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Abstract. High-frequency ventilation is a radical departure from conventional lung ventilation,
with frequencies greater than 2Hz, and volumes per breath much smaller than the anatomical dead-
space. Its use has been shown to benefit premature infants and patients with severe respiratory
distress, but a vital question concerns ventilator-induced damage to the lung tissue, and a clear
protocol for the most effective treatment has not been identified. Mathematical modeling can help in
understanding the mechanical effects of lung ventilation, and hence in establishing such a protocol.

In this paper we describe the use of homogenization theory to predict the macroscopic behav-
ior of lung tissue based upon the three dimensional microstructure of respiratory regions, making
the simplifying assumption that the microstructure is periodic. This approach yields equations for
macroscopic air flow, pressure, and tissue deformation, with parameters which can be determined
from a specification of the tissue microstructure and its material properties. We are able to include
an alternative hypothesis as to the dependence of lung tissue shear viscosity on the frequency of
forcing, known as the structural damping hypothesis.

We then show how, if we consider isotropic tissue, the parameters determining the macroscopic
response of the tissue can be estimated from bulk measurements. Finally, we consider the solutions of
the macroscopic system when we consider variations in just one spatial dimension. In particular, we
demonstrate that the structural damping hypothesis leads to markedly different solution behavior.

Key words. biomaterials, homogenization, lung ventilation, viscoelasticity

AMS subject classifications. 76Z05, 92C10, 92C35

PII. S0036139999363652

1. Introduction. Strategies to reduce the likelihood of lung tissue damage dur-
ing mechanical ventilation include the use of high-frequency oscillation [5]. High-
frequency oscillation (HFO) is a method of mechanical ventilation where small volume,
high-frequency breaths (> 2Hz) are administered to the lung. This small volume-rapid
rate method is a radical departure from normal respiration or conventional mechanical
ventilation where large tidal volume breaths are given at low frequencies (< 0.25Hz).
Despite these differences, HFO has proven beneficial to facilitating gas transfer in pre-
mature infants, children, and adults suffering from respiratory insufficiency secondary
to various lung disease states.

Since the breath volumes administered in HFO are much smaller than the volume
necessary to fill the lungs, the question arises as to how HFO can ventilate at all. A
partial answer is given by Chang [3] and others who have analyzed the different
modes of gas transport that occur during HFO. Convective dispersion of gas in the
bronchi due to asymmetric flow profiles during inspiration and expiration and alveolar
ventilation by out-of-phase HFO are thought to be particularly significant. The out-
of-phase HFO arises from differential filling of parallel lung units that have different
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Fig. 1.1. (a) Section of lung showing a small bronchiole and many alveoli. Small “pores
of Kohn” connecting alveoli are visible (image courtesy of Lawrence Berkeley National Laboratory
LungLab Tour, http://imglib.lbl.gov/ImgLib/COLLECTIONS/lung tour.html). (b) Mathematical
caricature of alveolar lung tissue.

time constants. The result is a “sloshing” motion of air between the two neighboring
units during a ventilation cycle (pendelluft).

Many current models for ventilation by HFO are based on refinements of the
work of Otis et al. [22], where the lung is caricatured by an analogous electrical cir-
cuit with specified resistance, inductance and capacitance components to describe its
global behavior [17]. More detailed differential equation models based on transmis-
sion line theory have been derived from the properties of viscous fluid flow in elastic
airways [11, 12]. These have been used to study pressure distributions in symmetric
and asymmetric branching lung structures [18]. Numerical models for the transport
of suspended particles or aerosols in the lung use two or three dimensional fluid flow
(governed by the Navier–Stokes equations) for movement of the air through an open-
ended rigid structure representing the interior of the lung [6]. Other lung models
include alveolar mechanical properties but contain no fluid flow component [8]. How-
ever, no models exist that couple detailed gas-flow modeling with the biomechanical
properties of the lung at the alveolar level to fully describe pressures and flows during
ventilation.

In principle, the mathematical description of air flow through lung tissue is com-
plete in the sense that we can write down equations governing the fluid dynamics of
the air, the mechanics of the airway walls, and the coupling between these motions.
However, the geometric complexity of the lung precludes numerical solution of these
equations for anything but a tiny fraction of the whole lung, such as a few airways or
alveoli—Figure 1.1(a) illustrates this complexity, even in a very small section of the
lung. In this paper, we describe the application of homogenization theory to derive
equations for air velocities, pressures, and solid displacements, averaged over the basic
repeating microscopic unit of respiratory lung tissue, namely an alveolus. We make
the simplifying assumption that lung tissue at the alveolar level is comprised of an
array of units of similar size and shape, as illustrated in a highly idealized form in
Figure 1.1(b). This allows us to move from a microscopic to a macroscopic space
scale, for example from a single alveolus to an acinus (a respiratory unit consisting of
thousands of alveoli), where the equations for macroscopic behavior are determined by
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the microscopic geometry. In section 2 we introduce the governing equations in three
dimensions, estimate parameters, and nondimensionalize. We then briefly describe
the homogenization technique, and the derivation of macroscopic three dimensional
equations (section 3, with full details in Appendix A). Even though we eventually
consider a simplification to lower spatial dimensions, it is essential to consider the full
three dimensional structure in order to describe the interconnected lung wall and fluid.
In section 4 we consider the case where lung tissue is assumed to be isotropic, which
enables the deduction of macroscopic solid viscosity parameters from measurements
of lung bulk elasticity and Poisson ratio.

In section 5 we describe some solutions in one dimension and provide a further
simplification of the system to a single augmented diffusion equation for the pressure.
Experimental techniques have recently been developed to investigate the response of
alveolar tissue to high-frequency pressure oscillations. A device know as an “alveolar
capsule” is attached to the pleural surface of the lung, connecting with the alveolar
space via a hole which is made in the pleural surface [7]. The capsule contains two
transducers, one to generate the input, and the other to record the response of the
tissue, as measured by the pressure in the capsule. Parameters measuring the proper-
ties of the underlying lung tissue were estimated from the data by fitting to a simple
ordinary differential equation model. Such models do not take account of spatial ef-
fects, so it is of interest to see how the derived macroscopic spatial system behaves
in this type of situation. Thus we consider solutions in one dimension for boundary
conditions corresponding to forced ventilation and to this alveolar capsule technique.
We conclude with a discussion and some ideas for further research (section 6).

2. Governing equations. Because HFO uses small tidal volumes at relatively
high frequencies, we are interested in small perturbations of the relevant variables
from some rest state determined by the mean airway pressure (MAP). This pressure
maintains the lung at a mean volume, and small oscillations in pressure about the
MAP will give small strains in the solid in relation to this rest state. Fluid velocities
will be small perturbations about zero, since at the rest state there will be no air flow.
Thus we consider linearized Navier–Stokes equations for the flow of air, and linear
viscoelasticity of the solid tissue. This framework also means that all pressures are
measured relative to MAP.

The governing equations for the fluid-solid system are

ρf
∂v

∂t
= ∇ · σ = −∇p+ µ∆v in Df ,(2.1)

∇ · v = 0 in Df ,(2.2)

v =
∂u

∂t
on ∂Df = ∂Ds,(2.3)

n · σ = n · T on ∂Df = ∂Ds,(2.4)

ρs
∂2u

∂t2
= ∇ · T in Ds,(2.5)

where v(x, t) is the fluid velocity, p(x, t) is pressure, and u(x, t) is the displacement
of the solid from its rest state at MAP. We will always use boldface to denote vectors,
and j ≥ 2 underbars indicate a j-tensor—for simplicity and clarity we also use index
notation for some tensor calculations. Thus σ is a 2-tensor describing viscous and
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pressure stresses [4] in the fluid:

σ =

Viscous Stress︷ ︸︸ ︷
µ(∇v + (∇v)T )−

Pressure Stress︷︸︸︷
pI,(2.6)

and T is the solid stress tensor describing elastic and viscous stresses [21]:

T =

Elastic Stress︷︸︸︷
2E

3
e +

Viscous Stress︷ ︸︸ ︷
µ1et.(2.7)

Here e is the strain tensor given by

e =
∇u+ (∇u)T

2
,(2.8)

µ is the fluid viscosity, ρf is the fluid density, E is the Young’s modulus for the solid,
µ1 is the shear viscosity for the solid, and ρs is the solid density. Note that we are as-
suming the solid is incompressible, which is reasonable since it is essentially composed
of collagen and elastin fibers, and water. Also note that because we are assuming small
perturbations about a rest state maintained by a mean airway pressure, the Young’s
modulus and shear viscosity for the solid should correspond to measurements made
about the corresponding stretched rest state. This is sometimes referred to as the
incremental Young’s modulus.

