Rλ (A)‖ ≤
1

‖A−λ I‖
.
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Theorem 8.3.5 — Spectral Theorem for Symmetric Operators. Let (A,D(A)) be a
densely defined symmetric operator on a Hilbert space H. Then

1. (Ax,x) is real for all x ∈ D(A).
2. All eigenvalues of A are real.
3. Eigenvectors to distinct eigenvalues are orthogonal.
4. The continuous spectrum is real: σc(A)⊂ R.

Proof. 1. On a complex Hilbert space we have (a,b) = (b,a). Then

(Ax,x) = (x,Ax) = (Ax,x)

and (Ax,x) ∈ R.
2. Let (λ ,ϕ) be an eigenpair of A (i.e. λ is an eigenvalue and ϕ is a corresponding

eigenvector). Then

(Aϕ,ϕ) = λ‖ϕ‖2

and λ must be real.
3. Let (λ1,ϕ1),(λ2,ϕ2) be two eigenpairs. Then

λ1(ϕ1,ϕ2) = (Aϕ1,ϕ2) = (ϕ1,Aϕ2) = λ2(ϕ1,ϕ2)

and either λ1 = λ2 or ϕ1 ⊥ ϕ2.
4. Let λ ∈ σc(A) and λ = γ + iµ , γ,µ ∈ R. We want to show that µ = 0. We compute

‖(A−λ I)x‖2 = (Ax− γx− iµx,Ax− γx− iµx)
= (Ax− γx,Ax− γx)+(iµx,γx)+(iµx, iµx)
−(iµx,Ax)− (Ax, iµx)+(γx, iµx)

= ‖Ax− γx‖2− i(µx,γx)+ i(γx,µx)
+iµ(x,Ax)− iµ(Ax,x)+µ

2‖x‖2

= ‖Ax− γx‖2 +µ
2‖x‖2.

If µ > 0, then ‖(A−λ I)x‖ is bounded below, away from 0. Then, by Corollary
8.3.4, the inverse Rλ (A) exists and is bounded. But in this case λ 6∈ σc(A), which is
a contradiction. Hence we must have µ = 0 and λ is real.

�

8.4 Fredholm Alternatives
Definition 8.4.1 A linear operator A : X → Y has finite rank, if its range is finite
dimensional.

Proposition 8.4.1 If A has finite rank on a Hilbert space H, and if for λ 6= 0

inf{‖(A−λ I)x‖ : ‖x‖= 1}= 0,

then λ ∈ σp(A).

Proof. Consider a sequence {xn}n in H with ‖xn‖= 1 such that

‖(A−λ I)xn‖→ 0, for n→ ∞.
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Since the range of A is finite, there exists a convergent subsequence in the range of A:

‖Axn j − y‖→ 0, for n→ ∞.

Then

xn j =
1
λ

(
(λ I−A)xn j︸ ︷︷ ︸

→0

+Axn j︸︷︷︸
→y

)
→ 1

λ
y.

For the norm of xn j we have

1 = ‖xn j‖→ 1 =
1
λ
‖y‖, and ‖y‖ 6= 0.

Furthermore,

Axn j → y and Axn j →
1
λ

Ay,

which implies that Ay = λy and λ ∈ σp(A). �

Corollary 8.4.2 Let H be a Hilbert space and A : H→ H a linear map with finite rank.
Then for each λ ∈ C one of the following cases holds

1. λ ∈ ρ(A)
2. λ ∈ σp(A) is an eigenvalue of finite multiplicity.

Proof. If λ 6∈ σp(A) then, by the previous Proposition 8.4.1, there exists a c > 0 such that

‖(A−λ I)x‖ ≥ c‖x‖ for all x ∈ H.

Consider y ∈ Range(A−λ I). Then there exists a sequence {xn}n with

(A−λ I)xn→ y, as n→ ∞.

Then

‖xn− xm‖ ≤ c−1‖(A−λ I)xn− (A−λ I)xm‖

and {xn}n is a Cauchy sequence with a limit in H: xn→ x. Consequently, (A−λ I)x = y
and Rλ (A)y exists. Hence Range(A−λ I) = domain(Rλ (A)) is closed. Since λ 6∈ σp(A)
it is also not in σp(A∗) and

Range(A−λ I) = (ker(A−λ I)∗)⊥ = H.

Now let

Ty := { unique element x such that (A−λ I)x = y}.

Then (A−λ I)Ty = y and

c‖Ty‖ ≤ ‖(A−λ I)Ty‖= ‖y‖,

which implies that T is bounded. In fact T = (A−λ I)−1 so λ ∈ ρ(A). If λ ∈ σp(A) then
the eigenspace must be finite dimensional, since A has finite rank. �
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Theorem 8.4.3 — Finite-Rank Fredholm Alternative. Let G ⊂ C and consider an
analytic map λ 7→ F(λ ) ∈L (H), λ ∈ G. Assume F(λ ) is of finite rank and that

Range(F(λ ))⊂M, with dim(M)< ∞.

Then one of the two alternatives holds. Either
1. (I−F(λ ))−1 exists for no λ ∈ G, or
2. (I−F(λ ))−1 exists for every λ ∈ G\S, where S is a discrete subset of G. In this

case the map λ 7→ (I−F(λ ))−1 is analytic in G\S and if λ ∈ S then F(λ )Φ = Φ

has a finite dimensional family of solutions.

Proof. We consider {ψi}i=1...n a finite basis of the finite dimensional space M ⊂ H. Then
F has a spectral representation

F(λ )φ =
n

∑
i=1

(γi(λ ),φ)ψi,

and the maps λ 7→ γi(λ ) are analytic in G. We define

Λi j(λ ) := (γi(λ ),ψ j).

The inverse (I−F(λ ))−1 does not exist when F(λ )φ = φ has a nontrivial solution. We
write this equation in components for φ = ∑

n
i=1 aiψi as

φ =
n

∑
i=1

aiψi = F(λ )φ =
n

∑
i=1

(
γi(λ ),

n

∑
j=1

a jψ j

)
ψi.

Using orthogonality of the eigenfunctions, we find

ai =
n

∑
j=1

(γi(λ ),ψi)a j =
n

∑
j=1

Λi ja j,

which we write in matrix notation as

(I−Λ(λ ))a = 0, a = (a1, . . . ,an), Λ = (Λi j).

For a non-trivial solution we need

d(λ ) = det(I−Λ(λ )) = 0.

By the assumption d(λ ) is analytic in λ ∈ G, hence d(λ ) is either identically zero in G
(case 1.), or the zeroes form a discrete set.

Finally, since F(λ ) has finite rank, we can only have finitely many solutions of
F(λ )φ = φ . �
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Theorem 8.4.4 — Compact Fredholm Alternative. Let G⊂ C and consider an ana-
lytic map λ 7→ B(λ ) ∈L (H), λ ∈ G. Assume B(λ ) is compact for each λ ∈ G. Then
one of the two alternatives holds. Either

1. (I−B(λ ))−1 exists for no λ ∈ G, or
2. (I−B(λ ))−1 exists for every λ ∈ G\S, where S is a discrete subset of G. In this

case the map λ 7→ (I−B(λ ))−1 is analytic in G\S and if λ ∈ S then B(λ )Φ = Φ

has a finite dimensional family of solutions.

Proof-Sketch. Use a spectral representation of B(λ ) and approximate B(λ ) by considering
finite sums. Use the previous result and let n go to infinity. �

� Example 8.4 — Spectrum of an integral operator. Compute the spectrum of

u 7→ Ku =
∫ 1

0
e−γ(x−y)u(y)dy

in

D(K) = (L2(0,1))+ = {u ∈ L2(0,1) : u≥ 0}.

Since the kernel of the integral operator

k(x,y) = e−γ(x−y) ∈ L2((0,1)× (0,1)),

the operator K is a compact Hilbert-Schmidt operator. Hence it has a discrete spectrum of
eigenvalues with a possible limit point at 0.

To solve Ku = λu, that is∫ 1

0
e−γ(x−y)u(y)dy = λu(x),

we multiply by the kernel e−γ(z−x) and integrate:∫ 1

0
e−γ(z−x)

∫ 1

0
e−γ(x−y)u(y)dydx = λ

∫ 1

0
e−γ(z−x)u(x)dx

= λ
2u(z).

On the other hand we compute directly∫ 1

0
e−γ(z−x)

∫ 1

0
e−γ(x−y)u(y)dydx =

∫ 1

0

∫ 1

0
e−γz+γyu(y)dydx

=
∫ 1

0
e−γ(z−y)u(y)dy

= λu(z).

Hence for u 6= 0 we have λ 2 = λ , which implies λ = 0 or λ = 1.
If λ = 0, then we have∫ 1

0
e−γ(x−y)u(y)dy = 0
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and since u≥ 0 this implies that u = 0 a.e. in [0,1]. Since we work in L2 this means u = 0,
and u is not an eigenfunction. Hence λ = 0 is not an eigenvalue.

If λ = 1, then we need to solve∫ 1

0
e−γ(x−y)u(y)dy = u(x).

We try u(x) = e−γx:

∫ 1

0
e−γ(x−y)u(y)dy = e−γx

∫ 1

0
eγye−γydy = e−γx = u(x).

Hence u(x) = e−γx is an eigenfunction of K with eigenvalue 1. The spectrum is

σ(K) = {1}.

Moreover, since k(x,y)> 0 we can apply the Krein-Rutman Theorem [13] (not covered
here), and find that λ = 1 has multiplicity one with a unique positive eigenfucntion
u(x) = e−γx.

�

Theorem 8.4.5 — Spectral Fredholm Alternative. Assume A : H→ H is a compact
linear map. Then σ(A) is compact and the only possible limit point is λ = 0. Further-
more, given λ ∈ C\{0} there are two alternatives. Either

1. λ ∈ ρ(A), or
2. λ ∈ σp(A) is an eigenvalue of finite multiplicity.

Proof. Let G := C\{0} and B(λ ) = 1
λ

A. We apply the previous Compact Fredholm
Alternative. Note that 1

λ
→ ∞ is possible, i.e., λ → 0 is a possible limit point. �

Theorem 8.4.6 — Hilbert-Schmidt. Let A : H→H be linear, compact and self-adjoint.
Then all eigenvalues λi are real and there exists an orthonormal set of eigenfucntions
{ψi}i such that A has a spectral representation

Aφ =
∞

∑
i=1

λi(φ ,ψi)ψi.

Proof. All eigenvalues are real, since A is self-adjoint. Based on the Spectral Fredholm
Alternative the eigenvalues form a disctrete set, each with finite multiplicity. Thus we
enumerate them according to their multiplicity {λi}i with eigenvectors {ψi}i, which are
orthogonal. We can always normalize them to norm 1.

Now we set

M := span{ψi, i = 1, . . . ,∞}

and we show that Range(A)⊂M.
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First, since A is compact, we have AM = M. For φ ∈ M⊥ we have that (Aφ ,ψ) =
(φ ,Aψ) = 0 for all ψ ∈M. Hence Aφ ∈M⊥ as well. This implies that both M and M⊥

are invariant under A. We define

Â := A
∣∣∣
M⊥

and we will show that Â = 0. Indeed, Â is self adjoint and compact (same as A), and
each spectral value is an eigenvalue. But each eigenvector belongs already to M. Hence
σp(Â) = /0. Hence Â = 0. It follows that {ψi}i is a basis of Range(A) and we write

A(u) =
∞

∑
i=1

(ψi,Au)ψi =
∞

∑
i=1

(Aψi,u)ψi =
∞

∑
i=1

λi(ψi,u)ψi.

