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• Host migration affects parasite dynamics in many wildlife species.
• We develop a spatial model in which host movement depends on parasite burden.
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a b s t r a c t

Spatial variability in host density is a key factor affecting disease dynamics of wildlife, and yet there
are few spatially explicit models of host–macroparasite dynamics. This limits our understanding of
parasitism in migratory hosts, whose densities change considerably in both space and time. In this paper,
we develop a model for host–macroparasite dynamics that considers the directional movement of host
populations and their associated parasites. We include spatiotemporal changes in the mean and variance
in parasite burden per host, as well as parasite-mediated host mortality and parasite-mediatedmigratory
ability. Reduced migratory ability with increasing parasitism results in heavily infested hosts halting
their migration, and higher parasite burdens in stationary hosts than in moving hosts. Simulations reveal
the potential for positive feedbacks between parasite-reduced migratory ability and increasing parasite
burdens at infection hotspots, such as stopover sites, thatmay lead to parasite-inducedmigratory stalling.
This framework could help understand how global change might influence wildlife disease via changes
to migratory patterns and parasite demographic rates.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction1

Many animals undergo arduous migrations to track seasonal2

changes in environmental conditions and resources. The resulting3

spatiotemporal changes in host density have profound and di-4

verse consequences for the dynamical interactions between hosts5

and parasites (Altizer et al., 2011). For example, host migration6

may facilitate the spread of parasites into new areas where they7

might infect novel host species—an increasing concern in the face8

of warming temperatures that allow parasites to persist where9

they previously could not (e.g., Kutz et al., 2013). Alternately,10

migratory hosts may escape parasitism by moving away from11

infection hotspots where parasites have accumulated in the en-12

vironment (Bartel et al., 2011). Such migratory escape has, for13

example, been proposed as a driver of post-calving migration14

* Correspondence to: Biological Sciences, University of Calgary, Canada.
E-mail address: stephanie.j.peacock@gmail.com (S.J. Peacock).

in caribou (Folstad et al., 1991). Migratory lifecycles may also 15

reduce transmission of parasites from adults to juveniles, termed 16

migratory allopatry, as is the case for sea louse parasites of Pacific 17

salmon (Krkošek et al., 2007). Mechanisms such as parasite spread 18

and migratory escape may act simultaneously, with their relative 19

importance depending on the life histories of both the parasite 20

and the host. Further, changes in host–parasite dynamics due to, 21

for example, climate change (Kutz et al., 2013) or the introduction 22

of reservoir hosts (Krkošek et al., 2007; Morgan et al., 2007) may 23

alter how migration influences host–parasite dynamics. These 24

complexities make it difficult to understand and predict the how 25

migration influences host–parasite dynamics. 26

Mathematical models describing the growth and spread of in- 27

fectious pathogens through a host population have been integral to 28

the understanding of disease dynamics in both human andwildlife 29

populations (May and Anderson, 1991; Hudson et al., 2002). Two 30

basic structures have been applied in modelling disease dynamics: 31

(1) compartmental models typically used to describe micropara- 32

sites and (2) macroparasite models. Compartmental models track 33
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the transition of hosts between susceptible (S) and infected (I)1