2.1. Parameter estimation. Certain parameters are easy to estimate with con-
fidence. For example, the fluid viscosity and density—those of air—can be found in
a variety of texts and data books. We expect the density of the alveolar wall tissue
to be approximately that of water. Thus we use

µ = 2× 10−5Kgm−1s−1,

ρf = 1Kgm
−3,(2.9)

ρs = 10
3Kgm−3.

It remains to estimate the viscoelastic parameters of the solid. In the simplest case
of a static force, we should have

force

area
=
2E

3
strain.(2.10)

Fukaya et al. [14] carried out a number of experiments on the mechanical properties
of the alveolar wall. Using their figures, we can estimate the force, area, and strain
and hence get an estimate for E, the Young’s modulus. Fukaya et al. [14] measure
the force in mg, and 1mg of force is 1× 10−6Kg× 9.81m s−2 ≈ 10−5Kgms−2. Forces
in mg and strains are estimated visually from the force-strain curves in Figure 2 of
Fukaya et al. [14]. Thus rearranging the above word equation gives

E =
force in mg × 10−5

area in m2 × strain × 3

2
.(2.11)

The estimate for cross-sectional area is particularly weak, since Fukaya et al. do
not give precise values: “With the aid of a microscope, a smaller piece of tissue
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(< 30× 30× 200µ) was separated.” This leads us to take an estimate for the area to
be 30 × 30 × 10−12m2 = 9 × 10−10m2. For example, a force of 2mg gives a strain of
0.58, so we have

E =
2× 10−5

9× 10−10 × 0.58 × 3

2
≈ 5× 104Kgm−1s−2.(2.12)

Similarly, a force of 3mg for a strain of 0.75 gives E ≈ 6 × 104Kgm−1s−2; 5mg
for a strain of 0.85 gives E ≈ 10× 104Kgm−1s−2; and 8mg for a strain of 0.95 gives
E ≈ 14×104Kgm−1s−2. As a representative order of magnitude estimate we therefore
use E = 105Kgm−1s−2.

For the viscous part of solid force generation, we suppose that inertial terms are
negligible, and that

dynamic force− static force
area

= µ1 × rate of change of strain.(2.13)

In the experiments, the tissue is stretched to 90% strain in time T seconds. We use
the previous estimate for the cross-sectional area, and estimate the difference between
dynamic and static forces, ∆Fmg, visually from Figure 4 of Fukaya et al. [14]. Thus
we have

µ1 =
∆F × 10−5 × T
9× 10−10 × 0.9 Kgm

−1s−1.(2.14)

The measurements ∆F = 1.5, T = 30; ∆F = 1.9, T = 14; and ∆F = 3.4, T = 0.5 give
us µ1 ≈ 5× 105Kgm−1s−1; µ1 ≈ 3× 105Kgm−1s−1; and µ1 ≈ 2× 104Kgm−1s−1, re-
spectively. We take µ1 = 10

5Kgm−1s−1 as a representative estimate of an appropriate
order of magnitude.

The structural damping hypothesis states that the viscosity of the tissue compris-
ing the lung wall is inversely proportional to the frequency of oscillation [13]. This
alternative approach is based on the idea that it is the same biomechanical elements
which are responsible for both the elastic and viscous stresses in the tissue. We would
like to deal in this paper with both standard viscoelasticity and the concept of struc-
tural damping, so we introduce an alternative parameter, µSD, where the subscript
SD denotes “structural damping.” This parameter describes the contribution of vis-
cous stress, where µ1 = µSD/ω. With the data described above, we approximate ω by
1/2T , where T is the duration of stretching in the experiments of Fukaya et al. [14]—
thus we are treating the experiments as one half of a complete cycle of stretching
and relaxation. These give approximations for µSD of 8333, 10714, and 20000—the
first two are in particularly good agreement. For simplicity we use these calculations
only as a guideline, and take µSD = 104Kgm−1s−2. We will see in the next section
that nondimensionalizing yields identical governing equations for both cases, with the
different approaches manifesting themselves in the parameter values.

A summary of all our parameter estimates is given in Table 2.1. We remind
the reader that these are based upon measurements taken from Figures 2 and 4 of
Fukaya et al. [14], and incomplete knowledge of the cross-sectional area of tissue under
investigation. We have also made a number of other assumptions and approximations,
and these values only serve as guidelines as to the appropriate order of magnitude.

2.2. Nondimensionalization. We wish to appropriately nondimensionalize the
system of governing equations (2.1)–(2.5). We will rescale space by L, the macroscopic
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Table 2.1
Parameter estimates for the fluid-solid model (2.1)–(2.5).

Parameter Description Estimate

µ Air viscosity 2 × 10−5Kgm−1s−1

ρf Air density 1Kgm−3

E Young’s modulus of the alveolar wall 105Kgm−1s−2

µ1 Shear viscosity of the alveolar wall 105Kgm−1s−1

µSD Structural damping viscosity 104Kgm−1s−2

ρs Density of the alveolar wall 103Kgm−3

length scale of interest, and time by ω, the frequency of oscillation. Thus dimensionless
positions, velocities, and displacements follow naturally—we scale the pressure using
ρs, the density of the lung wall. Finally, l is the microscopic length scale, the length
of a unit cell (alveolar sac in the case of the lung).

t∗ = ωt, x∗ =
x

L
, v∗ =

v

ωL
, u∗ =

u

L
, p∗ =

p

ρsω2L2
,(2.15)

ε =
l

L
, ρ∗ =

ρf
ρs
, µ∗ =

µ

ρsωl2
.(2.16)

These rescalings give

ρ∗
∂v∗

∂t∗
= ∇∗ · σ∗ = −∇∗p∗ + ε2µ∗∆∗v∗ in D∗

f ,(2.17)

∇∗ · v∗ = 0 in D∗
f ,(2.18)

v∗ =
∂u∗

∂t∗
on ∂D∗

f = ∂D
∗
s ,(2.19)

n∗ · σ∗ = n∗ · T ∗ on ∂D∗
f = ∂D

∗
s ,(2.20)

∂2u∗

∂t∗2 = ∇∗ · T ∗ in D∗
s .(2.21)

The dimensionless fluid stress tensor is

σ∗ =
σ

ρsω2L2
= ε2µ∗(∇∗v∗ + (∇∗v∗)T )− p∗I,(2.22)

and the dimensionless solid stress tensor is given by

T ∗ =
T

ρsω2L2
=
2E∗

3
e∗ + µ∗1e

∗
t
.(2.23)

Here e is the strain tensor, given by e∗ = e (since it is already dimensionless) and

E∗ =
E

ρsω2L2
.(2.24)

µ∗1 depends on the choice of the standard viscous term, or of that which takes account
of the structural damping coefficient:

µ∗1 =
µ1

ρsωL2
or µ∗1 =

µSD

ρsω2L2
.(2.25)
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Thus the form of the dimensionless system is identical for both cases, with differences
only arising once particular parameters are chosen.

A typical alveolar sac has a length, l, of approximately 200µm = 2× 10−4m, and
the large length scale—for example, the length of an acinus—is about L = 1cm =
10−2m. Using the parameter values estimated in the previous section, we have

ρ∗ = 10−3, µ∗ =
1

2ω
, E∗ =

106

ω2
,(2.26)

and

standard viscoelasticity: µ∗1 =
106

ω
,

structural damping: µ∗1 =
105

ω2
.

(2.27)

3. Homogenization. In this section we give an outline of the procedure for
deriving equations for macroscopic behavior—we refer the reader to Appendix A for
the details. It would be feasible to solve (2.17)–(2.21) on a realistic lung geometry for
only a small number of alveoli, certainly not for the thousands which make up even a
single acinus. Our approach is to treat the structure as an array of repeating cells (see
Figure 3.1), representing alveoli, and to consider the average flow and deformation
in a cell neglecting the microscopic details. We consider the full three dimensional
structure of the lung tissue because the interconnectivity of the lung wall and fluid
cannot be adequately described by a lower dimensional caricature—see Figure 3.1.

Mathematically we consider the system variables as functions of independent
variables x and y, where y = ε−1x. Here the crucial assumption is that variations
on the small scale (i.e., with y) are independent from those on the large scale x, and
thus we treat x and y as independent variables so that

∇f(x,y) = ∇f(x, ε−1x) = ∇xf + ε
−1∇yf.(3.1)

When considering ventilation of the lung we look for time-harmonic solutions (i.e.,
solutions proportional to exp(iωt) = exp(it∗)—henceforth we drop the asterisks for
notational simplicity). We then seek solutions which are asymptotic power series in
ε. For example, the form for the fluid velocity would be

v(x,y, ε) = v0(x,y) + εv1(x,y) + ε2v2(x,y) +O(ε3).(3.2)

Similar expansions for the pressure p and the material displacement u and substitution
of these series yields a system of linear equations for each successive order of ε.