�

8.5 Summary of Spectral Theory

A : X → X , linear
σ(A) = σp(A)∪σc(A)∪σr(A)

σp(A) = {eigenvalues}
σc(A) = {Rλ (A) exists with dense domain, but is unbounded}
σr(A) = {Rλ (A) exists, but the domain is not dense}

• Neumann series (I−A)−1 =
∞

∑
k=0

Ak

• spectral radius rσ (A) = sup
λ∈σ(A)

|λ | ≤ ‖A‖

• resolvent set ρ(A) = C\σ(A). ρ(A) is open.

Spectral Theorems:
1. A symmetric on H-space: σp(A)⊂ R,σc(A)⊂ R; eigenvectors are orthogonal.
2. A compact on H-space. σ(A) = σp(A); λ ∈ σp(A) has finite multiplicity. σp(A) is a

discrete set with possible limit point at 0.
3. A compact and self-adjoint: In this case we have the properties of Item 1. and Item

2. plus the spectral representation

Au =
∞

∑
i=1

λi(ψi,u)ψi, {ψi}i orthonormal basis of eigenvectors.
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8.6 Exercises

Exercise 8.1 (Classical Sturm-Liouville problems) (level 1)
Find the point spectrum and the corresponding eigenfunctions in L2([0,π]) for the
operators A and B with

A =− d2

dx2 , D(A) = { f ∈ L2(0,π);A f ∈ L2(0,π), f (0) = 0, f (π) = 0},

B =− d2

dx2 , D(B) = { f ∈ L2(0,π);B f ∈ L2(0,π),
d
dx

f (0) = 0,
d
dx

f (π) = 0}.

�

Exercise 8.2 (Adjoint spectrum) (level 2)
Consider a linear operator A on a Banach space with adjoint A∗. Show that

λ ∈ σp(A) =⇒ λ̄ ∈ σr(A∗)∪σp(A∗).

�

Exercise 8.3 (Left and right shift) (level 3)
Consider the Hilbert space l2, which consist of sequences x = (x1,x2, . . .) with bounded
norm

‖x‖2
2 =

∞

∑
i=1
|xi|2.

We define two operators, a left-shift L and a right-shift R as

L(x1,x2,x3, . . .) = (x2,x3, . . .), R(x1,x2,x3, . . .) = (0,x1,x2,x3, . . .).

1. Find the adjoints of L and R.
2. Find σ(L),σp(L),σc(L),σr(L). Recommended steps:

• Find the norm of L and use it to find the spectral radius of L. Define a ball
that contains the spectrum σ(L).
• Find the point-spectrum of L.
• Show that σr(L) = /0.
• Use the fact that the spectrum is a closed set to identify all three components.

3. Find σ(R),σp(R),σc(R),σr(R). Recommended steps:
• Find the norm of R , the spectral radius of R, and define a ball that contains

the spectrum σ(R).
• Find the point-spectrum of R.
• Use the previous results and the result from Exercise 22 to find the residual

spectrum of R.
• Find the continuous spectrum of R.
• Use the fact that the spectrum is a closed set to identify all three components.

�
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Exercise 8.4 (skew adjoint) (level 2)

1. Show that the operator on L2(0,1) given by

A =
∂

∂x
, D(A) = {u ∈ H1([0,1]);u(0) = u(1)}

is skew adjoint (A∗ =−A,D(A∗) = D(A)).
2. Show that the point spectrum of A is purely imaginary.

�
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9.1 Introduction
The key idea of semigroup theory is to write a PDE as an ODE in a Banach space. Now
we learned a lot about Banach spaces and their operators, and we are ready to do exactly
that. For example, consider a reaction diffusion equation

ut = D∆u+ f (u)

which we write as

ut = Au+ f (u), u(t, ·) ∈ H2(Ω).

Some ideas to think about:
• Consider the linear case u̇ = Au. If A were a matrix and u(t) ∈ Rn then we could

simply use the matrix exponential to solve the differential equation

u(t) = eAtu0.

The exponential matrix (or matrix exponential)

eAt =
∞

∑
n=0

An

n!
tn (9.1)

is well defined by its power series. In fact, by the Caley-Hamilton theorem eAt , for
given t, is only a finite series, and there is no worry about convergence.
• If A is a bounded operator we can still use the same series (9.1) to define an operator

exponential. The series might be infinite, but it still converges in the operator norm
and is bounded by e‖A‖.
• But what if A is an unbounded operator, for example A = ∆? If we write a formula

like (9.1), then u would need to be C∞ such that all derivatives make sense.
• The question arises if there is a better way to define eA if A is unbounded? Here are

a few ideas:
• Idea 1: Use diagonalization. For a matrix A ∈ Rn×n we can find its Jordan normal

form J and an orthogonal transformation Q such that A = Q−1JQ. Then

eA = eQ−1JQ = Q−1eJQ

and we have methods to compute eJ . How about unbounded Banach spaces? Some-
thing like a Jordan form does not exist in an infinite dimensional context.
• Idea 2: We use the limit definition of an exponential

eA = lim
n→∞

(
I +

A
n

)n

.

Again we are facing the problem of using higher orders of An, restricting the available
function spaces.
• Idea 3: We could use the inverse limit formula for the exponential

eA = lim
n→∞

(
I− A

n

)−n

,
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A B

Figure 9.1: Illustration of idea 4. Using the Cauchy integral formula over a path C the
encircles the spectrum of A might become a useful definition of an operator exponential.

which we need to read in the correct operator-way as

eA = lim
n→∞

[(
I− A

n

)−1
]n

= lim
n→∞

[−nRn(A)]
n

using the resolvent. This looks complicated, but it actually works! For an unbounded
operator the resolvent, when it exists, is very well behaved, and taking it to some
large power is no problem.
• Idea 4: Using the Chauchy-integral formula for the exponential

eA =
1

2πi

∫
C

eλ (λ I−A)−1dλ ,

where C ⊂ C is a closed, simple, rectifiable, positive oriented curve that encloses
the spectrum of A. This method seems very far fetched, but as we will see, it works
too! In particular for analytic semigroups. In Figure 9.1 we illustrate this idea for a
bounded operator on the left (A) and for an analytic semigroup on the right (B).
• A proper definition will arise from the properties of the matrix exponential, which

we call the semigroup properties, and the concept of an infinitessimal generator A.

Definition 9.1.1 Let X be a Banach space. A family {T (t)}t≥0 of bounded linear
operators in X is called a strongly continuous semigroup or C0-semigroup, if it satisfies

1. T (t + s) = T (t)T (s), t,s≥ 0, (semigroup property)
2. T (0) = I,
3. For all u ∈ X the map t 7→ T (t)u is continuous in X . Note that it is sufficient to

check continuity at t = 0.

� Example 9.1 Let X = C0(R) and consider the left shift T (t)u(x) = u(x+ t). T (t) is
a strongly continuous semigroup. Let us check the conditions. Firstly T (t + s)u(x) =
u(x+ s+ t) while T (t)T (s)u(x) = T (t)u(x+ s) = u(x+ s+ t), which confirms item 1. At
t = 0 we have T (0)u(x) = u(x), i.e. T (0) = I and item 2. is satisfied. Since u ∈C0(R) we
have continuity

lim
t→0
‖T (t)u‖∞ = lim

t→0
‖u(t + x)‖∞ = |u(x)|,
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Let us now look at the simple first order, linear, partial differential equation

ut−ux = 0. (9.2)

This equation on R is solved by a traveling wave u(x, t) = u(x+ t) = T (t)u(x). Hence T (t)
is the solution semigroup of (9.2). In this sense we could say

T (t) = et ∂

∂x .

Note that equation (9.2) needs u ∈C1, while T (t) only needs u ∈C0. �

We prove a technical Lemma

Proposition 9.1.1 Let ω : [0,∞)→ R be bounded on any finite interval and subadditive
ω(t1 + t2)≤ ω(t1)+ω(t2), then

inf
t>0

ω(t)
t

= lim
t→∞

ω(t)
t

,

where the limit might be equal to −∞.

Proof. Let ω0 := inft>0
ω(t)

t and consider γ > ω0. Then there exists a t0 > 0 such that
ω(t0)

t0
< γ. We chose a t > t0 which we write as t = nt0 + r. Then by subadditivity we have

ω(t)
t
≤ nω(t0)+ω(r)

t
.

As we take the limit n→ ∞ we get t→ ∞ and n
t →

1
t0

. The second term on the right hand
side satisfies

ω(r)
t
≤ sup

s∈[0,t0)

ω(s)
t
→ 0 for t→ ∞.

Then

limsup
t→∞

ω(t)
t
≤ ω(t0)

t0
< γ,

for all γ > ω0. Hence limt→∞
ω(t)

t exists and equals ω0. �

The next result gives us an important exponential growth bound .

Theorem 9.1.2 Let {T (t)} t ≥ 0 be a strongly continuous semigroup of bounded linear
operators on a Banach space X . Then

ω0 = lim
t→∞

ln‖T (t)‖
t

exists (or is −∞). For every γ > ω0 there is a constant Mγ > 0 such that

‖T (t)‖ ≤Mγeγt .

The growth rate ω0 identifies the type of the semigroup, which is exponentially decaying
for ω0 < 0 and exponentially growing for ω0 > 0.
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Proof. The function ln‖T (t)‖ is subadditive,

ln‖T (t + s)‖ ≤ ln‖T (t)‖+ ln‖T (s)‖

and ‖T (t)‖ is bounded on bounded intervals. Hence by the previous Proposition 9.1.1 the
limit ω0 exists. For each γ > ω0 and for t > t0 for some t0 > 0 we then have

ln‖T (t)‖
t

≤ γ for all t > t0,

which implies

‖T (t)‖ ≤ eγt for all t > t0.

We set

Mγ = max

{
1, sup

t∈[0,t0]
‖T (t)‖e−γt

}
.

�

� Example 9.2 We consider again the left-shift T (t)u(x) = u(x+ t) in C0(R). Then

‖T (t)‖= sup
‖u‖∞=1

‖T (t)u‖∞ = sup
‖u‖∞=1

‖u(x+ t)‖∞ = 1.

Then ln‖T (t)‖/t = 0/t = 0 = ω0. The semigroup shows no growth or decay, it is simply a
shift to the left. �

9.2 The Infinitessimal Generator
The infinitessimal generator arises if we have a semigroup and we would like to know what
the corresponding operator is, i.e. we know eAt and want to determine A. If the operator
exponential exists, we can formally compute

d
dt

eAt
∣∣∣
t=0

= A.

We do the same in the general case:

Definition 9.2.1 Let {T (t)} be a strongly continuous semigroup. The infinitessimal
generator is defined as

Ax = lim
h→0+

T (h)x− x
h

.

The domain D(A) is the set of all x ∈ X where the above limit exists.

� Example 9.3 Again, we consider the shift-semigroup on C1(R): T (t)u(x) = u(x+ t).
The above differential quotient becomes

Au = lim
h→0+

T (h)u(x)−u(x)
h

= lim
h→0+

u(x+h)−u(x)
h

=
∂

∂x
u.

Hence the generator is A = ∂

∂x with domain D(A) =C1(R). �

Let us collect some important properties of the generator.
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Theorem 9.2.1 — Fundamental Theorem for Semigroups. Let {T (t)} be a strongly
continuous semigroup on a Banach space X with infinitessimal generator A. Then

1. For all x ∈ X we have

lim
h→0

1
h

∫ t+h

t
T (s)xds = T (t)x.