categories and thus describe the prevalence of infection within2

the host population. Sometimes immune or recovered (R) hosts3

are also considered, leading to the common designation as SIR4

models. These models are typically used to describe micropara-5

sites (e.g., viruses, bacteria) because the impact of the parasite is6

assumed to be independent of the number of parasites infecting a7

host (Anderson and May, 1979).8

Several recent studies have used compartmental models to un-9

derstand and predict parasite dynamics in migratory wildlife (e.g.,10

Hall et al., 2014; Johns and Shaw, 2015; Hall et al., 2016). These11

models tracked the densities of susceptible and infected hosts at12

different stages in the annual cycle (e.g., breeding, migration, and13

overwintering). Hall et al. (2014) describe an SI model in which14

mortality of host populations during migration depends on their15

infection status at the end of the breeding or overwintering sea-16

son. They found that migration lowered pathogen prevalence via17

culling of infected hosts, and thus host population health improved18

with earlier departure and longer-distance migrations. Johns and19

Shaw (2015) built upon that model to look at disease prevalence in20

migratory vs. non-migratory populations with similar results: host21

populations ended up healthier if they spent more time migrating22

and had higher mortality during migration due to disease or other23

factors. More recent work on vector-borne diseases has also con-24

sidered how changing phenology associated with climate change25

might lead to ‘‘migratory mismatch’’ of host and vector densities26

(Hall et al., 2016).27

Macroparasite dynamics require a different model structure28

thanmicroparasites because the impact ofmacroparasites on hosts29

is often proportional to parasite burden, as is typical for many30

helminths (parasitic worms; e.g., tapeworms, flukes) or ectopar-31

asites (e.g., ticks, lice). Macroparasites also tend to be aggregated32

among hosts (Shaw et al., 1998). Explicitly considering the inten-33

sity of infection and the degree of aggregation is important in34

macroparasite models because the mortality of heavily infected35

hosts will result in disproportionate mortality in the parasite pop-36

ulation, which in turn feeds back on host population health (An-37

derson and May, 1978). A less-recognized complication is that the38

degree of aggregation will change with any process that tends39

to select heavily infested hosts, such as parasite-induced host40

mortality,with subsequent impacts onparasite populationdynam-41

ics. This additional complexity has hindered the development of42

spatially explicit models for macroparasite dynamics (Riley et al.,43

2015). Spatial effects have been implicitly included in macropara-44

site models via spatial patchiness in infection pressure (Cornell et45

al., 2004; May, 1978) or discrete geographic areas (Morgan et al.,46

2007), but models that explicitly track the movement of hosts and47

their parasites have been lacking (but see Milner and Zhao, 200848

who consider passive flow of parasites in a river system).49

Explicitly spatial macroparasite models are needed to under-50

stand and predict how host movement and parasitism might in-51

teract to affect wildlife health, which is especially important for52

migratory species. Existing models of parasite dynamics in migra-53

tory animals (e.g., Hall et al., 2014; Johns and Shaw, 2015; Hall54

et al., 2016; Morgan et al., 2007) do not consider how parasite55

burdens change dynamically over time and space or incorporate56

the dynamic processes occurring during movement that might57

influence parasite burdens, such as transmission and parasite-58

mediated migratory ability. These shortcomings not only limit our59

understanding for macroparasites, but ignore important aspects60

of host biology. Animals with high parasite burdens, for example,61

often show reducedmigratory ability (Risely et al., 2017). Monarch62

butterflies infested with protozoan parasites are slower and fly63

shorter distances (Bradley and Altizer, 2005) and juvenile salmon64

infested with sea lice have reduced swimming performance (Nen-65

dick et al., 2011) and compromised schooling behaviour (Krkošek66

et al., 2011). Parasite-mediated migratory ability may affect both 67

the spatial distribution of hosts, reducing the distance migrated by 68

parasitized individuals, and the spatial patterns in parasite burden, 69