Analysis of various subsystems and averaging over the unit cell lead to the fol-
lowing equations for the mean quantities V, P,U:

V − iφU = −K (∇P − ρU) ,

∇ · (V − iφU) = i

(
α :

∇U+ (∇U)T
2

+ βP

)
,

iρV −U = ∇ ·
(
C
∇U+ (∇U)T

2
+ αP

)
,

(3.3)

where A : B indicates the matrix inner product of A and B (i.e., the sum of el-
ementwise products); φ is the fluid volume fraction, often called porosity; and the
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Df, Fluid
Domain

Ds, Solid
Domain

Fig. 3.1. Basic repeating unit.

parameters K, α, β, and C are determined by the geometry of the unit cell. The

complete derivation of these results is given in Appendix A.
Thus all the parameters in the macroscopic system (3.3) are defined in terms

of the microstructure. Note that the three equations in (3.3) correspond to flow
driven by pressure gradients, conservation of mass, and conservation of momentum,
in that order. We interpret (V − iφU) as fluid velocity relative to the motion of the
solid. The equations indicate that, macroscopically, lung tissue is compressible—for
example, changes in air pressure will allow the tissue as a whole to dilate, even though
the walls themselves cannot.

When ω = 0, that is, in the situation where there are no temporal oscillations,
the system (3.3) reduces to Darcy’s law for flow through porous media (V = −K∇P ,
and ∇ · V = 0) where K is called the permeability tensor. Here K depends only
on the geometry of the porous media, and the fluid density and viscosity. If the
structure is isotropic, then permeability is given by a scalar quantity, K. Permeability
is related to the reciprocal of the resistance to flow, for example the resistance to the
flow of air through respiratory tissue, as estimated by Davey and Bates [7]. The
difference is that lung resistance, R, is measured as a property of the whole of the
tissue region of interest. R increases linearly with the length, LR, of this tissue
region, and scales according to the reciprocal of the cross-sectional area, AR. This
means that the relationship between R and K should be K = LR/(RAR)—this is
very crude, and does not take account of the shape or structural variations within
the region, etc. Nevertheless, we use it to make an estimate for K which we will
use as a starting point for the calculation of solutions—a representative estimate of
resistance from Davey and Bates [7] is R = 1.0KPa sml−1 = 107Kgm−4s−1, and we
estimate LR = 10−2m and AR = 10−4m−4, which gives a very rough estimate of
the permeability as K ≈ 10−7m3sKg−1. The corresponding dimensionless value is
K∗ ≈ 10−4/ω—see (3.5) for the appropriate rescaling.

If there were no viscous component to the stress in the solid (µ1 = 0), then (3.3)
reduces to Biot’s equations for oscillatory flow through a purely elastic solid, which
were first derived empirically [1]. More recently, homogenization theory has also been
used to arrive at the same equations [2, 20].

With no fluid flow, and just a constant, homogeneous inflating pressure (e.g., lungs
maintained at constant volume by MAP), we get a macroscopic stress–strain relation
for the solid at that pressure. The parameters of this stress strain relationship, the
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fourth rank viscoelasticity tensor Cijkl, can be related to experimental measurements,
particularly if we assume isotropic behavior—see section 4.

It is also instructive to include the dimensional macroscopic equations and corre-
sponding parameters. In particular, the dependence on frequency is clear:

V − iωφU = −K (∇P − ω2ρfU
)
,

∇ · (V − iωφU) = iω
(
α : ∇U+(∇U)T

2 + βP
)
,

iωρfV − ρsω2U = ∇ ·
(
C∇U+(∇U)T

2 + αP

)
,

(3.4)

where the parameter rescalings are

K =
K∗

ρsω
, α = α∗, β =

β∗

ρsω2L2
, C = ρsω

2L2C∗.(3.5)

4. Assumption of macroscopic isotropy. If we assume that the macroscopic
behavior of lung tissue is isotropic, then the solid stress must take the form

C e =
Ê

1 + ν̂

(
e+

ν̂

1− 2ν̂ θI
)
+ iµ̂1 e+ iµ̂2 θI,(4.1)

where e and θ = Trace (e) are the macroscopic strain tensor and dilation, respectively.
This assumption allows us to use experimental data to estimate all these scalars. The
Young’s modulus, Ê, and Poisson ratio, ν̂, for bulk lung tissue have been experimen-
tally measured and theoretically predicted. The form of the equations means that
µ̂1 and µ̂2 are then determined by the macroscopic properties Ê and ν̂ and by the
microscopic elastic and viscous properties of the lung wall.

In particular, we show in Appendix B how, given E, µ1, Ê, and ν̂, it follows that

µ̂1 = µ1
3Ê

2E(1 + ν̂)
, µ̂2 = µ1

3Êν̂

2E(1 + ν̂)(1− 2ν̂)(4.2)

and

α =
3Ê

2E(1− 2ν̂) − 1, β = 3

(
3Ê

2E(1− 2ν̂) + φ− 1
)(

2E

3
+ iµ1

)−1

,(4.3)

so that given an estimate for K, the whole system is specified.
At typical mean airway pressure (≈ 20cmH2O ≈ 2000Kgm−1s−2) for HFO, the

Young’s modulus of lung tissue has been estimated to be about 4 times this pres-

sure [15, 16] (≈ 8000Kgm−1s−2), giving a dimensionless value of Ê ≈ 8×104

ω2 . The
Poisson ratio for bulk lung tissue at this mean airway pressure has been estimated to
be ν̂ ≈ 0.3 [16].

Recall that the dimensionless parameters governing viscoelasticity of the solid are
E ≈ 106/ω2 and µ1 ≈ 106/ω (standard viscoelasticity) or µ1 ≈ 105/ω2 (structural
damping). Using the above values for Ê and ν̂, we have for standard viscoelasticity

µ̂1 ≈ 105

ω
, µ̂2 ≈ 0.75× 105

ω
, α ≈ −0.7, β ≈ 3× 10−6ω2

2 + 3iω
(4.4)

and for structural damping

µ̂1 ≈ 104

ω2
, µ̂2 ≈ 0.75× 104

ω2
, α ≈ −0.7, β ≈ 3× 10−5ω2

20 + 3i
.(4.5)
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We have rounded all these values appropriately, since using more precision would
falsely imply that these estimates are very accurate. To conclude this section as
we began, we rewrite the solid stress with our parameter estimates, for standard
viscoelasticity, as

C e =
104

ω2
(6 + 10ωi)

(
e+ 0.75 θI

)
,(4.6)

and for structural damping as

C e =
104

ω2
(6 + i)

(
e+ 0.75 θI

)
,(4.7)

where we have again rounded the values for clarity, e.g., Ê/(1+ν̂) = 6.1538×104/ω2 ≈
6 × 104/ω2. Note that we have clearly indicated how these values change with the
ventilation frequency, ω.

5. Solutions to the macroscopic equations in one dimension. To develop
our understanding of macroscopic lung tissue behavior it is useful to study solutions
of the one dimensional equations, where primes indicate spatial derivatives:

V − iφU = −K(P ′ − ρU),(5.1)

V ′ − iφU ′ = i(αU ′ + βP ),(5.2)

iρV − U = (CU ′′ + αP ′) .(5.3)

Here we have simply assumed that V = V (x)ex, where ex denotes the unit vector
in the x-direction, and similarly for the other variables, so that all variation is purely
in the x-direction.

In order to solve this eighth order system of complex ODEs, we separate into real
and imaginary parts. In Appendix C we show how this leads to a system of eight
ODEs, for which explicit solutions can be found. We consider two types of boundary
conditions, one corresponding to forced ventilation and one to the application of the
alveolar capsule technique, where small pressure oscillations are applied at the pleural
surface to study flow in the alveolar region [7].

5.1. Solutions with forced ventilation boundary conditions. Forced ven-
tilation has a specified sinusoidally varying input pressure, Pa, with arbitrary phase,
and zero displacement of the solid at the opening, x = 0. At the pleural surface,
x = L, the pressure is a constant, equal to the mean airway pressure. We also require
that the fluid velocity is equal to the velocity of the solid (lung tissue), so that no gas
actually flows out through the “end” of the lung:

Pr(0) = Pa, Pi(0) = 0, Ur(0) = 0, Ui(0) = 0,

Vr(L) = −φUi(L), Vi(L) = φUr(L), Pr(L) = 0, Pi(L) = 0.(5.4)

Note that while we have developed the macroscopic equations in dimensionless
form, we illustrate solutions in dimensional variables, which we feel are of real interest
physiologically. This is because the nondimensionalization used includes a rescaling
of time which depends on frequency, a parameter which we actually would like to
vary, in order to establish how the response of lung tissue may depend on the forcing
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frequency. Dimensional solutions are calculated simply by applying the rescalings in
equation (2.15) to dimensionless values.