2. For all x ∈ X we have∫ t

0
T (s)xds ∈ D(A), and A

(∫ t

0
T (s)xds

)
= T (t)x− x.

3. For x ∈D(A) we have T (t)x ∈D(A). The function t 7→ T (t)x is differentiable and

d
dt

T (t)x = A(T (t)x) = T (t)(Ax).

4. For x ∈ D(A) we have

T (t)x−T (s)x =
∫ t

s
T (τ)Axdτ =

∫ t

s
AT (τ)xdτ.

Proof. 1. First note that since T (t) is strongly continuous. We find

lim
h→0

∣∣∣∣1h
∫ h

0
T (s)x−T (0)xds

∣∣∣∣≤ lim
h→0

1
h

∫ h

0
ds sup

s∈[0,h]
‖(T (s)x−T (0)x‖= 0,

hence

lim
h→0

1
h

∫ h

0
(T (s)x−T (0)x)ds = 0.

Then, using the semigroup property, we find

lim
h→0

1
h

∫ t+h

t
T (s)xds = lim

h→0
T (t)

1
h

∫ h

0
T (s)xds = T (t)T (0)︸︷︷︸

I

x = T (t)x.

2. We compute
T (h)− I

h

∫ t

0
T (s)xds

=
1
h

∫ t

0
(T (s+h)−T (s))xds

=
1
h

(∫ t−h

0
T (s+h)xds−

∫ t

h
T (s)xds+

∫ t

t−h
T (s+h)xds−

∫ h

0
T (s)xds

)
=

1
h

(∫ t

h
T (s)xds−

∫ t

h
T (s)xds+

∫ t+h

t
T (s)xds−

∫ h

0
T (s)xds

)
=

1
h

∫ t+h

t
T (s)xds− 1

h

∫ h

0
T (s)xds

→ T (t)x− x, for h→ 0.



9.2 The Infinitessimal Generator 135

3. Writing down the time derivatives gives

T (t +h)x−T (t)x
h︸ ︷︷ ︸

→ ∂T (t)x
∂ t

=
T (h)− I

h︸ ︷︷ ︸
→A

T (t)x = T (t)
T (h)− I

h︸ ︷︷ ︸
→A

x.

4. Finally, to prove the last relationship, we integrate item 3. and use the Fundamental
Theorem of Calculus.

�

R Note that the most important part of the Fundamental Theorem is item 3., where
the semigroup T (t) and the generator A are combined into an abstract differential
equation. This is the reason why we develop semigroup theory. Items 1., 2. and 4.
then tell us that in this abstract case we can still do differential calculus like we are
used to.

Theorem 9.2.2 Let A be an infinitessimal generator. Then D(A) is dense in X and A is
closed.

Proof. From Theorem (9.2.1) we have

x = lim
h→0

1
h

∫ h

0
T (s)xds, and

∫ h

0
T (s)xds ∈ D(A),

hence D(A) is dense in X . To show that A is closed we consider a convergent sequence
xn ∈ D(A), xn→ x and Axn→ y. We need to show y = Ax. Indeed, from Theorem (9.2.1)
we know that

T (h)xn− xn =
∫ h

0
T (s)Axnds.

The first term converges for n→ ∞ to T (h)x− x, while the right hand side converges to∫ h
0 T (s)yds. Which implies

Ax = lim
h→0+

T (h)x− x
h

= lim
h→0

1
h

∫ h

0
T (s)yds = y.

�

R We are starting to build the Semigroup Triangle, which summarizes the relationships
between semigroup T (t), generator A and resolvent Rλ (A). It is a tool that helps
to visualize the various aspects that are discussed here. As seen in Figure 9.2 we
identify the relation from T to A, and of course the relations between A and Rλ (A).
The question marks are relations that we fill in in the next sections.
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Semigroup

{T (t)}t≥0

Generator

(A,D(A))

Resolvent

Rλ (A)

?

Ax = lim
t→0+

T (t)x− x
t ?

?

Rλ (A) = (A−λ I)−1

A = Rλ (A)−1 +λ I

Figure 9.2: Part I of the Semigroup Triangle

9.3 Solutions to Abstract ODEs
We consider the abstract ODE on a Banach space X with unbounded operator A as

ut = Au+ f (t), u(0) = u0 ∈ X , (9.3)

where we assume u0 ∈ D(A), f ∈C([0,T ],X). For T > 0 we are interested in a classical
solution

u ∈C1([0,T ],X)∩C([0,T ],D(A)).

Theorem 9.3.1 — Variation of Constants Formula. Assume A is infinitessimal gener-
ator of a C0-semigroup {T (t)}. If u is a classical solution of (9.3), then

u(t) = T (t)u0 +
∫ t

0
T (t− s) f (s)ds. (9.4)

Proof. This is, in fact, the classical variation of constant formula. Using the properties of
the generator in Theorem (9.2.1), we directly compute for g(s) = T (t− s)u(s) that

dg
ds

= −AT (t− s)u(s)+T (t− s)u̇(s)

= −AT (t− s)u(s)+T (t− s)(Au(s)+ f (s))
= T (t− s) f (s).

Hence

g(t)−g(0) = u(t)−T (t)u0 =
∫ t

0
T (t− s) f (s)ds.

�
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Definition 9.3.1 Given

u̇ = Au+ f (t), in X ,

and f ∈ L1((0,T ),X). Then u is called a mild solution if it satisfies the variation of
constant formula (9.4).

R Note that a mild solution does not need any differentiation.

R Note that a classical solution is automatically a mild solution. However, a mild
solution is not necessarily a weak or classical solution. But mild solutions can be
used to find those.

The next result answers the question when a mild solution is classical.

Theorem 9.3.2 Assume f ∈C([0,T ],X) and u0 ∈D(A). Assume that f satisfies at least
one of the following conditions: either f ∈W 1,1([0,T ],X) or f ∈ L1(0,T,D(A)). Then
a mild solution u is also a classical solution.

Proof. By Theorem (9.2.1) the term T (t)u0 is differentiable and T (t)u0 ∈D(A), hence the
first term on the right hand side of (9.4) is classical. Now we study the integral term

v(t) :=
∫ t

0
T (t− s) f (s)ds. (9.5)

We need to show that

v ∈C1([0,T ],X)︸ ︷︷ ︸
(1)

∩C([0,T ],D(A))︸ ︷︷ ︸
(2)

.

We compute

T (h)− I
h︸ ︷︷ ︸
(3)

v =
1
h

(∫ t

0
T (h+ t− s) f (s)ds−

∫ t

0
T (t− s) f (s)ds

)

=
1
h


∫ t+h

0
T (h+ t− s) f (s)ds︸ ︷︷ ︸

v(t+h)

−
∫ t+h

t
T (h+ t− s) f (s)ds−

∫ t

0
T (t− s) f (s)ds︸ ︷︷ ︸

v(t)


=

1
h
(v(t +h)− v(t))︸ ︷︷ ︸

(4)

−1
h

∫ t+h

t
T (h+ t− s) f (s)ds.

From Theorem (9.2.1) we evaluate the limit of the last term

lim
h→0

1
h

∫ t+h

t
T (h+ t− s) f (s)ds = f (t).
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The limits of (3) and (4) need some more attention. In fact, if (1) is true, then (4) converges

lim
h→0

1
h
(v(t +h)− v(t)) = v̇(t).

In this case (3) converges to Av and (2) is true, i.e (1) implies (2).
If (2) is true then (3) converges

lim
h→0

T (h)− I
h

v(t) = Av(t).

Moreover, if (3) converges, then also (4), which implies (1). Hence (1) implies (2). Also,
if (4) converges, then also (3). We find that (1) implies (2) and vice versa. We break this
circle conclusion by the additional conditions on f .

If f ∈ L1(0,T,D(A)), then (3) converges by the definition of v(t) in (9.5). If f ∈
W 1,1([0,T ],X) we use the convolution identity

v(t) =
∫ t

0
T (s) f (t− s)ds

and differentiate

v̇(t) = T (t) f (0)+
∫ t

0
T (s) ḟ (t− s)ds,

which is well defined. Hence (1) holds. Altogether we have a classical solution of
u̇ = Au+ f (t), u(0) = u0. �

9.4 The Hille-Yosida Theorem
The Hille-Yosida Theorem is the first result that will answer the question: When is an
operator a generator of a C0-semigroup?

Theorem 9.4.1 — Hille-Yosida. The operator A : X→X is generator of a C0-semigroup
{T (t)} with exponential bound

‖T (t)‖ ≤Meωt , (9.6)

if and only if
1. D(A) is dense in X and A is closed.
2. Each λ > ω is in the resolvent set ρ(A) and the resolvent is estimated as

‖Rλ (A)
n‖ ≤ M

(λ −ω)n .

Proof. Step 1: Item 1. is necessary (semigroup =⇒ Item 1.)
We already know from Theorem (9.2.2) that D(A) needs to be dense and A needs to be
closed. Hence item 1. is necessary.
Step 2: Item 2. is necessary (semigroup =⇒ Item 2.)
Assume {T (t)} is a semigroup with the exponential bound (9.6). We define a strange
looking integral operator, called In(λ ), and we will show that it corresponds to (−Rλ (A))n.
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The integral representation will then allow us to prove the desired resolvent estimate. Here
we go

In(λ )x :=
1

(n−1)!

∫
∞

0
tn−1e−λ tT (t)xdt, λ ∈ C,Reλ > ω,n≥ 1.

We will show that

In(λ ) = (−Rλ (A))
n and ‖In(λ )‖ ≤

M
(Reλ −ω)n .

The inequality is straight-forward by using the exponential bound and integration by parts
(n−1)-times:

‖In(λ )‖ ≤
M

(n−1)!

∫
∞

0

∣∣∣tn−1e−λ teωt
∣∣∣ dt

=
M

(n−1)!

∫
∞

0
tn−1

∣∣∣e(ω−λ )t
∣∣∣ dt

=
M

(n−1)!

∫
∞

0
tn−1e(ω−Reλ )t dt

=
M(−1)n−1

(ω−Reλ )(n−1)

∫
∞

0
e(ω−Reλ )t dt

=
M(−1)n−1

(ω−Reλ )n (−1) (9.7)

=
M

(Reλ −ω)n . (9.8)

For x ∈ D(A) and n > 1 we find

In(λ )Ax =
1

(n−1)!

∫
∞

0
tn−1e−λ tT (t)Axdt

=
1

(n−1)!

∫
∞

0
tn−1e−λ t d

dt
(T (t)x)dt

= − 1
(n−2)!

∫
∞

0
tn−2e−λ tT (t)xdt +

λ

(n−1)!

∫
∞

0
tn−1e−λ tT (t)xdt

= −In−1(λ )x+λ In(λ )x. (9.9)

Similarly, for n = 1 we get

I1(λ )Ax =
∫

∞

0
e−λ tT (t)Axdt

=
∫

∞

0
e−λ t d

dt
(T (t)x)dt

= −e0T (0)x+λ

∫
∞

0
e−λ tT (t)xdt

= −x+λ I1(λ )x. (9.10)

Hence we get recursive relations between the In. From (9.9) we find

In(λ )(Ax−λx) =−In−1(λ )x
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and since T and A commute, we also have

(Ax−λx)In(λ ) =−In−1(λ )x.