resulting in higher parasite burdens of stationary hosts left behind. 70

Here, we develop a new modelling framework for migratory- 71

host and macroparasite population dynamics that considers dy- 72

namic changes in host abundance, parasite burden, and parasite 73

aggregation. This extends previous host–macroparasite models 74

(e.g., Anderson and May, 1978; Kretzschmar and Adler, 1993) to 75

explicitly include spatial representation of a migration corridor. 76

Parasite aggregation, as well as abundance, is allowed to change 77

dynamically in space and time as a consequence of multiple inter- 78

acting demographic, spatial, and epidemiological processes. First, 79

we introduce the model and then we explore the model-predicted 80

dynamics under a range of parameters. These simulation exercises 81

provide new insights, such as the potential for parasite-mediated 82

migratory stalling, and hint at the potential for broader application 83

of the model in future studies. 84

2. Model 85

We develop a model that tracks changes in host abundance, 86

parasite burden, and the aggregation of parasites along a one- 87

dimensional migration corridor using a system of partial differ- 88

ential equations (PDEs). The model includes potential impacts of 89

parasite burden on the migratory ability of hosts by dividing the 90

host population into two categories: those that are moving at a 91

constant speed and those that are stationary. We consider the rate 92

at which hosts change frommoving to stationary (i.e., stopping) to 93

be a function of parasite burden. We also consider how the aggre- 94

gation of parasites in the host population might change as the host 95

population migrates (Adler and Kretzschmar, 1992; Kretzschmar 96

and Adler, 1993). In the following section, we develop equations 97

describing the spatiotemporal changes in host abundance, mean 98

parasite burden, and the variance-to-mean ratio in the parasite 99

distribution among hosts. 100

2.1. Birth, death, stopping, and starting 101

Following the approach of Anderson and May (1978) and Kret-
zschmar and Adler (1993), we begin with a system of differential
equations that describe the number of hosts with i parasites, pi.
We extend the model of Kretzschmar and Adler (1993) to include
a spatial component, and distinguish moving and stationary hosts,
where pi(x, t) is the number of stationary hosts with i parasites
at location x and time t , and p̂i(x, t) is the number of moving
hosts at location x and time t . For all variables, we use ˆ to
denote the moving population. Moving hosts stop at parasite-
dependent rate γi and stationary hosts start moving at constant
rate ω. Other parameters in the model do not directly depend on
whether hosts are moving or stationary. Hosts are born parasite-
free and stationary at rate β; we assume the host birth is indepen-
dent of parasite burden, although this assumption could be relaxed
in future models (e.g., Dobson and Hudson, 1992). Hosts die at
natural rate µ, with additive parasite-induced mortality at per-
parasite rate α (Anderson and May, 1978). Parasites attach at rate
φ (see Section 2.2), reproduce within the host at rate ρ, and die
at rate σ . We assume that parasite demographic rates are density
independent, except that the rate of parasite-induced host death
depends on parasite burden. The basic model is described by four
partial differential equations:

∂p0
∂t

= β

∞∑
i=0

(pi + p̂i) − (µ + φ)p0 + σp1 + γ0p̂0 − ωp0

(1)
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Table 1
Abundance variablesa in the migratory host–macroparasite model.

Symbol Description

pi Abundance of stationary hosts with i parasites at (x, t)
N =

∑
∞

i=0pi Abundance of the total stationary host population at (x, t)
P =

∑
∞

i=0ipi Abundance of the total parasites on stationary hosts at (x, t)
ri = pi/N Proportion of stationary hosts with i parasites
m = P/N Mean parasite burden of stationary hosts
A Variance-to-mean ratio (VMR) of parasites on stationary hosts
L Density of infectious parasite larvae in the environment (Section 2.2)

a Variables are all dependent on space and time (i.e., pi = pi(x, t)) but we have dropped the
(x, t) for brevity. The variable for stationary hosts is shown, but the same variable exists for
moving hosts, denoted by ˆ .

∂pi
∂t

= − (µ + φ + i(α + σ + ρ)) pi + σ (i + 1)pi+1

+ φpi−1 + ρ(i − 1)pi−1 + γip̂i − ωpi (2)
∂ p̂0
∂t

− c
∂ p̂0
∂x

= −(µ + φ)p̂0 + σ p̂1 − γ0p̂0 + ωp0 (3)

∂ p̂i
∂t

− c
∂ p̂i
∂x

= − (µ + φ + i(α + σ + ρ)) p̂i + σ (i + 1)p̂i+1

+ φp̂i−1 + ρ(i − 1)p̂i−1 − γip̂i + ωpi (4)