In section 2.1 we introduced the structural damping hypothesis as an alternative
model for viscoelasticity. We wish to explore the behavior of the system representing
lung tissue for both possibilities. We remind the reader that in the dimensionless
system this simply corresponds to a change in the parameters that depend on µ∗1.
Here we concentrate on the standard case, and then we discuss the differences seen
when applying the alternative model. For all solutions we illustrate the magnitude
and phase of oscillation.

An example of the solution for forced ventilation boundary conditions (5.4) is
shown in Figure 5.1(a). The magnitude of pressure fluctuations decreases monoton-
ically from the airway opening (x = 0), but velocities and displacements increase;
penetration into the lung of displacements and strains decrease with increasing fre-
quency, although the velocity and pressure remain the same. The displacement and
strain are approximately π/2 radians out of phase with the fluid velocity and pressure
oscillations, although there is very little variation in phase with the distance from the
opening. This means that motion is always in the same direction at all locations in
the lung.

The increase of velocity with distance seems counterintuitive, since the pressure
gradient, which drives the flow, is clearly decreasing in magnitude. This can be
explained by the fact that at x = 0 the displacement is constrained to be zero, but
as the displacement increases away from the opening, this implies a motion of the
solid, which adds to the velocity of the fluid from a stationary frame of reference. The
velocity of air relative to the solid does decrease in line with the pressure gradient, and
in fact plots of this (not shown for brevity) confirm that the relative velocity satisfies
V − iφU = −KP ′, as expected. Note that for the range of frequencies in these figures
(5−20s−1) changes in frequency do not have very much effect on absolute and relative
gas velocities.

Calculations for the one dimensional system with structural damping and forced
ventilation boundary conditions, given by (5.4), show some interesting differences
from the standard case—see Figure 5.1(b). There are significant phase differences
which mean that the solutions give motion in opposite directions within the tissue.
In addition, the fluid velocity and pressure now have a significant dependence on the
frequency of oscillation. We note that on larger domains the phase differences are
even larger and magnitudes no longer vary monotonically—however, it is not clear
whether larger domain sizes are physiologically relevant.

One common feature with both standard viscoelasticity and the structural damp-
ing hypothesis is that they have the same ordering of solutions with frequency. For
example, compare the orderings of displacement and strain in Figure 5.1, which both
decrease as the frequency increases.

Because our estimate of tissue permeability is quite crude, it is important to
consider how changes in permeability are reflected in model solutions. With K a
factor of 10 smaller, oscillations propagate less far into the tissue, and strains decay
to zero before the pleural surface (solutions not shown for brevity). For permeability
a factor of 10 larger, the pressure oscillations propagate further, and strains decay
less before the pleural surface, which has important implications with regard to tissue
damage. If we consider the same changes with the structural damping hypothesis the
situation is similar.
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Fig. 5.1. (a) Solution of the one dimensional system of homogenized equations (5.1)–(5.3)
for the macroscopic gas velocity, solid displacement, and gas pressure in the lung. The boundary
conditions, given by (5.4), correspond to forced ventilation. Frequencies are 5s−1 (dashed line),
10s−1 (solid line), and 20s−1 (dotted line). Dimensional solutions are shown using the rescalings in
(2.15). Increasing the frequency does not affect absolute gas velocities, but decreases displacements
and strains. Dimensionless parameter values are K = 10−3,L = 10, β = (3×10−6ω2)/(2+3iω), C =
(1.05 + 1.75iω)× 105/ω2, φ = 0.99, ρf = 10−3, α = −0.7, and the dimensionless amplitude of forced
pressure oscillations is Pa = 5000/ω2, chosen so that the dimensional amplitude is independent
of frequency. (b) With viscoelastic terms according to the structural damping hypothesis, forced
ventilation boundary conditions (5.4) give solutions to (5.1)–(5.3) whose magnitudes and phases
are more strongly modulated according to frequency and spatial position. In particular, the phase
modulation indicates motion in opposite directions at different depths in the lung. Frequencies, line
types, and parameters are as in part (a), except for β = (3×10−5ω2)/(20+3i), C = (1.05+0.175i)×
104/ω2.
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We also have considered how solutions for a fixed frequency vary as the solid
viscosity changes. Increasing the viscosity has little effect on the solutions for standard
viscoelasticity, at least at the parameter values used for the solutions described above.
Decreasing the viscosity, however, leads to a stronger spatial dependence of the strain
in the tissue, with a greater strain at the airway opening (x = 0) but a stronger decay
so that the strain at the pleural surface is less than that found before. Interestingly,
with the structural damping hypothesis, changing the viscosity seems to have very
little effect, at least for the ranges considered.

5.1.1. Solutions with alveolar capsule boundary conditions. Here a cap-
sule is attached to the pleura, connected to the alveolar space by a small hole, and
an oscillator in the capsule applies very high frequency pressure oscillations to the
underlying region of tissue [7]. Pressure transducers are used to characterize the re-
sponse of alveolar tissue to frequencies of the order of 200s−1 by fitting the data to
a simple ordinary differential equation model which incorporates the elasticity of the
lung, flow resistance, and fluid inertia. This approach neglects spatial variation and
the possibility that a component of flow resistance is due to viscous deformation of the
lung tissue, which as we have already discussed, may itself depend on the frequency
of oscillation. Thus, we describe solutions at the appropriate frequency range, with
and without the structural damping hypothesis, to get some insight into the possible
importance of these effects.

We take the capsule to be located at x = 0, and x = L to be the position at which
the pressure oscillations are assumed to decay to zero, lung tissue is not displaced,
and fluid velocities are zero. This decay will occur over a short distance relative to the
length scale of the whole lung, due to the high-frequency, small-amplitude oscillations
used in this experimental procedure [7]. The small amplitude means that within a
short distance there is a large volume of air in the rest of the lung which is maintained
at the mean airway pressure. At x = 0 we have the pressure forcing Pa, and note that
we must allow displacement of the pleural surface and capsule at this end:

Pr(0) = Pa, Pi(0) = 0,

Vr(L) = 0, Vi(L) = 0, Ur(L) = 0, Ui(L) = 0,(5.5)

Pr(L) = 0, Pi(L) = 0.

Figure 5.2(a) illustrates solutions for the alveolar capsule boundary conditions
(5.5), with standard viscoelastcity. We include frequencies of 100, 200, and 400Hz,
appropriate for the higher frequencies used in the alveolar capsule experiments of
Davey and Bates [7].

The magnitude of pressure oscillations decreases with distance from the capsule,
and the permeability and elastic coefficients will determine how far into the lung
tissue significant perturbations persist. For example, decreasing the permeability gives
similar behavior, with oscillations in pressure, fluid velocity, and solid displacement
decaying to zero in a shorter distance from the source of pressure oscillations on the
pleural surface. Changing the frequency, at least in the range illustrated, gives very
similar solutions, with apparently identical velocity and pressure magnitudes.

Figure 5.2(b) illustrates that with alveolar capsule boundary conditions, the
higher frequencies (100–200Hz) which are appropriate mean that the propagation
of oscillations is much reduced but that the phase depends strongly on the distance
from the capsule.
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Fig. 5.2. (a) Solution of the one dimensional system, with the same parameters as in Fig-
ure 5.1, but with the amended boundary conditions for alveolar capsule oscillation given by (5.5).
Frequencies are 100s−1 (dashed line), 200 (solid line), and 400 (dotted line), appropriate for the
higher frequencies used in the alveolar capsule experiments we have described [7]. (b) At the higher
frequencies of alveolar capsule oscillation, the structural damping hypothesis makes a significant
difference—propagation is markedly reduced, and there are large phase variations. Frequencies are
100Hz (solid line), 200Hz (dotted line), and 400Hz (dashed line). The other parameters are as in
Figure 5.1(b).
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5.2. Simplification to pressure diffusion. We have seen that |β̂| � 1 and

ρ� 1, so an interesting simplification is to set β̂ = ρ = 0 in (5.1)–(5.3), which gives,
in one dimension,

V − iφU = −KP ′,(5.6)

V ′ − iφU ′ = iαU ′,(5.7)

−U = (CU ′′ + αP ′) .(5.8)

Taking the divergence of (5.6) and substituting into (5.7),

iαU ′ = −KP ′.(5.9)

In the interests of further simplifying the system, we now take the inertial term on
the left of (5.8) to be negligible. We will see that this allows us to derive a single
equation for the augmented diffusion of the pressure. With the above simplification,
(5.8) becomes