Moreover

I1(λ )(A−λ I) =−I = (A−λ I)I1(λ ).

This implies that

Rλ (A)x = (A−λ I)−1x =−I1(λ )x =−
∫

∞

0
e−λ tT (t)xdt. (9.11)

This equation is an important relation in its own right, as it describes the resolvent as a
Laplace transform of the semigroup!

Starting with I1 we then argue recursively to find

In(λ ) = (−Rλ (A))
n.

Step 3: Item 1. and 2. are sufficient (Item 1.+2. =⇒ semigroup). Now we come
back to one of the ideas that we discussed in the introduction to this chapter; the idea to
define an operator exponential as an inverse exponential limit

Tn(t) :=
(

I− t
n

A
)−n

.

We show Tn→ T . We rewrite Tn(t) as

Tn(t) =
( t

n

)−n(
−R n

t
(A)
)n

,

which is bounded by Item 2. for n
t > ω . This is particularly bounded for large n and small

t. To show that Tn(0) = I, it is sufficient to show that

lim
t→0

(
I− t

n
A
)−1

= I,

since the n-time iteration would then also be the identity. We use the relation for u ∈ D(A)

u =
(

I− t
n

A
)−1(

I− t
n

A
)

u =
(

I− t
n

A
)−1

u− t
n

(
I− t

n
A
)−1

Au.

Then ∥∥∥∥(I− t
n

A
)−1

u−u
∥∥∥∥= t

n

∥∥∥∥(I− t
n

A
)−1

Au
∥∥∥∥≤Ct‖Au‖→ 0,

for t→ 0, since ‖Au‖ is bounded for u ∈D(A). Hence Tn(0)u = u for a dense subset D(A),
and since Tn(0) is continuous, we have Tn(0) = I on X .

Next we want to show that indeed

T (t) = lim
n→∞

(
I− t

n
A
)−n

.
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We compute

d
dt

Tn(t) =−n
(

I− t
n

A
)−n−1

(
−A

n

)
= A

(
I− t

n
A
)−n−1

. (9.12)

Again we argue for a dense subset, but this time for D(A2) ⊂ D(A) ⊂ X , where it can
be shown that D(A2) is also dense by repeating the arguments in Theorem (9.2.1). Let
u ∈ D(A2). We show that {Tn} form a Cauchy sequence.

Tn(t)u−Tm(t)u

=
∫ t

0

d
ds

(Tm(t− s)Tn(s)u)ds

=
∫ t

0

(
−Ṫm(t− s)Tn(s)u+Tm(t− s)Ṫn(s)u

)
ds

=
∫ t

0

(
−A
(

I− t− s
m

A
)−m−1(

I− s
n

A
)−n

u+
(

I− t− s
m

A
)−m

A
(

I− s
n

A
)−n−1

u

)
ds

=
∫ t

0

(
I− t− s

m
A
)−m−1(

I− s
n

A
)−n−1

[
−A
(

I− s
n

A
)
+

(
I− t− s

m
A
)

A
]

uds

=
∫ t

0

(
I− t− s

m
A
)−m−1

︸ ︷︷ ︸
bounded

(
I− s

n
A
)−n−1

︸ ︷︷ ︸
bounded

[
s
n
− t− s

m

]
A2u ds. (9.13)

Then

‖Tn(t)u−Tm(t)u‖ ≤ C‖A2u‖
∫ t

0

s
n
+

t− s
m

ds

=
Ct2

2

[
1
n
+

1
m

]
‖A2u‖.

The last term is bounded, since u ∈ D(A2) and it goes to zero for n,m→ ∞. Hence

T (t) = lim
n→∞

Tn(t)

exists.
Step 4: It remains to show that this T (t) is indeed our semigroup and that A is its
infinitessimal generator.

We know already that limt→0 Tn(t) = I, hence T (t) is strongly continuous. For the
semigroup property we use equation (9.13) for n = m, without the integral, to obtain

d
ds

(Tn(t− s)Tn(s)u) =
2s− t

n

(
I− t− s

n
A
)−n−1(

I− s
n

A
)−n−1

A2u.

In the limit as n→ ∞ this becomes

d
ds

T (t− s)T (t) = 0.

Hence T (t− s)T (s) is independent of s. Then it equals the value at s = 0, which is T (t).
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Finally, taking the limit as n→ ∞ in (9.12) leads to

d
dt

T (t) = AT (t).

�

The proof of the Hille-Yosida Theorem gave us two important formulas

Corollary 9.4.2 Let A be the generator of a strongly continuous semigroup T (t), then

T (t) = lim
n→∞

(
I− t

n
A
)−n

(9.14)

and

Rλ (A) =−
∫

∞

0
e−λ tT (t)dt. (9.15)

R The formula for the semigroup (9.14) is reminiscent to the discrete implicit Euler
scheme for a numerical solver of u̇ = Au. Consider a small time increment ∆t = t

n .
Then the implicit Euler scheme is

u(t +∆t)−u(t)
∆t

= Au(t +∆t),

which gives(
1
∆t

I−A
)

u(t +∆t) =
u(t)
∆t

.

This is written as

u(t +∆t) = (I−∆tA)−1u(t).

An iteration of this scheme and taking ∆t→ 0 gives us something like (9.14).

After all this work, we reward ourselves with a beautiful definition.
Definition 9.4.1 If T (t) is a strongly continuous semigroup with generator A, then we
write

T (t) = eAt .

R In the semigroup triangle Figure 9.3 we are able to add the connection from A to T
and also the connection from T to Rλ . The only missing link is the arrow from Rλ to
T . This can be filled in for analytic semigroups, which we develop in Section 9.8.
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Semigroup

{T (t)}t≥0

Generator

(A,D(A))

Resolvent

Rλ (A)

T (t) = eAt

Ax = lim
t→0+

T (t)x− x
t

Rλ (A) =−
∫

∞

0
e−λ tT (t)dt

?

Rλ (A) = (A−λ I)−1

A = Rλ (A)−1 +λ I

Figure 9.3: Almost complete semigroup triangle.

9.5 The Lumer-Phillips Theorem
A special case arises when the constant Mγ =1. In this case we only need the resolvent
estimate for n = 1:

‖Rλ (A)‖ ≤
1

λ −ω

and the rest follows through iteration

‖Rλ (A)
n‖ ≤ 1

(λ −ω)n .

Corollary 9.5.1 The operator A is a generator of a strongly continuous semigroup
{T (t)} with

‖T (t)‖ ≤ eωt ,

if
1. D(A) is dense and A is closed.
2. For all λ > ω we have

‖Rλ (A)‖ ≤
1

λ −ω
.

Here condition 2. is much easier to check than condition 2. in the Hille-Yosida Theorem.
We give this case a special name.

Definition 9.5.1 The semigroup {T (t)} is called a quasi contraction if ‖T (t)‖ ≤ eωt ,
and it is called a contraction if ‖T (t)‖ ≤ 1 (i.e. ω = 0).

In addition to the Hille-Yosida Theorem for semigroups, there is an alternative for contrac-
tive semigroups on Hilbert spaces, the Lumer-Phillips theorem.
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Theorem 9.5.2 — Lumer-Phillips. Let A be a linear operator on a Hilbert space. Assume
1. D(A) is dense.
2. For all x ∈ D(A), Re(x,Ax)≤ ω(x,x) for some ω ≥ 0.
3. There exists a λ0 > ω such that A−λ0I is onto.

Then A generates a quasi contraction semigroup with

‖eAt‖ ≤ eωt .

Proof. For λ > ω we estimate

‖(A−λ I)x‖‖x‖ ≥ Re(x,(λ I−A)x)≥ (λ −ω)(x,x),

which implies

‖(A−λ I)x‖ ≥ (λ −ω)‖x‖.

Hence A−λ I is bounded below, away from 0, and by Corollary 8.3.4 the resolvent Rλ (A)
exists and

‖Rλ (A)‖ ≤
1

λ −ω
.

Hence for any λ0 > ω the map A−λ0I is onto. Then Rλ0(A) has range X and is continuous.
This implies that A−λ0I is closed, which means that A is closed. By the Corollary 9.5.1
to the Hille-Yosida Theorem, A generates a strongly continuous semigroup T (t) with

‖T (t)‖ ≤ eωt .

�

There is an immediate corollary, which is often called the Lumer-Phillips theorem [17]

Corollary 9.5.3 — Lumer-Phillips. Let A be a linear operator on a Hilbert space. As-
sume

1. D(A) is dense.
2. For all x ∈ D(A), Re(x,Ax)≤ ω(x,x) for some ω ≥ 0.
3. The resolvent set ρ(A)∩ (ω,∞) 6= /0.

Then A generates a quasi contraction semigroup with

‖eAt‖ ≤ eωt .

� Example 9.4 Assume A is self-adjoint on a Hilbert space H with dense domain D(A).
Let {λi}i denote the (real) eigenvalues and assume

ω > max{Re(λ ),λ ∈ σ(A)}. (9.16)

Let {φi}i denote an orthonormal basis of eigenvectors. Then

(x,Ax) =
∞

∑
i=1

λi(x,φi)(x,φi)≤ ω

∞

∑
i=1

(x,φi)(x,φi) = ω‖x‖2.

Then for λ0 > ω the resolvent Rλ0(A) exists and A−λ0I is onto. By the Lumer-Phillips
theorem A generates a quasi contraction semigroup. Note here that the spectral bound
(9.16) is essential. �
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� Example 9.5 Let A = d
dx on L2(0,1) with u(1) = 0. As usual, we put the boundary

condition into the domain

D(A) = {u ∈ H1(0,1),u(1) = 0}.

D(A) is dense in L2(0,1), since H1 is dense in L2 and functions in L2 are only defined up
to a set of measure zero. Hence the condition on one of the boundary points is not relevant.

We compute the spectrum of A. For ϕ ∈ L2(0,1) we like to solve the resolvent equation
(A−λ I)u = ϕ . This is written as an ODE

u′ = λu+ϕ, u(1) = 0,

which is a linear ODE that can be solved for any λ ∈ C. Hence (A−λ I)−1 exists for all
λ ∈C, and we can chose a spectral bound of ω = 0. To apply Lumer-Phillips we need one
more estimate

(u,Au) =
∫ 1

0
u(x)u′(x)dx =−1

2
(u(0))2 ≤ 0.

Hence A generates a contraction semigroup T (t) with

‖T (t)‖ ≤ 1.

�

9.6 Application to PDEs
In this section we study a number of partial differential equations that are relevant in many
other areas of applied mathematics, such as reaction-diffusion equations, wave equations,
the Schrödinger equation, and integral equations. We show how the semigroup theory can
be used to find solutions for these models.

9.6.1 The Reaction Diffusion Equation
On a smooth domain Ω⊂ Rn we consider a reaction-diffusion equation

ut = ∆u+ f (t) on Ω,
u(x,0) = u0 ∈ L2(Ω),
u(x, t) = 0 x ∈ ∂Ω,

(9.17)

with f ∈C0([0,∞]). We chose the Hilbert space X = L2(Ω) and the domain for A = ∆ as

D(A) = H2(Ω)∩H1
0 (Ω).

This set is dense in L2(Ω). On this Hilbert space L2(Ω) the operator ∆ is self-adjoint and
for u ∈ D(A) we have

(u,∆u) =
∫

Ω

u∆udx =−
∫

Ω

∇u∇udx =
∫

∆uuds = (∆u,u).