for all i ≥ 1. Descriptions of the variables and parameters are1

given in Tables 1 and 2, respectively. In Appendix A, we show2

that the solution to Eqs. (1)–(4) and Eq. (5) is bounded, positive,3

and unique for all t ≥ 0, x ∈ Ω , and i ∈ {1, . . . , I}, where4

I is some number of parasites larger than the carrying capacity5

of hosts, provided pi(0, x), p̂i(0, x), and L(0, x) are non-negative,6

continuously differentiable, and integral in R. Although I in the7

system of Eqs. (1)–(4) above is infinite (as parasite attachment can8

always lead to hosts with more parasites), considering I finite or9

I = +∞ is equivalent if the distribution of parasites among hosts10

has finite moments (Appendix A.4).11

2.2. Attachment rate12

The per-host attachment of parasites takes place at rate φ,13

in proportion to the number of infectious parasites at (x, t). We14

derive a formula for φ by considering a transmission stage of larval15

parasites, L(x, t), that are free-living, such as eggs, spores, or cysts.16

These larval parasites exist outside of the (primary) host and are17

assumed to be stationary relative to the distances moved by the18

migratory host population. The dynamics of the larval parasites are19

described by:20

∂L
∂t

= κ(P + P̂) − µLL − λL(N + N̂), (5)21

where κ is the within-host rate of production of larvae by attached22

parasites, P and P̂ are the total densities of attached parasites23

on stationary and moving hosts, respectively, µL is the mortal-24

ity rate of larval parasites, λ is the infection rate, and N and25

N̂ are the densities of stationary and moving hosts, respectively26

(see Section 2.4). The per-host rate of attachment is therefore27

φ = λL.28

In cases where the development time of eggs, cysts, or spores is29

short, it may be justifiable to assume that the dynamics of parasite30

production and attachment occur on much faster timescales than31

the lifespans of hosts and parasites (Anderson andMay, 1978).We32

refer to this as direct transmission because the time that parasite33

larvae spends in the environment is assumed to be negligible. In34

the case of direct transmission, we can assume that Eq. (5) is at35

equilibrium or quasi-equilibrium:36

L∗
=

κ(P + P̂)

µL + λ(N + N̂)
, (6)37

in which case the attachment rate becomes: 38

φ = λL∗
=

κ(P + P̂)

µL/λ + N + N̂
. (7) 39

The timescale assumption eliminates the need to track the dynam- 40

ics of L explicitly. However, we have chosen to model L explicitly 41

because the infection rate of moving hosts is sensitive to the dif- 42

ference between infection andmortality rates of free-living larvae, 43

allowing for dynamics like migratory escape. 44

2.3. Movement status 45

Hosts are classified as either stationary ormoving.Moving hosts 46

migrate at a constant speed, c , regardless of the number of para- 47

sites they harbour, but hosts stop moving at parasite-dependent 48

rate γi and stationary hosts start moving at constant rate ω. We 49

assume that the stopping rate increases linearly with the number 50

of parasites in or on a host: γi = γ +θ i, where θ is the per-parasite 51

increase in the stopping rate. Although a saturating stopping rate 52

may be more realistic, once γi becomes much greater than ω, 53

most hosts will be stationary and the rate of stopping becomes 54

biologically irrelevant. We assume for our analysis that the rate 55

of starting does not depend on parasites, but depending on the 56

system of interest, ω could also be a function of parasite burden. 57

For an initial exploration of the model’s behaviour, this seems to 58

be a biologically reasonable assumption because if an individual’s 59

ability to migrate is adversely affected by parasites, they may still 60

experience the drive to complete the migration, but as parasite 61

burden increases their progress will be hindered as they make 62

increasingly frequent stops. 63

2.4. Equations for the total population size 64

We can write equations for the total host population (N and N̂)
and total parasite population (P and P̂) at (x, t) by summing equa-
tions for pi and p̂i over all possible numbers of parasites (Table 1).
The aggregate equations are:

∂N
∂t

= β(N + N̂) − (µ + ω)N − αP + γ N̂ + θ P̂ (8)

∂P
∂t

= ρP − (µ + ω + σ )P + φN + γ P̂ − αN

×

∞∑
i=0

i2ri + θ N̂
∞∑
i=0

i2 r̂i (9)

∂N̂
∂t

− c
∂N̂
∂x

= −(µ + γ )N̂ − (α + θ )P̂ + ωN (10)

∂ P̂
∂t

− c
∂ P̂
∂x

= ρP̂ − (µ + σ + γ )P̂ + φN̂ + ωP

− N̂(α + θ )
∞∑
i=0

i2 r̂i, (11)
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Table 2
Parameters in the migratory host–macroparasite model.