0 = (Ē + iµ̄)U ′′ + αP ′,(5.10)

where

Ē =
Ê

1 + ν̂

(
1 +

ν̂

1− 2ν̂
)
; µ̄ = µ̂1 + µ̂2.(5.11)

If we then integrate (5.10) with respect to x,

0 = (Ē + iµ̄)U ′ + αP + P 0,(5.12)

and since we have assumed that pressures are measured with reference to some airway
opening pressure, and strains are measured with reference to the resting lung volume
at that pressure, we have that P 0 = 0, and therefore

U ′ = − αP

Ē + iµ̄
.(5.13)

Substituting into (5.9) then gives

iαU ′ = − iα2P

Ē + iµ̄
= −KP ′′.(5.14)

This then gives us a single diffusion-like equation for the complex pressure P :

iP =
(Ē + iµ̄)K

α2
P ′′.(5.15)

It is interesting to revert to time derivatives to see more clearly how this system relates
to the standard diffusion equation—writing P̃ (x, t) = eitP (x):

P̃t =
EK

α2
P̃xx +

µK

α2
P̃xxt.(5.16)

In essence there is straightforward diffusion of the pressure, augmented by an addi-
tional viscous term. In the frequency domain this is an easy system to solve. We
begin by setting P = Pr + iPi, and substituting into (5.15) gives

P ′′
r =

( µ
E
Pr − Pi

) α2E

K(E2 + µ2)
,(5.17)

P ′′
i =

(
Pr +

µ

E
Pi

) α2E

K(E2 + µ2)
.(5.18)
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Fig. 5.3. Solution of the reduced one dimensional system (5.15) for pressure in the lung,
with boundary conditions, given by (5.20), corresponding to forced ventilation. With the structural
damping hypothesis, the reduced model gives slightly decreased penetration with increasing frequency,
and strong phase dependence on depth into the lung. Frequencies are 5s−1 (dashed line), 10s−1 solid
line), and 20s−1 (dotted line). Parameter values are the same as the relevant values in Figure 5.1(b).

Setting Qr = P
′
r and Qi = P

′
i , we generate a fourth order system,

X′ =




0 0 1 0

0 0 0 1

α2µ

K(E2 + µ2)
− α2E

K(E2 + µ2)
0 0

α2E

K(E2 + µ2)

α2µ

K(E2 + µ2)
0 0



X,(5.19)

where X = (Pr, Pi, P
′
r, P

′
i )

T .
As with the full one dimensional system, we would like to study solutions with

standard viscoelasticity and the structural damping hypothesis. However, we do not
need two types of boundary conditions, since with this simpler system those for forced
ventilation and alveolar capsule oscillations are the same. We consider sinusoidally
oscillating input pressure of amplitude Pa at one end (x = 0), and at the other end
(x = L) the pressure measured with reference to MAP should be zero:

Pr(0) = Pa, Pi(0) = 0, Pr(L) = 0, Pi(L) = 0.(5.20)

Solutions of the reduced model (5.15) with standard viscoelasticity show that
pressure oscillations decay with distance from the airway opening, in a similar fashion
to the pressure in the full system (omitted for brevity, but see the pressure plots in
Figure 5.1(a)); this decay has virtually no dependence on frequency, and there is very
little change in phase across the domain.

As with the full one dimensional system, applying the structural damping hypoth-
esis gives somewhat different behavior, as illustrated in Figure 5.3. The penetration of
pressure oscillations into the domain is weakly dependent on frequency, and there is a
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significant variation in phase. However, these solutions do illustrate the limitations of
this reduced model, in that they fail to capture the more complex dynamics indicated
for the full system in Figure 5.1(b).

6. Discussion. In this paper we have described how homogenization theory
can be used to derive macroscopic equations for average air flows and solid tissue
displacements in respiratory lung tissue. This is an important step because the vast
number of alveoli in the lung means that it is not feasible to study such flows in
a realistic computational model of the lung. Our hope is that such a macroscopic
description can be tied to computational and analytical studies of the larger scale
flows seen in the conducting airways of the lung.

A study of air flow in the lung is itself very interesting, but perhaps more im-
portantly has many practical applications. One such application is to the ventilation
of premature neonates, whose lungs are particularly susceptible to ventilator induced
tissue damage. High-frequency ventilation is often used because the smaller breath
volumes required reduce the large swings in lung volume seen with conventional tech-
niques. This in turn can reduce the distension of the alveolar walls and hence alleviate
stretch-induced damage.

We have shown how the macroscopic properties of respiratory tissue depend on
microstructural details, and also how we can use experimental data to estimate the
governing parameters. In section 5 we described the calculation of solutions in one
dimension using these parameter estimates, and illustrated the significant differences
in solution behavior when the alveolar wall is assumed to obey the structural damp-
ing hypothesis [13], as opposed to standard linear viscoelasticity. This alternative
hypothesis is based upon the idea that it is the same microstructural elements which
are responsible for both the elastic and viscous response to deformation. These me-
chanical interactions operate at a far smaller scale even than that of a single cell of
the alveolar wall.

From the form of the homogenized equations, and in accordance with intuition,
displacements and strains for the case of standard viscoelasticity are π/2 out of phase
with gas velocities and pressures. Thus velocities are at their maximum when displace-
ments are zero. In contrast, structural damping gives a significant spatial variation
of phase, which indicates motion in opposite directions at different locations within
the lung tissue. There are some parallels between this and the concept of pendel-
luft [22], where lung units with different time constants fill and empty out of phase,
leading to local flow counter to the direction of ventilation at the trachea. Comparing
Figures 5.1(a) and (b), we see that, along with structural damping giving such phase
differences, there are small changes in the magnitudes of oscillations. One of the prin-
cipal motivations behind high-frequency ventilation is that it should help prevent lung
tissue damage, and our solutions bear this out, with increasing frequencies leading to
decreases in strain. This ordering of magnitudes with frequency is the same for both
formulations of viscoelasticity.

Additional investigations show that spatial effects are more prominent on longer
domains, and that structural damping then leads to larger strains within the tissue,
indicating an increased risk of tissue damage in this regime. Figure 6.1(a) shows the
solution over 20cm of lung tissue, with the same parameters as in Figure 5.1(a), and
Figure 6.1(b) shows the corresponding case with structural damping. The prediction
that structural damping may lead to higher than expected strains may be important
from the point of view of patient care, since many existing models used to evaluate
ventilation are based on the standard approach and may underestimate the potential
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Fig. 6.1. (a) Over longer domains, spatial effects are more prominent. Solutions are shown for
the one dimensional system of homogenized equations (5.1)–(5.3), with forced ventilation boundary
conditions (5.4), and standard viscoelasticity. Frequencies, line types, and parameters are as in
Figure 5.1. (b) With structural damping, solutions are even more strongly modulated in space, with
larger tissue strains which indicate an increased likelihood of lung damage. Apart from the increased
domain length, all details are as in Figure 5.1(b).
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for adverse effects.
Structural damping has a more pronounced effect at the higher frequencies ap-

propriate for the alveolar capsule method, with all variables subject to phase lags
up to two-thirds of a cycle within 2cm of tissue. More importantly, it induces a far
more rapid drop-off in magnitudes. Similar to the observations above, such differences
mean that the interpretation of experimental results may require consideration of the
role of structural damping.

Despite the progress described here, it remains of great interest to explicitly solve
the cell problems for specified alveolar geometries. A particular case of interest is that
where the unit cell is a dodecahedron. Such a polyhedron is ideal because real alveolar
sacs have a similar shape, and dodecahedra are nearly space filling and have suitable
properties of periodicity [19]. In fact, previous work on the purely elastic properties
of such polyhedra may be applicable [19]. Although the lung wall is isotropic, local
structure can make the macroscopic properties anisotropic. An extension of the above
would be to consider how anisotropies in the cell structure translate to anisotropies
in the macroscopic behavior. If the primary load bearing elements of a dodecahedral
alveolus are in the edges, but some faces allow more fluid flow than others, we may find
a situation where the viscoelastic properties of the tissue in the absence of fluid flow are
isotropic, whereas the pressure driven flow is biased by anisotropies in the permeability
tensor. It will be of fundamental importance to compare “homogenized” behavior with
experimental and computational results wherever possible. Explicit solution of the cell
problems would give theoretical estimates for the parameters governing macroscopic
lung behavior. For example, the Young’s modulus of the lung would be estimated, and
this could be compared with experimental measurements and also estimates based on
different theoretical approaches.

Surfactant is increasingly recognized as being of fundamental importance in lung
physiology. It allows the airways and alveoli to stay open at pressures which would not
normally be adequate. The behavior of surfactant is quite nonlinear, depends on its
history, and would seem to be hard to fit into the model framework described in this
paper. However, in the regime of small-amplitude, high-frequency perturbations, it
may be that surfactant simply alters the effective material parameters. Also, we have
not attempted to deal with the considerable problems posed by trying to model oxygen
and carbon dioxide levels in the lung, and their exchange at the alveolar surface. The
inclusion of such highly nonlinear interactions presents an exciting challenge for future
research.