This also shows that

Re(u,∆u)≤ 0.
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Hence we chose the spectral bound in the Lumer-Phillips Theorem as ω = 0. Now we
choose a λ0 > 0 and show that (A−λ0I) is onto. Given ϕ ∈ L2(Ω) we aim to find u∈D(A)
such that

∆u−λ0u = ϕ, u|∂Ω = 0.

This leads to the theory of elliptic partial differential equations on a smooth domain with
Dirichlet boundary conditions, which are solved elsewhere (see Gilbarg and Trudinger
[8]). Here we simply assume that such an λ0 exists. Then we can apply Lumer-Phillips to
(A,D(A)), and A generates a strongly continuous contraction semigroup e∆t . A solution of
the reaction-diffusion equation (9.17) can then be found using the variation of constant
formula:

u(t) = e∆tu0 +
∫ t

0
e∆(t−s) f (s)ds

and, using the same arguments as we did in the discussion of mild solutions, we have

u ∈C1([0,∞),L2(Ω))∩C0([0,∞),D(A)).

9.6.2 The Wave Equation
On a smooth bounded domain Ω⊂ Rn we consider the wave equation

utt = ∆u on Ω,
u(x, t) = 0 on ∂Ω,
u(x,0) = u0(x),

ut(x,0) = u1(x).

(9.18)

We introduce a variable for the velocity v(x, t) = ut(x, t) and write the wave equation as a
system for (u,v) as(

u
v

)
t
=

(
0 I
∆ 0

)(
u
v

)
.

This is a differential equation on X = H1
0 (Ω)× L2(Ω). The matrix will become our

generator with the following domain:

A :=
(

0 I
∆ 0

)
, D(A) =

(
H2(Ω)∩H1

0 (Ω)
)
×H1(Ω),

and the domain is dense.

Proposition 9.6.1 (A,D(A)) generates a strongly continuous semigroup of contractions.

Proof. To apply the Lumer-Philips result, we consider the inner product on X

〈
(

u
v

)
,

(
f
g

)
〉=

∫
Ω

∇u∇ f + vg dx.

Then

〈
(

u
v

)
,A
(

u
v

)
〉= 〈

(
u
v

)
,

(
v

∆u

)
〉=

∫
∇u∇v+ v∆u dx = 0.
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Hence we chose the spectral bound as ω = 0. Next we claim that each λ > 0 satisfies
λ ∈ ρ(A). Given ( f ,g) ∈ H1

0 (Ω)×L2(Ω) we solve for (u,v) the equation

(A−λ I)
(

u
v

)
=

(
f
g

)
.

We get two equations

v−λu = f , ∆u−λv = g.

Solving the first equation for v and substituting this into the second equation gives

∆u−λ
2u = g+λ f ,

where g+λ f ∈ L2(Ω). Again we employ elliptic solution theory [8] and get a unique
solution for λ 2 > 0. This allows us to apply the Lumer-Phillips Theorem and obtain a
solution semigroup of the wave equation

T (t) = exp
((

0 I
∆ 0

)
t
)
.

�

9.6.3 The Schrödinger Equation
The Schrödinger equation for a given real potential V (x) in Rn is

ut = i(∆u−V (x)u),

where u(x, t) is complex valued wave function.

Proposition 9.6.2 Assume n≤ 3 and let V ∈ L2(Rn). Then A given by

Au := i(∆u−V (x)u), D(A) = H2(Rn)

is skew adjoint .

Proof. We compute

(u,Au) =
∫

u i(∆u−V (x)u)dx

=
∫

u(−i(∆ū−V (x)ū))dx

=
∫
−iu∆ū+ iV (x)uūdx

=
∫
−i(∆u−V (x)u)ūdx

= −(Au,u).

�

If V (x) is bounded, then A is closed and Stones Theorem for skew-adjoint operators
applies [19] and we get a contractions semigroup. If V (x) is unbounded, then all hell
breaks loose and we quickly enter areas of active research.
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9.6.4 Integral Equations
On a bounded domain Ω⊂ Rn we consider the integral equation

ut =
∫

Ω

k(x,y)u(y, t)dy = Au,

with a kernel k(x,y) ∈ L2(Ω×Ω) and
∫

Ω
k(x,y)dx = 1, and with domain of definition

D(A) = L2(Ω) = X .

Then A is a closed, compact Hilbert-Schmidt operator with full domain. From spectral
theory we know that A has a discrete point spectrum and no other parts of the spectrum.
This means that the resolvent set is dense in C, and we happily find one λ0 such that
A−λ0I is onto. We estimate the norm

|(u,Au)| =
∣∣∣∫

Ω

∫
Ω

k(x,y)u(x)u(y)dxdy
∣∣∣

≤
∣∣∣∫

Ω

‖k(·,y)‖2‖u‖2u(y)dy
∣∣∣

≤ ‖k‖2‖u‖2‖u‖2

= ‖k‖2‖u‖2
2.

Hence we choose ω = ‖k‖2. By Lumer-Phillips, A generates a quasi contraction semigroup

‖T (t)‖ ≤ eωt .

9.7 Bounded Perturbations
Semigroup thoery is particulalry powerful if we consider nonhomogeneous equations,
where the leading order differential operator is perturbed by an operator of lower order.
There is a huge variety of perturbation results for semigroups [6, 18, 19] and here, we will
focus on the example of bounded perturbations. We consider

ut = Au+Bu,

where (A,D(A)) is a generator and B is bounded. We want to show that (A+B,D(A)) is
also a generator, and possibly get a relation of e(A+B)t to eAt . The corresponding proof will
use a switch of equivalent norms, which we prepare first:

Proposition 9.7.1 Let A be a linear operator on a Banach space X with (0,∞) ∈ ρ(A). If
for each λ ∈ (0,∞)

‖λ nRλ (A)
n‖ ≤M, for all n≥ 0,

then there exists an equivalent norm | · |� such

‖x‖ ≤ |x|� ≤M‖x‖, for all x ∈ X ,

and

|λ nRλ (A)
n|� ≤ 1.
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Proof. For µ > 0 we define

‖x‖µ := sup
n≥0
‖µnRµ(A)nx‖.

Then for n = 0 we get ‖x‖ such that

‖x‖ ≤ ‖x‖µ ≤M‖x‖ (9.19)

and

‖µRµ(A)x‖µ = sup
n≥0
‖µnRµ(A)n

µRµ(A)x‖ ≤ ‖x‖µ .

Hence the operator norm

‖µRµ(A)‖µ ≤ 1.

For 0 < λ ≤ µ we set y = Rλ (A)x and we get

Rµ(A)(x− (µ−λ )y) = Rµ(A)
(

x+(A−µI)y− (A−λ I)y︸ ︷︷ ︸
=x

)
= Rµ(A)(A−µI)y
= y.

Evaluating y in the µ-norm we get

‖y‖µ =

∥∥∥∥µRµ(A)
x− (µ−λ )y

µ

∥∥∥∥
µ

≤
∥∥∥∥ x

µ
− µ−λ

µ
y
∥∥∥∥

µ

≤ 1
µ
‖x‖µ +

(
1− λ

µ

)
‖y‖µ .

This implies that

λ

µ
‖y‖µ ≤

1
µ
‖x‖µ ,

leading to

λ‖y‖µ ≤ ‖x‖µ .

Hence also the operator norm

‖λRλ (A)‖µ ≤ 1, for all 0 < λ ≤ µ.

Now we take the limit µ → ∞ and define the corresponding limit norm

|x|� := lim
µ→∞
‖x‖µ = lim

µ→∞
sup
n≥0
‖µnRµ(A)nx‖

and

|λRλ (A)|� ≤ 1.

Taking the limit µ → ∞ in (9.19) we get the equivalence of the | · |� norm. �
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Theorem 9.7.2 — Bounded perturbations. Assume (A,D(A)) is a generator on X of
a strongly continuous semigroup {T (t)} with exponential growth bound

‖T (t)‖ ≤Meωt .

If B is a bounded linear operator on X , then (A+B,D(A)) is generator of a strongly
continuous semigroup {S(t)}, denoted by S(t) = e(A+B)t , with exponential bound

‖S(t)‖ ≤Me(ω+M‖B‖)t .

Proof. We use the previously defined equivalent norm | · |�, such that

|T (t)|� ≤ eωt , |Rλ (A)|� ≤
1

λ −ω
, λ > ω.

For λ > ω + |B|� we find

|BRλ (A)|� ≤
|B|�

λ −ω
< 1,

which implies that I +BRλ (A) is invertible. We set

V := Rλ (A)(I +BRλ (A))
−1

= Rλ (A)(I− (−BRλ (A)))
−1

=
∞

∑
k=0

Rλ (A)(−BRλ (A))
k,

where we used the Neumann series in the last step. Now we claim that V = Rλ (A+B).
Indeed,

(A+B−λ I)V = [(A−λ I)+B]Rλ (A)(I +BRλ (A))
−1

= (I +BRλ (A))(I +BRλ (A))
−1

= I.

For the reverse case, we employ the above Neumann series

V (A+B−λ I)x =
∞

∑
k=0

Rλ (A)(−BRλ (A))
k((A−λ I)+B)x

= x+Rλ (A)Bx+
∞

∑
k=1

Rλ (A)(−BRλ (A))
k((A−λ I)+B)x

= x+Rλ (A)Bx+
∞

∑
k=1

Rλ (A)(−B)Rλ (A)(−B) · · ·︸ ︷︷ ︸
k times

Rλ (A)(A−λ I)x

+
∞

∑
k=1

Rλ (A)(−B)Rλ (A)(−B) · · ·︸ ︷︷ ︸
k times

Rλ (A)Bx

= x+Rλ (A)Bx+
∞

∑
k=1

(−Rλ (A)B)
kx−

∞

∑
k=2

(−Rλ (A)B)
kx

= x.
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Then

|Rλ (A+B)|� = |V |�
= |Rλ (A)|�|(BRλ (A)+ I)−1|�

≤ 1
λ −ω

∣∣∣∣∣ ∞

∑
k=0

(−BRλ (A))
−k

∣∣∣∣∣
�

≤ 1
λ −ω

∑
k=0∞

|B|k�|Rλ (A)|k�

≤ 1
λ −ω

∞

∑
k=0

|B|k�
(λ −ω)k

=
1

λ −ω

1

1− |B|�
λ−ω

=
1

λ −ω−|B|�
.

Now we apply the Corollary 9.5.1 of the Hille-Yosida Theorem and conclude that A+B is
a generator of a strongly continuous semigorup {S(t)} with

|S(t)|� ≤ e(ω+|B|�)t ,

which, upon reverting to the original norm, gives

‖S(t)‖ ≤Me(ω+M‖B‖)t .

�

R The semigroup {S(t)} solves the ODE u̇ = Au+Bu and it can be related to the
semigroup {T (t)} with the variation of constants formula

S(t)x = T (t)x+
∫ t

0
T (t− s)BS(s)xdx.

R The shift in norm is a very useful trick, since we get rid of the constant M in the Hille-
Yosida theorem. This means, that in the | · |�-norm we need the resolvent estimate
only for n = 1 and not for all n. In fact, whenever such estimates arise in the next
sections, we implicitly assume to have chosen the | · |� norm to begin with.