Symbol Description Baseline value Units

β Host birth 0 yr−1

µ Natural host mortality 0 yr−1

φ Parasite attachment see section 2.2 yr−1

α Parasite-induced host mortality 0.1 parasite−1 yr−1

ρ Within-host parasite reproduction 0 parasite−1 yr−1

σ Within-host parasite mortality 5 parasite−1 yr−1

κ Production of free-living parasites 1 yr−1

λ Infection probability 0.01
µL Mortality of free-living parasites 5 yr−1

c Migration speed 10 000 km yr−1

γ Stopping rate 1 yr−1

θ Per-parasite increase in stopping 0 parasite−1 yr−1

ω Starting rate 1 yr−1

where ri and r̂i are the proportion of stationary and moving hosts,1

respectively, harbouring i parasites (Table 2). The original model2

in Eqs. (1)–(4) cannot be completely described by the above equa-3

tions because the summations over ri require information on the4

distribution of parasites among hosts.5

2.5. Mean parasite burden and the variance-to-mean ratio6

The mean parasite burden is the expected number of parasites7

that a host would have. To provide a more biologically intuitive8

measure of the infection level, we can rewrite Eqs. (8)–(11) as a9

function of the mean parasite burdens per host, m and m̂. The10

variables m and m̂ are well defined because N and N̂ remain11

positive for all t and x (Appendix A). Using the chain rule:12

∂m
∂t

=
1
N

∂P
∂t

−
m
N

∂N
∂t

. (12)13

We also introduce the variance-to-mean ratio (VMR), A, which14

describes the aggregation of parasites among hosts. We can write15

the summations in Eqs. (8)–(11) in terms of the VMR:16

∞∑
i=0

i2ri = variance + m2
= m(A + m). (13)17

Calculating the change in mean number of parasites per host using
Eq. (13) we arrive at:

∂N
∂t

= β(N + N̂) − (µ + ω + αm)N + (γ + θm̂)N̂ (14)

∂m
∂t

= ρm + φ − m

(
σ + αA + β

(
N + N̂

N

))

+
N̂
N

(
γ (m̂ − m) + θm̂(Â + m̂ − m)

)
(15)

∂N̂
∂t

− c
∂N̂
∂x

= −

(
µ + γ + (α + θ )m̂

)
N̂ + ωN (16)

∂m̂
∂t

− c
∂m̂
∂x

= ρm̂ + φ − m̂
(
σ + (α + θ )Â

)
+

N

N̂
ω(m − m̂). (17)

As previously mentioned, macroparasites are often aggregated18

among hosts with a distribution that is well described by the neg-19

ative binomial (Shaw et al., 1998). Thus, we proceed by assuming20

that parasites are distributed according to the negative binomial21

withmean parasite burdenm and overdispersion parameter k. The22

VMR is related to the overdispersion parameter by k = m/(A − 1).23

Although many macroparasite models assume that k is constant24

(and therefore the VMR changes predictably with the mean) (e.g.,25

Anderson and May, 1978; May, 1978; Krkošek et al., 2011), we do26

not make this simplifying assumption because we expect that the27

aggregation of parasites among hostswill change in space and time28

with parasite-mediatedmigratory behaviour and parasite-induced

host mortality. In the following section, we follow the approach 29

of Kretzschmar and Adler (1993) and derive the equation for the 30

VMR as an additional dynamic variable. 31

2.6. Variance-to-mean ratio as a dynamic variable 32

We derived equations for the change in the VMR of parasites
on stationary and moving hosts, A and Â, respectively, following
the approach of Kretzschmar and Adler (1993). The derivation
of the VMR equations, and the general form that can be applied
for parasite distributions other than the negative binomial, can
be found in Appendix B. If we proceed with the assumption that
parasites are distributed according to the negative binomial, we
can write the equations for the dynamic VMR as:

∂A
∂t

= βm

(
N + N̂

N

)
+ 2ρ + (1 − A)

(
φ

m
− ρ + σ + Aα

)
+

N̂m̂
Nm

[
θ

(
Â(3m̂ + 2Â − 1 − A − 2m)

+ (m̂ − m)2 − Am̂
)

+ γ

(
m̂ + Â − A − 2m +

m2

m̂

)]
(18)

∂Â
∂t

− c
∂Â
∂x

= 2ρ + (1 − Â)
(

φ

m̂
− ρ + σ + Â(α + θ )

)
+

Nm

N̂m̂
ω

(
m + A − Â − 2m̂ +

m̂2

m

)
. (19)