One possible approach to simulating ventilation of the whole lung is to specify
macroscopic coefficients according to their location within a region corresponding to
the whole lung. Close to the “trachea” we would specify high permeability, but little
elastic deformation, with a high degree of anisotropy to bias the flow down a “tube.”
With increasing distance one could allow increased elastic deformation, and more
isotropic permeability to fluid flow.

Another approach is to use the immersed boundary method to simulate air flow
in the large airways or bronchioles, and combine this with regions which obey the
homogenized equations. Thus we would solve the Navier–Stokes equations in certain
regions of a domain, coupled via appropriate boundary conditions to regions where
the flow and deformation obeys the homogenized equations. We note that a number
of the tools necessary to do this are available [9]. The immersed boundary method
has been used extensively in the study of blood flow in the heart [23] and in blood
vessels [10]. It allows the simulation of the flow of fluids and their interaction with
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immersed elastic objects. Clearly the flow will stretch and distort such objects, which
themselves exert a force on the fluid in response to their deformation. An additional
strength of the immersed boundary method is the ease with which it can cope with
complex geometries, such as are seen in the lung. In future work we intend to apply
this technique to couple flows in the main airways to those in the respiratory tissue,
with properties determined using the techniques described in this paper.

Appendix A. Homogenization details.
Here we describe the derivation of macroscopic equations from the dimensionless

governing equations (2.17)–(2.21). The derivation is related to that by Burridge
and Keller [2] and Lévy [20] for a purely elastic solid. We provide extensive details
for this viscoelastic case, since we found the existing literature to be rather brief.
Mathematically we consider the system variables as functions of independent variables
x and y, where y = ε−1x. Here the crucial assumption is that variations on the small
scale (i.e., with y) are independent from those on the large scale x and thus we treat
x and y as independent variables so that

∇f(x,y) = ∇f(x, ε−1x) = ∇xf + ε
−1∇yf.(A.1)

When considering ventilation of the lung we look for time-harmonic solutions (i.e.,
solutions proportional to exp(iωt) = exp(it∗)).

The second step in the homogenization process is to seek solutions to (2.17)–(2.21)
which are asymptotic power series in ε. For example, the form for the fluid velocity
would be

v(x,y, ε) = v0(x,y) + εv1(x,y) + ε2v2(x,y) +O(ε3).(A.2)

Similar expansions for the pressure p and the material displacement u and substitution
of these series into (2.17)–(2.21) yield a system of linear equations for each successive
order of ε.

Applying the assumptions of independent length scales and time harmonic solu-
tions to the solid stress tensor T , and the strain tensor e, it is clear that they will
consist of terms of different orders in ε. Thus, we define the following quantities to aid
in the correct decomposition of each term of the full governing equations into power
series in ε:

enξ =
∇ξu

n + (∇ξu
n)T

2
for ξ = x,y, n = 0, 1, 2, . . . ,(A.3)

and

T n
ξ =

(
2E

3
+ iµ1

)
enξ for ξ = x,y, n = 0, 1, 2, . . . .(A.4)

So, for example, it follows from (A.1) that

e = ε−1(e0y) + (e
0
x + e

1
y) + ε(e

1
x + e

2
y) + ε

2(e2x + e
3
y) + · · · ,(A.5)

T = ε−1(T 0
y ) + (T 0

x + T 1
y ) + ε(T 1

x + T 2
y ) + ε

2(T 2
x + T 3

y ) + · · ·(A.6)
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and, furthermore, that

∇ · T = ∇x · T + ε−1∇y · T(A.7)

= ε−2(∇y · T 0
y ) + ε

−1(∇x · T 0
y +∇y · T 0

x +∇y · T 1
y )

+(∇x · T 0
x +∇x · T 1

y +∇y · T 1
x +∇y · T 2

y )

+ε(∇x · T 1
x +∇x · T 2

y +∇y · T 2
x +∇y · T 3

y ) + · · · .

(In general, take the superscript numeral and subtract the number of y’s to get the
appropriate power of ε.) (2.17)–(2.21) then yields, to order ε0,

∇yp
0 = 0 in Df ,(A.8)

∇y · v0 = 0 in Df ,(A.9)

v0 = iu0 on ∂Df = ∂Ds,(A.10)

n · T 0
y = 0 on ∂Df = ∂Ds,(A.11)

∇y · T 0
y = 0 in Ds;(A.12)

and to order ε1, we have

∇yp
1 − µ∇2

yv
0 +∇xp

0 + iρv0 = 0 in Df ,(A.13)

∇y · v1 +∇x · v0 = 0 in Df ,(A.14)

v1 = iu1 on ∂Df = ∂Ds,(A.15)

n · (T 1
y + T 0

x + p
0I) = 0 on ∂Df = ∂Ds,(A.16)

∇y · T 1
y +∇y · T 0

x +∇x · T 0
y = 0 in Ds.(A.17)

A.1. p0 and u0 are independent of y. From (A.8) it follows that p0 is inde-
pendent of y, so that

p0 = p0(x) in Df .(A.18)

Now consider (A.12) and (A.11), which written in full give

∇y ·
{(

2E

3
+ iµ1

) ∇yu
0 + (∇yu

0)T

2

}
= 0 in Ds,(A.19)

n ·
{(

2E

3
+ iµ1

) ∇yu
0 + (∇yu

0)T

2

}
= 0 on ∂Ds.(A.20)

Now let us take the dot product of the first equation with u0 and integrate over the
solid domain Ds:(

2E

3
+ iµ1

)∫
Ds

(
∇y ·

{∇yu
0 + (∇yu

0)T

2

})
· u0 dy = 0.(A.21)
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Then by the product rule∫
Ds

∇y ·
({∇yu

0 + (∇yu
0)T

2

}
u0

)
dy(A.22)

−
∫
Ds

{∇yu
0 + (∇yu

0)T

2

}
: (∇yu

0) dy = 0.

Note that A : B indicates the matrix inner product of A and B (i.e., the sum of
element-wise products). It can be seen that the first integral vanishes identically after
applying the divergence theorem and using (A.20). Thus, by exploiting the symmetry
of the strain tensor, we have∫

Ds

{∇yu
0 + (∇yu

0)T

2

}
:

{∇yu
0 + (∇yu

0)T

2

}
= 0.

Hence {∇yu
0 + (∇yu

0)T }/2 = 0 ∀ y ∈ Ds. Solutions to this equation are rigid body
motions, and rotations are not bounded as a function of y, so the only admissible
solutions are translations, u0 constant. This translation may depend on x, so we have

u0(x,y) = u0(x) in Ds.(A.23)

Thus p0 and u0 are functions of x only.

A.2. Determination of v0. We introduce w, the velocity of the fluid relative
to the solid, defined by

v0(x,y) = w(x,y) + iu0(x) in Df .(A.24)

Then (A.9), (A.10), and (A.13) give the following set of inhomogeneous linear equa-
tions for w and p1:

∇y ·w = 0 in Df ,(A.25)

∇yp
1 − µ∇2

yw + iρw +∇xp
0 − ρu0 = 0 in Df ,(A.26)

w = 0 on ∂Df = ∂Ds.(A.27)

The solutions to this problem are unique up to an additive scalar function of x in p1

(since this would disappear upon taking its gradient). We therefore look for solutions
which depend linearly on the inhomogeneous term ∇xp

0 − ρu0:

w(x,y) =W (x,y){∇xp
0 − ρu0},(A.28)

p1(x,y) = Φ(x,y) · {∇xp
0 − ρu0}+ f(x).(A.29)

W and Φ are then determined as the solution to the corresponding cell problem:

∇y ·W = 0 in Df ,

∇yΦ− µ∇2
yW + iρW + I = 0 in Df ,

W = 0 on ∂Df = ∂Ds.

(A.30)

Thus we have

v0(x,y)− iu0(x) =W (x,y){∇xp
0(x)− ρu0(x)}.(A.31)
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A.3. Determination of u1. Writing (A.17) and (A.16) in full and noting that
the second and third terms in (A.17) are zero,

∇y ·
((

2E

3
+ iµ1

) ∇yu
1 + (∇yu

1)T

2

)
= 0 in Ds,(A.32)

(A.33)

n ·
((

2E

3
+ iµ1

)(∇yu
1 + (∇yu

1)T

2
+

∇xu
0 + (∇xu

0)T

2

)
+ p0I

)
= 0 on ∂Ds.