� Example 9.6 Solve the integro-PDE in L2(Ω), where Ω is bounded and smooth:

ut = D∆u+
∫

Ω

k(x,y)u(y, t)dy,

u|∂Ω = 0.

k ≥ 0, k ∈ L2,
∫

Ω

k(x,y)dx = 1.
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The operator D∆ is generator of the heat-equation semigroup {eD∆t} with Dirichlet bound-
ary conditions. The integral operator Ku =

∫
Ω

k(x,y)u(y, t)dy is a compact Hilbert-Schmidt
operator, hence bounded. We directly apply the above perturbation result Theorem 9.7.2
and there exists a strongly continuous semigroup

S(t) = e(D∆+K)t

on L2(Ω) with

‖S(t)‖ ≤Me(ω+M‖K‖)t .

For each u0 ∈ D(A) and for each T > 0 we have

S(t)u0 ∈C1([0,T ],L2(Ω))∩C([0,T ],D(A)).

�

9.8 Analytic Semigroups
Analytic semigroup are a special breed of semigroups, as they allow for more regularity
of the solutions. The Laplacian will, in many situations, lead to an analytic semigroup,
hence it is of relevance in many applications. We have made use of complex analysis
occasionally within this book. Now it is time to dig in even deeper.

Proposition 9.8.1 — Cauchy Integral Formula. Let f (z) be an analytic function in a
domain D( f )⊂ C and γ ⊂ D( f ) a closed positively oriented curve (i.e., oriented counter-
clockwise). Then

1
2πi

∮
γ

f (z)
z−a

dz = f (a).

It turns out that analytic semigroup can be characterized by the spectrum of the
generator.

Definition 9.8.1 Let (A,D(A)) be a closed linear operator on a Banach space X . A is
called sectorial if there exists an angle 0 < δ < π

2 such that the sector

Σ π

2 +δ :=
{

λ ∈ C : |arg λ |< π

2
+δ

}
\{0},

satisfies

Σ π

2 +δ ⊂ ρ(A),

and if for each ε ∈ (0,δ ) there exists an Mε > 0 such that

‖Rλ (A)‖ ≤
Mε

|λ |
, for all λ ∈ Σ π

2 +δ−ε\{0}. (9.20)

In Figure 9.4 we illustrate the spectrum of A and the sector Σ π

2 +δ which is spanned by the
angles π

2 +δ and −π

2 −δ , excluding the origin.
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Figure 9.4: Schematic showing the sector Σ π

2 +δ

Figure 9.5: Uniform resolvent estimates in a slightly smaller sector Σ x
2+δ−ε

The estimate above is a uniform resolvent estimate on a sector that is slightly smaller
than Σ π

2 +δ . The constant Mε will grow as we get closer and closer to the boundary of
Σ π

2 +δ , i.e. as ε → 0, and it can not be expected that Mε stays bounded as we reach the
boundary of Σ π

2 +δ . See Figure 9.5.
We use the Cauchy Integral Formula to represent the semigroup.

Definition 9.8.2 — Cauchy’s representation of a semigroup. Let (A,D(A)) be
densely defined and sectorial with angle δ . We define an operator family {T (z)}
with complex argument z as T (0) = I and for z ∈ Σδ

T (z) =
1

2πi

∮
γ

eµz(µI−A)−1dµ (9.21)

=
i

2π

∮
γ

eµzRµ(A)dµ, (9.22)

where γ is a piecewise smooth curve in Σ π

2 +δ connecting

∞e−i( π

2 +δ ′) to ∞ei( π

2 +δ ′),

for some δ ′ ∈ (|arg z|,δ ).
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Figure 9.6: The semigroup T (z) is defined in a small sector Σδ around the positive x-axis.

Notice the level of strangeness in this definition. Remember that for a semigroup, we
were looking at an operator family that depends on a scalar variable t, which is often under-
stood as time. In this context, the semigroup property is a very natural assumption, which
says that a system evolving to t+s must first evolve to t and then s units more. So what does
it mean for T to depend on a complex variable z? Is this a complex time? Well, of course
not, but the positive real axis is a part of the complex plane, and for a real world application
we can simply restrict T (z) to T (t) and keep our physical meaning. In addition we find that
close to the real axis, we can extend the semigroup to a semigroup with complex arguments.

Notice that T (z) in (9.22) is defined on a much much smaller sector Σδ than the sector
we considered earlier Σ π

2 +δ . As we show in Figure 9.6 for small δ the sector Σδ , is just a
small stripe above and below the positive real axis.

Theorem 9.8.2 Let (A,D(A)) be a densely defined sectorial operator with angle δ .
Then for all z ∈ Σδ the maps T (z) are bounded linear operators on X with the following
properties

1. ‖T (z)‖ is uniformly bounded in each smaller sector Σδ ′ , 0 < δ ′ < δ .
2. The map z 7→ T (z) is analytic in Σδ , i.e. we call {T (z)} and analytic semigroup.
3. For all z1,z2 ∈ Σδ with z1 + z2 ∈ Σδ we have

T (z1 + z2) = T (z1)T (z2).

4. The map z 7→ T (z) is strongly continuous in Σδ ′ , 0 < δ ′ < δ .

Proof. 1. We use the representation of the resolvent as a Laplace transform of T :

(A−λ I)−1 =−
∫

∞

0
e−λ tT (t)dt.

The right hand side is an analytic expression in λ , whenever the integral exists.
Hence

λ 7→ eλ zRλ (A)
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A B

Figure 9.7: The construction of the path γr and the sector Σδ as used in the proof.

is analytic whenever the resolvent exists, that is in any sector Σ π

2 +δ−ε for some small
ε > 0. Then, by complex analysis results, the path integral (9.22) is independent of
the choice of the path γ , as long as it stays inside the sector and is closed, simple and
positively oriented. Hence we make a particular choice. For a given radius r > 0 we
define

γr,1 = {−ρe−i( π

2 +δ−ε) :−∞≤ ρ ≤−r},

γr,2 = {re−iα :−
(

π

2
+δ − ε

)
≤ α ≤ π

2
+δ − ε},

γr,3 = {ρei( π

2 +δ−ε) : r ≤ ρ ≤ ∞},
where ε = 1

2(δ −δ ′). A sketch of the different parts of this construction can be seen
in Figure 9.7.
We fix a point z ∈ Σδ ′ and set r = 1

|z| . Then for µ ∈ γr,3 with z ∈ Σδ ′ we have

µz = |µz|ei(argµ+argz).

By the special choice of ε we have

argµ =
π

2
+δ − ε =

π

2
+δ − δ −δ ′

2
=

π

2
+

δ +δ ′

2

and |argz| ≤ δ ′. This means that

argµ + arg z≥ π

2
+

δ +δ ′

2
−δ

′ =
π

2
+

δ −δ ′

2
=

π

2
+ ε.

On the other hand

argµ + argz≤ π

2
+δ − ε +δ

′ ≤ π

2
+

π

2
− ε +

π

2
=

3π

2
− ε.

So

π

2
+ ε ≤ argµ + argz≤ 3π

2
− ε.
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Therefore,

1
|µz|

Re(µz) = cos(argµ + argz)≤ cos
(

π

2
+ ε

)
=−sinε,

and we find

|eµz| ≤ e−|µz|sinε .

We get a very similar estimate on the branch γr,1. Then on γr,1∪ γr,3 we find

‖eµzRµ(A)‖ ≤ e−|µz|sinε Mε

|µ|
.

On γr,2 we have |µ|= r = 1
|z| , hence |µz|= 1 and

‖eµzRµ(A)‖ ≤
eMε

|µ|
= eMε |z|.

Together on γr = γr,1∪ γr,2∪ γr,3 we then have∥∥∥∥∫
γr

eµzRµ(A)dµ

∥∥∥∥ ≤ 3

∑
k=1

∥∥∥∥∫
γr,k

eµzRµ(A)dµ

∥∥∥∥
≤ 2Mε

∫
∞

1
|z|

1
ρ

e−ρ|z|sinεdρ + eMε |z|
∫ π

2 +δ−ε

−( π

2 +δ−ε)
rdα

≤ 2Mε

∫
∞

1
|z|

1
ρ

e−ρ|z|sinεdρ +2πeMε ,

where we used r = 1
|z| in the last integral. We now substitute ρ|z| → ρ in the

remaining integral to obtain∥∥∥∥∫
γr

eµzRµ(A)dµ

∥∥∥∥≤ 2Mε

∫
∞

1

1
ρ

e−ρ sinεdρ +2πeMε ,

which is uniformly bounded and independent of z. It does depend on δ ′ through
ε = 1

2(δ −δ ′). This proves item 1.
2. Since for z ∈ Σδ the map z 7→ eµzRµ(A) is analytic, so is the map

z 7→ i
2π

∮
γ

eµzRµ(A)dµ

and we have item 2.
3. To check the semigroup property, we choose two paths. The first path is γ1 = γr

from before and the second path is a shift of γr as γ2 = γr + c for some real c > 0. A
sketch of these paths is given in Figure 9.8. We first note a useful identity

Rµ(A)Rλ (A)(µ−λ ) = Rµ(A)Rλ (A)((A−λ I)− (A−µI)) = Rµ(A)−Rλ (A).

To see that resolvents commute with (A− µI) we can use the Neumann series
representation. We use the previous identity for z1,z2 ∈ Σδ ′ in the definition of T (z1)
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A B

Figure 9.8: The semigroup T (z) is defined in a small sector Σδ around the positive x-axis.

and T (z2) from (9.22)

T (z1)T (z2) =
i2

(2π)2

∮
γ1

∮
γ2

eµz1eλ z2Rµ(A)Rλ (A)dλdµ

=
1

(2πi)2

∮
γ1

∮
γ2

eµz1eλ z2
Rµ(A)−Rλ (A)

µ−λ
dλdµ

=
1

2πi

∮
γ1

eµz1Rµ(A)

 1
2πi

∮
γ2

eλ z2

µ−λ
dλ

dµ

− 1
2πi

∮
γ2

eλ z2Rλ (A)

 1
2πi

∮
γ1

eµz1

µ−λ
dµ

dλ .

We now extend the paths γ1 and γ2 such that they form a closed loop. If we take a
λ ∈ γ2, then it lies outside of the closed loop γ1 (see Figure 9.8 A), hence we have

1
2πi

∮
γ1

eµz1

µ−λ
dµ = 0, for all λ ∈ γ

2,

since the pole λ of the integrand is not inside the enclosed domain of γ1.
In the other case, for µ ∈ γ1 the closed loop γ2 would go around the pole at µ (see
Figure 9.8 B), hence we apply the Cauchy integral formula

1
2πi

∮
γ2

eλ z2

µ−λ
dλ =−eµz2.
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Using these identities in the formula above we find

T (z1)T (z2) = − 1
2πi

∮
γ1

eµz1eµz2Rµ(A)dµ

=
i

2π

∮
γ1

eµ(z1+z2)Rµ(A)dµ

= T (z1 + z2),
which proves item 3.

4. To show strong continuity, we consider the map z 7→ T (z) and show continuity at
z = 0. The semigroup property item 3. does the rest. We come back to the path γr
defined earlier, but now we chose specific radius r = 1, i.e. the path γ1. Note that 0
is inside this path, hence we have

1
2πi

∮
γ1

eµz

µ
dµ = e0 = 1.

We also note the following identity

(µI−A)−1Ax = µI(µI−A)−1x− x

and obtain

T (z)x− x =
1

2πi

∮
γ1

eµz
(
(µI−A)−1− 1

µ

)
xdµ

=
1

2πi

∮
γ1

eµz

µ
(µI−A)−1Axdµ.