The complete system describing the spatial and temporal dy- 33

namics of hosts and parasites under the negative binomial assump- 34

tion is described by Eqs. (14)–(17) and (18)–(19). 35

3. Simulations and results 36

In this section, we illustrate how migration can affect parasite 37

burden and the importance of including a dynamically changing 38

VMR using simulations of the host–macroparasite model intro- 39

duced in Section 2. In its basic form, the model captures the 40

spatiotemporal disease dynamics along the migration corridor but 41

does not consider the full annual migration cycle, including over- 42

wintering and breeding. However, in Section 3.4 we also illustrate 43

how themodel can be extended to consider breeding and overwin- 44

tering seasons when a host population is not migrating. 45

3.1. Simulation methods 46

We simulated the model over a discrete space–time grid using 47

a numerical scheme that, at each time step, splits the problem 48

between two different processes: (1) spatial dynamics of moving 49
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Fig. 1. Host abundance for a non-migratory population (a; red) and a migratory host population that migrates 2000 km (b; blue) from t = 0 (orange/light blue) to t = 0.2 yr
(dark red/blue). Parasite burdens declined in both cases butweremuch lower at the end of themigration season formigratory populations (e) than non-migratory populations
(d), due to migratory escape from the buildup of free-living parasites (j,k). Dotted lines correspond to regions in space where host abundance was less than one individual.
The change over time in variables at peak host abundance is shown on the right, emphasizing differences betweenmigratory (red) and non-migratory (blue). Parameters for
the simulation are given in Table 2, with the exception of ω = 0, γ = 0, ρ = 0, and κ = 10. See https://rawgit.com/sjpeacock/Migration_model/master/MigVsStat.html for
an animated version (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.).