Now we introduce the Hilbert space V of Ω-periodic vectors, defined in Ds, with∫
Ds

vdy = 0 (so that v has zero mean value), and the scalar product

(u,v)V =

∫
Ds

(∇yu+ (∇yu)
T

2

)
:

(∇yv̄ + (∇yv̄)
T

2

)
dy.(A.34)

Note that v̄ indicates the complex conjugate of v.
Taking the dot product of (A.32) with v̄ and integrating over Ds with respect to

y, ∫
Ds

(
∇y ·

((
2E

3
+ iµ1

) ∇yu
1 + (∇yu

1)T

2

))
· v̄dy = 0,(A.35)

and it follows from the product rule that∫
Ds

∇y ·
((

2E

3
+ iµ1

) ∇yu
1 + (∇yu

1)T

2
v̄

)
dy

−
∫
Ds

((
2E

3
+ iµ1

) ∇yu
1 + (∇yu

1)T

2

)
: (∇yv̄)dy = 0.

(A.36)

We treat the first term of (A.36) by applying the divergence theorem and using (A.33),
which applies on the boundary of the solid region:∫

Ds

∇y ·
((

2E

3
+ iµ1

) ∇yu
1 + (∇yu

1)T

2
v̄

)
dy

=

∫
∂Ds

n ·
((

2E

3
+ iµ1

) ∇yu
1 + (∇yu

1)T

2
v̄

)
dy

= −
∫
∂Ds

n ·
{((

2E

3
+ iµ1

) ∇xu
0 + (∇xu

0)T

2
+ p0I

)
v̄

}
dy(A.37)

= −
∫
∂Ds

n · (Av̄)dy

= −
∫
∂Ds

(An) · v̄dy,

where the last step follows from the symmetry of A, the matrix of the inhomogeneous
terms in (A.32) and (A.33):

A =

(
2E

3
+ iµ1

) ∇xu
0 + (∇xu

0)T

2
+ p0I.(A.38)
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By the symmetry of the strain and strain-rate tensors, the second term of (A.36)
is just a constant times the scalar product:

−
∫
Ds

((
2E

3
+ iµ1

) ∇yu
1 + (∇yu

1)T

2

)
: (∇yv̄)dy

= −
(
2E

3
+ iµ1

)∫
Ds

(∇yu
1 + (∇yu

1)T

2

)
:

(∇yv̄ + (∇yv̄)
T

2

)
dy(A.39)

= −
(
2E

3
+ iµ1

)
(u1,v)V ,

so that (A.36) becomes

−
∫
∂Ds

(An) · v̄dy −
(
2E

3
+ iµ1

)
(u1,v)V = 0,(A.40)

and hence the variational form of the original problem may be written as(
2E

3
+ iµ1

)
(u1,v)V = −

∫
∂Ds

(An) · v̄dy ∀v ∈ V.(A.41)

The left-hand side is simply a complex constant times the scalar product defined
above, and by the trace theorem, the right-hand side is a continuous form on V ,
which is clearly antilinear, so that by the Lax–Milgram theorem [24] there exists a
unique solution u1 ∈ V to the above variational problem. The only restriction that
we have placed on u1 in developing the variational formulation is that it has zero
mean value, but this just means that the solution is unique up to the addition of
a constant term (i.e., some function of x). In our derivation of equations governing
macroscopic averaged variables, we will require information only on ∇yu

1, which is
uniquely determined. At this point it is interesting to note that this in turn specifies
T 1
y , which corresponds to an order ε

0 stress in the macroscopic equations, itself due

to an order ε1 strain. The above uniqueness argument extends to this quantity.
It is important to remember that we require solutions for u1 to be y-periodic, so

that the seemingly obvious solution T 1
y = −T 0

x − p0I is in fact inadmissible. In order
to determine the unique admissible solution, we look for one which depends linearly
on the inhomogeneous terms, A. Thus we look for solutions of the form

u1
i =

(
2E

3
+ iµ1

)−1

QiklAkl,(A.42)

where

Akl =

(
2E

3
+ iµ1

)
1

2

(
∂u0

l

∂xk
+
∂u0

k

∂xl

)
+ p0δkl.(A.43)

We use index notation, whereby we sum over repeated indices—Qikl(y) is a third
rank tensor, because each component of the solution u1 can depend on each element
of Akl. We have included the scaling of (2E/3 + iµ1)

−1 to simplify the calculations
that follow. Substituting this form for the solution and equating coefficients in Akl

give cell problems which determine Qikl and hence u
1
i .
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Recall that we are seeking solutions to (A.32) and (A.33), which we rewrite in
index notation:

∂

∂yj

{(
2E

3
+ iµ1

)(
∂u1

j

∂yi
+
∂u1

i

∂yj

)}
= 0 in Ds,

nj

{(
2E

3
+ iµ1

)(
∂u1

j

∂yi
+
∂u1

i

∂yj
+

)
+ 2Aij

}
= 0 on ∂Ds.

(A.44)

Substitution of the proposed solution gives

∂

∂yj

{
∂

∂yi
(QjklAkl) +

∂

∂yj
(QiklAkl)

}
= 0 in Ds,

nj

{
∂

∂yi
(QjklAkl) +

∂

∂yj
(QiklAkl) + 2δikδjlAkl

}
= 0 on ∂Ds,

(A.45)

where the tensor δikδjl is the identity operator on 2×2 matrices. Notice that this gives
the factor Akl in each term, which is independent of yi, and so we can interchange
the order of multiplication and differentiation and factorize:

∂

∂yj

{
∂Qjkl

∂yi
+
∂Qikl

∂yj

}
Akl = 0 in Ds,

nj

{
∂Qjkl

∂yi
+
∂Qikl

∂yj
+ 2δikδjl

}
Akl = 0 on ∂Ds.

(A.46)

The form of the cell problem for the 3-tensor Qikl is then

∂

∂yj

{
∂Qjkl

∂yi
+
∂Qikl

∂yj

}
= 0 in Ds,

nj

{
∂Qjkl

∂yi
+
∂Qikl

∂yj
+ 2δikδjl

}
= 0 on ∂Ds.

(A.47)

We need only to find n(n + 1)/2 entries of Qikl (where n is the number of spatial
dimensions), since the symmetry of the strain tensor, and of Akl, means that Qikl =
Qilk.

All this calculation leads us to a form for the contribution of the order ε1 dis-
placement to the order ε0 stress in the solid:

T 1
y =

∇yQ+ (∇yQ)
T

2

((
2E

3
+ iµ1

) ∇xu
0 + (∇xu

0)T

2
+ p0I

)
.(A.48)

A.4. Averaging and the derivation of macroscopic equations. We define
the volume average of a quantity as

〈f〉 = 1

|Ω|
∫

Ωη

fdy,(A.49)

where Ω is the unit cell and Ωη is that part of the cell over which f is defined.
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A.4.1. Pressure driven flow. Equation (A.31) describes the flow through the
solid, driven by the pressure gradient—it applies to the fluid domain, so that Ωη = Ωf ,
and averaging gives

1

|Ω|
∫

Ωf

v0(x,y)dy− 1

|Ω|
∫

Ωf

iu0(x)dy =
1

|Ω|
∫

Ωf

W (x,y){∇xp
0(x)−ρu0(x)}dy.(A.50)

Because u0 does not depend on y, the second term is

1

|Ω|
∫

Ωf

iu0(x)dy = iu0(x)
1

|Ω|
∫

Ωf

dy = iu0(x)
|Ωf |
|Ω| ,(A.51)

which leads us to introduce the porosity φ =
|Ωf |
|Ω| . p

0 also does not depend on y, and

so we have

〈v0〉(x)− i |Ωf |
|Ω| u

0(x) = 〈W 〉(x){∇xp
0(x)− ρu0(x)}.(A.52)

A.4.2. Mass conservation. Using the fact that v1 = iu1 on ∂Df = ∂Ds

(equation (A.15)), the divergence theorem, and noting that outward pointing normals
for the fluid and solid part point in opposite directions:

〈∇y · v1〉 = 1

|Ω|
∫

Ωf

∇y · v1dy,(A.53)

=
1

|Ω|
∫
∂Ωf

n · v1dy,

=
i

|Ω|
∫
∂Ωs

n · u1dy,

= − i

|Ω|
∫

Ωs

∇y · u1dy,

= −i〈∇y · u1〉.

The key step now is to average (A.14):

〈∇x · v0〉+ 〈∇y · v1〉 = 0(A.54)

⇒ 〈∇x · v0〉 − i〈∇y · u1〉 = 0

⇒ ∇x · 〈v0〉 − i
〈(

2E

3
+ iµ1

)−1(
∇y ·Q(y)

)
: A

〉
= 0

⇒ ∇x · 〈v0〉 − i
〈
∇y ·Q(y)

〉
:

(
∇xu

0 + (∇xu
0)T

2
+

(
2E

3
+ iµ1

)−1

p0I

)
= 0.