Now ∥∥∥∥eµz

µ
(µI−A)−1Ax

∥∥∥∥ ≤ Mε

|µ|2
max{e,e−|µz|sinε}‖Ax‖

→ eMε

|µ|2
‖Ax‖, for z→ 0.

Then, by the Lebesgue dominated convergence theorem (Theorem 2.2.3) we find

lim
z→0,z∈Σ

δ ′
T (z)x− x =

1
2πi

∮
γ1

lim
z→0,z∈Σ

δ ′

eµz

µ
(µI−A)−1Ax︸ ︷︷ ︸

uniformly bounded and analytic

dµ = 0,

proving item 4.
�

In the Hille-Yosida Theorem, we defined the semigroup T (t) = eAt as the limit of the
negative exponential sequence

T (t) = lim
n→∞

(
I− t

n
A
)−n

,

Now, in (9.22), we define a semigroup through a complex path integral. Are these
definitions the same, at least for real arguments T (t)? The answer is the next theorem.
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Theorem 9.8.3 Let {T (z)} be the analytical semigroup defined by (9.22). Then the
sectorial operator (A,D(A)) is its generator.

Proof. Let {T (z)} be defined through (9.22) and denote by (B,D(B)) the generator of
{T (t)}. We show that Rλ (B) = Rλ (A) for a very particular λ ∈ ρ(A). Because if Rλ (A) =
Rλ (B), then (A−λ I) = (B−λ I) and A = B.

Set λ = |ω|+2, where ω is the growth rate of T (t), and use the Laplace transform
formula for the resolvent

Rλ (B)x =−
∫

∞

0
e−λ tT (t)xdt.

We again employ the specific path γ1 with radius r = 1 near zero. Then

−
∫ t0

0
e−λ tT (t)xdt =

−i
2π

∫ t0

0

∮
γ1

e−λ teµtRµ(A)xdµ dt

=
1

2πi

∮
γ1

et0(µ−λ )−1
µ−λ

Rµ(A)xdµ.

We close γ1 as shown in Figure 9.9. Now, γ1 is clockwise, hence we get a minus sign. Also,
γ1 encloses the point λ = |ω|+2. Hence we get

−
∫ t0

0
e−λ tT (t)xdt = Rλ (A)x+

1
2πi

∮
γ1

et0(µ−λ )

µ−λ
Rµ(A)dµ.

The last term is estimated as∥∥∥∥∥∥
∮
γ1

et0(µ−λ )

µ−λ
Rµ(A)xdµ

∥∥∥∥∥∥≤ e−t0‖x‖
∣∣∣∣∮ Mε

|µ−λ ||µ|
dµ

∣∣∣∣︸ ︷︷ ︸ .
Since λ = |ω|+2, we have λ > 2, and on γ1 we have max{Re(µ)} = 1, which implies
Re(λ −µ)≥ 1. Hence et0(µ−λ ) ≤ e−t0 . And since |λ −µ|> |µ|, the under-braced integral
is bounded by

∫
∞

1
Mε

µ2 dµ , which is bounded. Hence for t0→ ∞, we get indeed

Rλ (B)x = Rλ (A)x,

for all x ∈ X . �

� Example 9.7 Again we consider the heat equation semigroup with homogeneous Dirich-
let boundary conditions.

A =
d2

dx2 , D(A) = { f ∈ H2([0,L]) : f (0) = f (L) = 0}.

Using Fourier analysis we know that the spectrum is

σ(A) = σp(A) =
{
−n2π2

L2 ,n = 1,2,3, · · ·
}
.

(A,D(A)) is densely defined and sectorial for any angle 0< δ < π

2 . Hence T (t) = exp(t d2

dx2 )
is a analytic semigroup in a sector Σδ around the positive real axis. �
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Figure 9.9: The construction of the path γ1 for the proof of Theorem 9.8.3. The curve γ1 is
closed going in a large circle to the right and letting this circle radius go to ∞.

Semigroup

{T (t)}t≥0

Generator

(A,D(A))

Resolvent

Rλ (A)

T (t) = eAt

Ax = lim
t→0+

T (t)x− x
t

Rλ (A) =−
∫

∞

0
e−λ tT (t)dt

T (z) =
i

2π

∮
γ

eµtRµ(A)dµ

Rλ (A) = (A−λ I)−1

A = Rλ (A)−1 +λ I

Figure 9.10: Full Semigroup Triangle. Note that the relationship from Rλ to T is only valid
for analytic semigroups.

And the reverse of Theorem 9.8.3 is true as well, which we cite without proof. A
proof, which is quite a bit more involved, can be found in the book of Engel and Nagel [6]
Theorem 4.6, p 95.

Theorem 9.8.4 If A generates an analytic semigroup {T (z)} then A is sectorial.

R We now complete our Semigroup Triangle. In Figure 9.8. We fill in all connec-
tions that we identified. Note that the connection between the resolvent Rλ and the
semigroup T via the Cauchy integral formula is only valid for analytic semigroups.
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9.9 Supplemental Material

Theorem 9.9.1 If A generates an analytic semigroup {eAt} then there are constants
c > 0 and ω such that

‖AeAt‖ ≤ c
eωt

t
, t > 0.

Proof. Consider the manipulation

(A−λ I)Rλ (A) = I
ARλ (A)−λRλ (A) = I

ARλ (A) = I +λRλ (A).

Then for an analytic semigroup, we have

AeAt =
i

2π

∮
γ

eλ tARλ (A)dλ

=
i

2π

∮
γ

eλ t(I +λRλ (A))dλ

=
i

2π

∮
γ

eλ t
λ (A−λ I)−1dλ

=
i

2π

∮
γ ′

eλ ′ λ
′

t

(
A− λ ′

t
I
)−1 dλ ′

t
,

where for t > 0 we used the substitution γ ′ := γt and λ ′ = λ t. This leads to the estimate

|AeAt | ≤ 1
2πt

∮
γ ′

|eλ ′|
∣∣∣∣λ ′t
∣∣∣∣ 1

|ω− λ ′
t |

dλ
′

=
1

2πt

∮
γ ′

|eλ ′|
∣∣∣∣λ ′t
∣∣∣∣ ω− λ ′

t

|ω− λ ′
t |

1

ω− λ ′
t

dλ
′

=
1

2πt
eωt
∣∣∣ωt

t

∣∣∣
=

ω

2π

eωt

t
,

where we used Cauchy’s integral formula in the second to last step.
�
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9.9.1 Perturbations of Analytic Semigroups

Theorem 9.9.2 — Perturbations with operators dominated by A. Let (A,D(A)) be
a sectorial operator with growth bound Mε for ε ∈ (0,δ ) as defined in (9.20). A generates
an analytic semigroup. Let B be an operator satisfying

1. B is closed and D(A)⊂ D(B).
2. There exist constants a,b > 0 with a < (1+Mε)

−1, such that

‖(B−bI)x‖ ≤ a‖Ax‖, x ∈ D(A).

Then A+B also generates an analytic semigroup.

Proof. Consider

ẋ = (A+B)x (9.23)

and define

y(t) = x(t)e−bt .

Then

ẏ = ẋe−bt−bxe−bt = (A+B)xe−bt−bxe−bt = (A+ B̃)y,

with

B̃ = B−bI.

This means that x(t) solves (9.23) if and only if y solves ẏ = (A+ B̃)y, and e(A+B)t is an
analytic semigroup if and only if e(A+B̃)t is an analytic semigroup. Now, ‖B̃x‖ ≤ a‖Ax‖,
hence, without loss of generality, we can assume b = 0, and use B instead of B̃.

Since A generates an analytic semigroup, we have

‖Rλ (A)‖ ≤
Mε

|λ |
, for all λ ∈ Σ π

2 +δ−ε ,

where Σ π

2 +δ−ε is a sector as defined above, for some small ε > 0.
Then

‖BRλ (A)x‖ ≤ a‖ARλ (A)x‖

and since ARλ (A) = I +λRλ (A), we find

‖BRλ (A)x‖ ≤ a
∣∣∣∣1+λ

Mε

|λ |

∣∣∣∣‖x‖ ≤ a(1+Mε)‖x‖.

Hence BRλ (A) is bounded and for a < (1+Mε)
−1 we have

‖BRλ (A)‖< 1.
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Then I +BRλ (A) is invertible and we write

A+B−λ I = (I +B((A−λ I)−1)(A−λ I)
(I +BRλ (A))

−1(A+B−λ I) = A−λ I
Rλ (A)(I +BRλ (A))

−1 = Rλ (A+B).

This manipulation implies that

ρ(A)⊂ ρ(A+B),

which means that A+B is sectorial as well and we use the same angle δ as for A. Moreover,

‖Rλ (A+B)‖ ≤ ‖Rλ (A)(I +BRλ (A))
−1‖ ≤ M̃

|λ |
.

Hence A+B is also sectorial and it generates an analytic semigroup defined by the Cauchy
integral representation.

�

9.9.2 Regularity of Mild Solutions
We consider the inhomogeneous initial value problem

u̇(t) = Au(t)+ f (t), (9.24)
u(0) = u0,

where A is a sectorial generator. We know already that eAtu0 is analytic in t for t > 0.
Moreover eAtu0 ∈ D(An) for each n > 0 and

‖AeAtu0‖ ≤C
‖u0‖

t
.

Hence we prove a technical lemma:

Proposition 9.9.3 Let (A,D(A)) generate an analytic semigroup in X and assume f ∈
C0,θ ([0,T ],X) for some 0 < θ ≤ 1. Define

w(t) =
∫ t

0
eA(t−s)( f (s)− f (t))ds

then w(t) ∈ D(A) for every t ∈ [0,T ] and Aw ∈C0,θ ([0,T ],X).

Proof. By Theorem 9.9.1 we chose constants M,C > 0 such that

‖eAt‖ ≤M, ‖AeAt‖ ≤ C
t

for all t ∈ (0,T ].

Then ∥∥∥∥∫ t

0
AeA(t−s)( f (s)− f (t))ds

∥∥∥∥≤ ∫ t

0

C
t− s

L(t− s)θ ds =
CLtθ

θ
,
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where L is the Hölder constant of f . This implies w ∈D(A). To show the Hölder continuity
in t we compute

‖AeAt−AeAs‖ =

∥∥∥∥∫ t

s
A2eAτdτ

∥∥∥∥
≤

∫ t

s
‖A2eAτ‖dτ

=
∫ t

s
‖Ae

Aτ

2 Ae
Aτ

2 ‖dτ

≤
∫ t

s

2C
τ

2C
τ

dτ

= 4C2 t− s
st

.

Then

Aw(t +h)−Aw(t) = A
∫ t+h

0
eA(t+h−s)( f (s)− f (t +h))ds−

∫ t

0
eA(t−s)( f (s)− f (t))ds

= A
∫ t

0

(
eA(t+h−s)− eA(t−s)

)
( f (s)− f (t))ds︸ ︷︷ ︸

I1

+A
∫ t

0
eA(t+h−s)( f (t)− f (t +h))ds︸ ︷︷ ︸

I2

+A
∫ t+h

t
eA(t+h−s)( f (s)− f (t +h))ds︸ ︷︷ ︸

I3

.

We begin with I1, where we use the substitution s = t−hτ in the third step:

‖I1‖ ≤
∫ t

0
4C2 (t +h− s)− (t− s)

(t +h− s)(t− s)
L(t− s)θ ds

= 4C2Lh
∫ t

0
(t +h− s)−1(t− s)θ−1ds

= 4C2Lh
∫ t

h

0

hθ−1τθ−1

1+ τ
hdτ = 4C2hθ

∫ t
h

0

τθ−1

1+ τ
dτ

≤ 4C2hθ τθ

θ

∣∣∣ t
h

0
≤ Chθ .