populations and (2) temporal dynamics of birth, mortality, and1

switching movement status. This approach is known as operator2

splitting in the numerical solution of advection–diffusion–reaction3

equations (Hundsdorfer and Verwer, 2013). We considered a mi-4

gration corridor that was long enough to accommodate migrants5

who moved for the entire simulation (migration season), which6

eliminated the effect of boundary conditions. An alternative ap-7

proach thatmaybemore appropriate if the endof themigration oc-8

curred at a certain point in spacewould be to consider an absorbing9

boundary. For details of our numerical methods, see Appendix C.10

The model we have described is general, and different param-11

eterizations make it adaptable to a variety of life-histories of both12

the parasite and host. For our initial exploration of the dynamics,13

we considered a theoretical populationmigrating 2000 km along a14

one-dimensional migration corridor, with a spatial grid consisting15

of steps ∆x = 1 km in length. First, we consider the migratory16

season only when hosts have left their breeding grounds and17

therefore host reproduction is β = 0 yr−1. In Section 3.4, we18

consider β > 0 during a breeding season. Other parameters were19

varied from their baseline values (Table 2) in sensitivity analyses20

exploring their effect on the dynamics, with details given in the21

relevant sections below. The migration period lasted 0.2 yr (or 7322

days), simulated using a time step of ∆t = 0.0001 yr.23

We initiated all simulations with a host population that had a24

peak abundance of 1000 individuals at the start of the migration25

(arbitrarily set at 130 km) and a Gaussian spatial distribution with26

a standard deviation of 30 km. We added one individual to both27

the initial moving and stationary host populations to ensure the28

problem was well posed; we required that N and P be positive in29

order to definem and A (Appendix A) and to avoid numerical issues

when host abundance was zero due to the ratios in Eqs. (18)–(19). 30

This meant that host abundance was never exactly zero in our 31

simulations. We assumed an initial parasite burden of m(x, 0) = 32

m̂(x, 0) = 5 parasites per stationary andmoving hostwith overdis- 33

persion of k = 0.8, giving a VMR of A(x, 0) = Â(x, 0) = 7.25. The 34

initial density of free-living parasites was L(x, 0) = 1 km−1. 35

3.2. Parasite burden of moving and stationary populations 36

We contrasted the parasite dynamics of non-migratory and 37

migratory host populations with the production of free-living par- 38

asites ranging from κ = 0 to κ = 10 parasite−1 yr−1 and the 39

within-host reproduction ranging fromρ = 0 toρ = 10parasite−1
40

yr−1. We hypothesized that increases in ρ would affect parasite 41

burdens of stationary andmigrating hosts in a similar way because 42

within-host reproduction of parasites would track the movement 43

ofmigratory hosts. In contrast, increases in κ would emphasize any 44

differences in parasite dynamics between stationary andmigrating 45

hosts because migratory hosts will move away from areas where 46

free-living parasites accumulate. 47

For these simulations, we set γ = ω = 0 and θ = 0 so 48

that hosts did not switch between stationary and moving. The 49

initial non-migratory host population was entirely stationary and 50

remained so throughout the simulation. The initial migratory host 51

population was entirely moving and therefore migrated at the 52

constant speed c for the duration of the simulation. We report 53

the host abundance, parasite burden, VMR, and density of free- 54

living parasites after 0.2 yr for the non-migratory and migratory 55

populations (Fig. 1). These variables correspond to the stationary 56

https://rawgit.com/sjpeacock/Migration%5Fmodel/master/MigVsStat.html
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Fig. 2. The host population (a, e), parasite burden (b, f), VMR (c, g), and density of free-living parasites over time for increasing within-host parasite reproduction (ρ, left)
and production of free-living parasites (κ , right). As for the right-hand column of Fig. 1, dark red lines correspond to the non-migratory populations at the initial location
x0 = 130 km and the lighter blue lines correspond to the migrating populations at the location of peak host abundance (i.e., x(t) = x0 + ct). (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)

andmoving populations for the non-migratory andmigratory sim-1

ulations, respectively, because hosts were not allowed to switch2

movement status in these simulations.3

The effect of increasing within-host parasite production had4

similar effects for non-migratory andmigratory populations, as we5

predicted. As ρ increased, host populations declined more rapidly6

(Fig. 2a), parasite burdens increased more rapidly (Fig. 2b), and7

parasites were more aggregated among hosts (Fig. 2c). The build-8

up of free-living parasites at the location of the non-migratory9

host population was higher (Fig. 2d) and resulted in slightly higher10

parasite burdens on non-migratory hosts than on migratory hosts.11

Increases in κ also led to lower host densities, but the effect12

wasmuch larger for non-migratory hosts (Fig. 2e). Parasite burden13

was higher for non-migratory hosts than migratory hosts when14

κ > 0 (Figs. 1, 2f). While increasing ρ resulted in a higher VMR15

(Fig. 2c), increasing κ had the opposite effect (Fig. 2g); parasites16

were less aggregated because infection by free-living parasites17

occurred at random, evening out the parasite distribution among18

hosts. The simultaneous decline in host population (Fig. 2e), par-19

asite burden (Fig. 2f), and VMR (Fig. 2g) for both non-migratory20

and migratory populations suggests that the most heavily infected21

hosts are suffering parasite-induced mortality. The VMR declined22

more rapidly for non-migratory hosts than migratory hosts as23

κ increased (Fig. 2g) due to parasite-induced mortality culling24

heavily infected individuals. For non-migratory populations, new25

infections may have been more important in lowering the VMR26

as the exposure to free-living parasites was much higher for non-27

migratory hosts (Fig. 2h).28

3.3. Effect of dynamic variance-to-mean ratio 29

Kretzschmar and Adler (1993) were the first to consider mod- 30

elling the VMR as an additional dynamic variable. They found that 31

hosts and parasites coexist at a stable equilibrium only if the VMR 32

increases with increasing mean of the parasite distribution, due to 33

the associated increase in per capita parasite death with higher 34

parasite loads. However, they also found that in cases with very 35

strong aggregation, parasites may be unable to effectively control 36

the host population and the system is unstable. Therefore, to say 37

something about stability, it is necessary to include the VMR as a 38

dynamic variable whenever parasite burden affects host survival 39

and therefore parasite survival. But what of our migratory model, 40

where it is the transient dynamics during a migration season that 41

are of interest? How does a dynamic VMR affect parasite burdens 42

and host densities compared to simpler models? 43

To answer this question, we compared simulations using three 44

variants of the model: (1) the Poisson model, assuming a Poisson 45

distribution of parasites among hosts where the variance was 46

always equal to the mean (i.e., A(x, t) = Â(x, t) = 1 and k → ∞), 47

(2) the constant aggregation model, assuming a negative binomial 48

distribution of parasites among hosts with a constant aggregation 49

parameter of k = 0.8 such that A(x, t) = m(x, t)/k + 1 and 50

Â(x, t) = m̂(x, t)/k + 1, and (3) the dynamic VMR model given 51

by Eqs. (18)–(19). In a spatial context, we were most interested in 52

how thesemodels comparedwhenparasites had a strong influence 53

on the rate of host stopping. Therefore, we compared simulations 54
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Fig. 3. The spatial distribution of moving and stationary hosts (a; N̂(x, t) and N(x, t), respectively) and their respective mean parasite burdens (b; m̂(x, t) and m(x, t)),
part-way through a migration at t = 0.08 yr (approx. 30 days). The full model given by Eqs. (18)–(19) was simulated but the solutions for VMR and the density of infectious
parasite larvae in the environment are not shown. The per-parasite increase in the rate of stopping was high (θ = 10), resulting in much of the host population being left
behind and a lower parasite burden on those hosts that continue to migrate. All other parameters were at their baseline values (Table 2).