A.4.3. Balance of momentum. Finally, we derive a balance of momentum
equation, using the fact that the total momentum due to the fluid and solid acceler-
ation must equal the divergence of the total stress, at first order:

iρ〈v0〉 − u0 = ∇x · 〈(Ty
1 + Tx

0)〉 − ∇x · (φp0I),(A.55)
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so that

iρ〈v0〉 − u0 = ∇x ·


(
2E

3
+ iµ1

)〈∇yQ+ (∇yQ)
T

2
+ I

〉
∇xu

0 + (∇xu
0)T

2




+


〈∇yQ+ (∇yQ)

T

2
I

〉
− φI


∇x · (p0I).(A.56)

Note that here the fluid stress is averaged over the fluid domain and the solid stress
is averaged over the solid domain.

A.4.4. Macroscopic equations. Collecting these results together, we get the
following equations for the mean quantities V, P,U, whose dependence on the macro-
scopic spatial scale, x, is implicit:

V − iφU = −K (∇P − ρU) ,
∇ · (V − iφU) = i

(
α : ∇U+(∇U)T

2 + βP
)
,

iρV −U = ∇ ·
(
C∇U+(∇U)T

2 + αP

)
.

(A.57)

The parameters for this system are given by

K = −〈W (y)〉 = 1

|Ω|
∫

Ωf

W (y)dy,(A.58)

α = 〈∇y ·Q〉 − φI,(A.59)

β =

(
2E

3
+ iµ1

)−1

Trace(〈∇y ·Q〉),(A.60)

and

C =

(
2E

3
+ iµ1

)〈∇yQ+ (∇yQ)
T

2

〉
+ (1− φ)I


 .(A.61)

This completes the derivation of the macroscopic equations.

Appendix B. Assumption of macroscopic isotropy. Here we show how, if
we assume the macrosopic properties of lung tissue are isotropic, we may estimate
all the tissue parameters given experimental measurements of Young’s modulus and
Poisson ratio. For isotropic lung tissue, tensors become scalars, and the macroscopic
equations are

V − iφU = −K (∇P − ρU) ,(B.1)

∇ · (V − iφU) = i (αθ + βP ) ,(B.2)

iρV −U = ∇ · {T + αIP} ,(B.3)
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where the solid stress is now

T = C e =
Ê

1 + ν̂

(
e+

ν̂

1− 2ν̂ θI
)
+ iµ̂1 e+ iµ̂2 θI.(B.4)

e and θ = Trace (e) are the macroscopic strain tensor and dilation, respectively. Ê
and ν̂ are the macroscopic Young’s modulus and Poisson ratio, which have been
experimentally measured and theoretically predicted for lung tissue [15, 16, 19]; µ̂1

and µ̂2 are macrosopic shear and bulk viscosities, which we will show can be expressed
in terms of Ê, ν̂, E, and µ1—also enabling us to determine α and β. This is because
we must be able to decompose Cijkl into a linear combination of identity and trace
operators on the space of 2×2 matrices. We begin by expressing this in index notation:

Cijkl =

(
2E

3
+ iµ1

)
a

Identity︷ ︸︸ ︷
δikδjl +

(
2E

3
+ iµ1

)
b

Trace︷ ︸︸ ︷
δijδkl

=

(
Ê

1 + ν̂
+ iµ̂1

)
δikδjl +

(
Ê

1 + ν̂

ν̂

1− 2ν̂ + iµ̂2

)
δijδkl.(B.5)

Taking the real parts, equating the coefficients of the identity and trace operators,
and assuming that E, Ê, and ν̂ are known give

a =
Ê

1 + ν̂

3

2E
, b =

Ê

1 + ν̂

ν̂

1− 2ν̂
3

2E
.(B.6)

Then similarly, by equating the imaginary parts and assuming that µ1 is known, we
must have

µ̂1 = µ1a = µ1
3Ê

2E(1 + ν̂)
, µ̂2 = µ1b = µ1

3Êν̂

2E(1 + ν̂)(1− 2ν̂) .(B.7)

Now to find α and β we need information about 〈∇y ·Q〉. From the definition of
Cijkl we know that

Cijkl =

(
2E

3
+ iµ1

)
(aδikδjl + bδijδkl)

=

(
2E

3
+ iµ1

)(
1

2

〈
∂Qjkl

∂yi
+
∂Qikl

∂yj

〉
+ (1− φ)δikδjl

)
(B.8)

and hence that

1

2

〈
∂Qjkl

∂yi
+
∂Qikl

∂yj

〉
= (a+ φ− 1)δikδjl + bδijδkl.(B.9)

So now we can calculate 〈∇y ·Q〉, which will in turn give α and β:

〈∇y ·Q〉ij =
〈
∂Qkij

∂yk

〉

=
1

2

〈
∂Qkij

∂yk
+
∂Qkij

∂yk

〉

= (a+ φ− 1)δkiδkj + bδkkδij
= (a+ φ− 1)δij + 3bδij
= (a+ 3b+ φ− 1)δij ,(B.10)
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so that

α = a+ 3b− 1 = 3Ê

2E(1− 2ν̂) − 1,(B.11)

and

β =

(
2E

3
+ iµ1

)−1

Trace(〈∇y ·Q〉)

=

(
2E

3
+ iµ1

)−1

3(a+ 3b+ φ− 1)

= 3

(
2E

3
+ iµ1

)−1
(

3Ê

2E(1− 2ν̂) + φ− 1
)
.(B.12)

This completes the derivation of all the tissue parameters in terms of those quantities
for which we have reasonable estimates, namely the Young’s modulus and shear vis-
cosity of the alveolar wall, the Young’s modulus and Poisson ratio of bulk lung tissue,
and the lung porosity.

Appendix C. One dimensional system. We separate the one dimensional
system of equations (5.1)–(5.3) into real and imaginary parts, noting that the perme-
ability and elasticity tensor are now complex scalars, K and C; β is complex, and the
other parameters, ρ, α, φ, are real numbers. We use the subscript r to denote the real
part, and i for the imaginary part:

Vr + φUi +KrP
′
r −KrρUr −KiP

′
i +KiρUi = 0,(C.1)

Vi − φUr +KrP
′
i −KrρUi +KiP

′
r −KiρUr = 0,(C.2)

V ′
r + (φ+ α)U

′
i + βiPr + βrPi = 0,(C.3)

V ′
i − (φ+ α)U ′

r − βrPr + βiPi = 0,(C.4)

ρVi + Ur + CrU
′′
r − CiU

′′
i + αP

′
r = 0,(C.5)

ρVr − Ui − CiU
′′
r − CrU

′′
i − αP ′

i = 0.(C.6)

Writing Wr = U ′
r and Wi = U ′

i , solving (C.1) and (C.2) for P
′
r and P

′
i in terms of

Vr, Vi, Ur, Ui, substituting this into (C.5) and (C.6), and solving for W
′
r and W

′
i give

V ′
r = −(φ+ α)Wi − βiPr − βrPi,(C.7)

V ′
i = (φ+ α)Wr + βrPr − βiPi,(C.8)

U ′
r =Wr,(C.9)

U ′
i =Wi,(C.10)

W ′
r =

(
α
CrKi + CiKr

|C|2|K|2 − Crρ

|C|2
)
Vr +

(
α
CrKr − CiKi

|C|2|K|2 +
Ciρ

|C|2
)
Vi(C.11)

+

(
αφ
CiKi − CrKr

|C|2|K|2 +
Ciρα

|C|2 +
Ci

|C|2
)
Ur −

(
αφ
CrKi + CiKr

|C|2|K|2 +
Crρα

|C|2 +
Cr

|C|2
)
Ui,
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W ′
i =

(
α
CrKr − CiKi

|C|2|K|2 +
Ciρ

|C|2
)
Vr +

(
α
CrKi + CiKr

|C|2|K|2 − Crρ

|C|2
)
Vi(C.12)

−
(
αφ
CrKi + CiKr

|C|2|K|2 +
Crρα

|C|2 +
Cr

|C|2
)
Ur −

(
αφ
CrKr − CiKi

|C|2|K|2 +
Ciρα

|C|2 +
Ci

|C|2
)
Ui,

P ′
r = − Kr

|K|2Vr −
Ki

|K|2Vi + φ
Ki

|K|2Ur + ρUr − φ Kr

|K|2Ui,(C.13)

P ′
i =

Ki

|K|2Vr −
Kr

|K|2Vi + φ
Kr

|K|2Ur + ρUi + φ
Ki

|K|2Ui.(C.14)

This is a system of eight ODEs, for which explicit solutions can be found.
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