For I2 we find

‖I2‖ ≤
∥∥∥∥A
∫ t

0
eA(t+h−s)( f (t)− f (t +h))ds

∥∥∥∥
≤

∥∥∥(eA(t+h)− eAt)( f (t +h)− f (t))
∥∥∥

≤ Mhθ .
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Finally I3 is estimated as

‖I3‖ ≤
∫ t+h

t

C
t +h− s

L(t +h− s)θ ds

≤ C
∫ t+h

t
(t +h− s)θ−1ds =

∣∣∣∣Cθ (t +h− s)θ

∣∣∣t+h

t

∣∣∣∣
=

C
θ

hθ .

�

Theorem 9.9.4 — Regularity. Let A be a generator of an analytic semigroup and u(t) a
mild solution of (9.24) with f ∈C0,θ ([0,T ],X). Then for each 0 < δ < T we have

1. The mild solution satisfies

Au, u̇ ∈C0,θ ([δ ,T ],X).

2. If u0 ∈ D(A), then

Au, u̇ ∈C0([0,T ],X).

3. If in addition u0 = 0 and f (0) = 0, then

Au, u̇ ∈C0,θ ([0,T ],X).

Proof. We write the mild solution as

u(t) = eAtu0 +
∫ t

0
eA(t−s)( f (s)− f (t))ds+

∫ t

0
eA(t−s) f (t)ds.

Upon applying A to the mild solution we find

Au = AeAtu0︸ ︷︷ ︸
C0,θ

+ Aw︸︷︷︸
C0,θ

+A
∫ t

0
eA(t−s) f (t)ds.

For the last term we have from the Fundamental Theorem for Semigroups 9.2.1 that

A
∫ t

0
eA(t−s) f (t)ds = (eAt− I) f (t),

and we know that I f (t) = f (t) ∈ C0,θ . We still need to check the term eAt f (t). For
t ≥ δ ,h > 0 we estimate

‖eA(t+h) f (t +h)− eAt f (t)‖ ≤ ‖eA(t+h)‖‖ f (t +h)− f (t)‖+‖eA(t+h)− eAt‖‖ f (t)‖

≤ C1hθ +C2
h
δ
≤ C3hθ .

This proves that Au ∈C0,θ ([δ ,T ],X), and since u is a mild solution it also implies u̇ ∈
C0,θ ([δ ,T ],X), and we have item 1. In the last inequality, we clearly see that δ > 0 needs
to be imposed.
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To show continuity at time 0, we consider for t→ 0

‖eAt f (t)− f (0)‖ ≤ ‖eAt f (0)− f (0)‖+‖eAt‖‖ f (t)− f (0)‖.

The first term of the right hand side goes to zero since eAt is strongly continuous and the
second term goes to zero since f (t) is Hölder continuous. Hence we proved item 2.

Finally, for item 3. we estimate

‖(eA(t+h)− eAt) f (t)‖ =

∥∥∥∥∫ t+h

t
AeAτ f (t)dτ

∥∥∥∥
≤

∫ t+h

t
‖AeAτ( f (t)− f (0)︸︷︷︸

=0

)‖dτ

≤ c
∫ t+h

t

1
τ

tθ dτ ≤C
∫ t+h

t
τ

θ−1dτ

= c((t +h)θ − tθ ) ≤ chθ .

�

The previous result can essentially be visualized as

u̇︸︷︷︸
C0,θ

= Au︸︷︷︸
C0,θ

+ f (t)︸︷︷︸
C0,θ

.

For an analytic semigroup u̇ and Au are as good as f . It also means that

u ∈C1((0,T ],C0,θ ), u ∈C((0,T ),C2,θ ).

Hence u is twice continuously differentiable in x with Hölder continuous second derivative.
This is called regularity.

Higher regularity results are possible with analytic semigroups and this is an entire
research area in itself. See the excellent book by A. Lunardi [18].

9.10 Semigroup Summary
• A strongly continuous semigroup (or C0-semigroup) satisfies

T (t + s) = T (t)T (s), s, t ≥ 0,
T (0) = I,

t 7→ T (t) is continuous at 0.
• If {T (t)} is a strongly continuous semigroup, then

‖T (t)‖ ≤Meωt .

• The infinitessimal generator A is defined as

Ax := lim
h→0+

T (h)x− x
h

.

It satisfies

d
dt

T (t) = AT (t)x, T (0) = x0.
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• The inhomogeneous problem

u̇ = Au+ f (t), u(0) = u0

has mild solutions that are given by

u(t) = T (t)u0 +
∫ t

0
T (t− s) f (s)ds.

• Hille-Yosida: A is generator if and only if
1. A is closed and D(A) is dense.
2. For all λ > ω we have a resolvent estimate

‖Rλ (A)
n‖ ≤ M

(λ −ω)n .

From the proof we found

T (t) = lim
n→∞

(
I− t

n
A
)−n

= eAt

and also

Rλ (A)x =−
∫

∞

0
e−λ tT (t)xdt.

• If M = 1 in Hille-Yosida, then we only need

‖Rλ (A)‖ ≤
1

λ −ω
for all λ > ω.

• Lumer-Phillips: A generator of a quasi-contraction semigroup

‖T (t)‖ ≤ eωt ,

if the following conditions are satisfied
1. A is closed and densely defined
2. Re(x,Ax)≤ ω(x,x)
3. There exists a λ0 > ω in the resolvent set.

• Perturbations: A generator, B bounded, then A+B is a generator with

‖S(t)‖ ≤Me(ω+M‖B‖)t .

• Analytic semigroups: For sectorial operators we can find a sector Σ π

2 +δ which
splits the spectrum on the left from a large part of the resolvent set on the right.

– Analytic semigroups have sectorial generators and sectorial generators generate
analytic semigroups.

– The semigroup can be written with a Cauchy integral formula

T (z) =
i

2π

∮
γ

eµzRµ(A)dµ,

thereby completing the Semigroup Triangle Figure 9.8.
– Analytic semigroups satisfy

‖AeAt‖ ≤ c
eωt

t
.

– Analytic semigroups regularize.
– Perturbations with operators that are dominated by A.
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9.11 Exercises
Exercise 9.1 (Continuity) (level 1)
Assume T (t) is a C0-semigroup. Show that t 7→ T (t) is continuous for all t > 0. �

Exercise 9.2 (Shift) (level 2)
Consider the shift semigroup T (t)u = u(x+ t) on

C0(R) = { f ∈C(R), lim
x→∞
| f (x)|= 0}.

Show that T (t) is a C0-semigroup. �

Exercise 9.3 (Generator uniquely defines a semigroup) (level 1)
Suppose T (t) and S(t) have the same generator A. Show that the semigroups are
identical.

�

Exercise 9.4 (Dense domain) (level 2)
Let T (t) be a C0-semigroup with generator A on the Banach space X . Consider φ ∈
C∞

c (0,∞).
1. Show that for each n > 0:

∫
∞

0 φ(s)T (s)x ds ∈ D(An) for all x ∈ X .
2. Use this property to show that

⋂
n D(An) is dense in X .

�

Exercise 9.5 (Shift semigroup) (level 3)
Consider the two operators A and B given as

A =
∂

∂x
, D(A) = {u ∈ H1(0,1);u(1) = 0}.

B =
∂

∂x
, D(B) = {u ∈ H1(0,1);u(0) = 0}.

1. Show that A generates a C0-semigroup.
2. Show that B does not generate a C0-semigroup.
3. Can you give an intuitive explanation why this is the case?

�

Exercise 9.6 (Fractional Powers) (level 2)
For an analytic semigroup T (t) with generator A, we can define the negative fractional
powers of A for α > 0 as

(−A)−α :=− 1
2πi

∫
Γ

λ
−α(λ I +A)−1dλ ,

where Γ is a curve connecting e−iθ ∞ with eiθ ∞, with 0 on the one side and σ(−A) on
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the other. Use a Cauchy-integral argument to show that within this definition we have

(−A)−1 =−A−1.

�

Exercise 9.7 (Projection semigroup) (level 3)
Given a Hilbert space H with orthonormal basis {ψi}i=1,2,.... For a given n ∈ N the
projection operator is defined as

Pnu =
n

∑
i=1

(u,ψi)ψi.

1. Show that Pn : H→ H is generator of a strongly continuous semigroup of quasi
contractions.

2. Find an explicit representation of the semigroup ePnt .
�

Exercise 9.8 (Reaction diffusion equation) (level 3)
Use a fixed-point argument to solve the reaction diffusion equation on a smooth domain
Ω⊂ Rn:

ut = ∆u+ f (u) on Ω,

u(0,x) = u0(x), (9.25)
u(t,x) = 0 on ∂Ω.

We assume
(A1) The solution space is

X =C0([0,T ],H1
0 (Ω)),

with some T > 0 small enough. The norm on H1
0 will be denoted by the double

line notation

‖u‖= ‖u‖H1
0 (Ω).

(A2) We know that ∆ generates a C0- semigroup T (t) with norm

‖T (t)‖ ≤ 1, for all t ≥ 0.

(A3) We assume that f is linearly bounded and Lipschitz continuous, i.e., there exist
constants c1,c2 > 0 such that for each u,v ∈ H1

0 :
‖ f (u)‖ ≤ c1(1+‖u‖),

‖ f (u)− f (v)‖ ≤ c2‖u− v‖.
1. For a given φ ∈ X write down the definition of the norm of φ in X .
2. Define a mild solution of the above problem (9.25).
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3. For each 0 < t < T define an operator Q on H1
0 as

v 7→ Qv := T (t)u0 +
∫ t

0
T (t− s) f (v(s,x))ds.

4. Denote m := 2‖u0‖ and show that, for t small enough, there is a radius R > 0
such that

Q : BR(0)→ BR(0),

where BR(0) denotes the closed ball of radius R in H1
0 (Ω).

5. Show that, for t small enough, the map Q is a k-contraction in BR(0). Find this k.
6. Use a Fixed Point Theorem to show the existence of a unique mild solution of

(9.25).
�
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"Mathematics has contributed to all levels of scientific discovery
and technological progress. While immensely useful as a tool
in applications, mathematics in itself shows deep structures and
uncanny beauty."

The textbook on Elements of Applied Functional Analysis lies
at the interface of pure and applied mathematics. Abstract methods are
motivated through applications in physics, engineering, and biology. The
first chapters on basic functional analysis provide a concise introduction to
the subject matter. They cover Banach and Hilbert spaces, operators, dual
spaces, Hahn-Banach theorems, and spectral theory.

One of the work-horses of applied mathematics are partial differential
equations (PDEs). The solution theory of PDEs uses Sobolev spaces,
which we cover here. In this context we find a rather useful graphical
representation of function spaces in the Rainbow of Function Spaces. Fixed-
point theorems come next. They enable us to find solutions to abstract
equations as fixed points of operators. The Calculus of Variations makes
extensive use of methods from functional amalysis, and it is a framework
to solve general optimization problems. Finally, semigroup theory allows
us to understand a PDE as an abstract differential equation in a Banach
space. The relation between the semigroup, its generator, and the resolvent
is illustrated in the Semigroup Triangle.

"Applied mathematics will always need pure mathematics just as
anteaters will always need ants." – Paul Halmos
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