under baseline parameter values (Table 2) with the exception of1

the per-parasite increase in stopping which we set at θ = 10.2

For each variant of the model, the parasite burden was always3

higher on stationary hosts than on moving hosts due to the ten-4

dency for infected hosts to have higher rates of stopping (Fig. 3b).5

This parasite-induced migratory stalling also led to a relatively6

high abundance of stationary hosts at the start of the migration,7

where parasite burdenswere highest, and a long-tail that extended8

behind the moving population as hosts stopped along the migra-9

tion route.10

The Poisson distribution led to the lowest host abundance11

(Fig. 3a) and the highest mean parasite burden (Fig. 3b) for the12

moving population. Under the Poissonmodel, parasites weremore13

evenly distributed among hosts and so the prevalence of infection14

was higher for a given mean parasite burden. Thus, a larger pro-15

portion of the host population experienced an increase in stopping16

rates, leading to fewer moving hosts. Further, parasite-induced17

stopping was less effective at reducing the mean parasite burden18

of moving hosts, leading to higher mean parasite burdens among19

moving hosts.20

The constant aggregation and dynamic VMR models predicted21

very similar host densities along the migration (Fig. 3a), but there22

were slight differences in the parasite burdens (Fig. 3b). As might23

be expected when migratory ability depends on parasite load,24

the dynamic VMR model predicted higher parasite burdens at the25

tailing edge of the moving population, and lower parasite burden26

at the centre and leading edge of the moving population.27

3.4. Annual dynamics28

Thus far, we have focused onmigration and ignored host repro-29

duction and natural mortality. In many systems, hosts will migrate30

between breeding and overwintering grounds and parameters in31

the model may differ among these seasons. To illustrate how the32

model can be used to understand host–parasite dynamics over an33

annual cycle, we combined simulations using different parameters34

for each of four seasons within a year: breeding, fall migration,35

overwintering, and spring migration. During the breeding and36

overwintering seasons, we assumed that all hosts were stationary 37

with γ = ω = 0 so that no hosts switched to migrating. During 38

the breeding season, hosts reproduced at rate β = 2.5 yr−1, and 39

for all other seasons we set β = 0 yr−1. At the beginning of the 40

migration seasons, all hosts switched from stationary to moving at 41

speed c = 10 000 kmyr−1. At the end ofmigration seasons,moving 42

hosts and their parasites switched back to stationary wherever 43

they were when the migration season ended, and remained there 44

for the following breeding or overwintering season. We ignored 45

stopping, starting, and migratory stalling, keeping γ = ω = 0 46

and θ = 0 for simplicity (this assumption could be relaxed in 47

future analyses). Other parameterswere set at their baseline values 48

(Table 2) except for the mortality of free-living parasites, which 49

we varied from µL = 0.5 to the baseline value of µL = 5 and 50

host mortality which was highest duringmigration (µL = 0.1) and 51

lowest during the breeding season (µ = 0.05) with overwintering 52

intermediate between those two (µL = 0.08). 53

We report the host abundance and parasite burden over a 100- 54

year simulation at the location of peak host abundance in space. 55

The peak host abundance was centred at the breeding grounds 56

during the breeding season (i.e., 130 km along the spatial corridor), 57

at the overwintering grounds during the overwintering season 58

(i.e., 2130 km), and moved in between those two locations during 59

the migration seasons. At baseline parameter values (Table 2), we 60

observed cyclic dynamics in host abundance and parasite burden 61

with a period of ≈8 years (Fig. 4a). Parasite burden tended to 62

lag a year or so behind host abundance, which has also been ob- 63

served in previous host–macroparasite models that display cyclic 64

dynamics (Dobson andHudson, 1992).Within a given year, we saw 65

an increase in host abundance during the breeding season and a 66

decline in host abundance throughout the rest of the year due to 67

natural and parasite-induced mortality (Fig. 4b). During the first 68

decade of the simulations, the parasite burden increased during the 69

breeding season, declined during migration, and increased again 70

during overwintering. However, over the longer term, this annual 71

pattern did not hold (Fig. 4b), perhaps due to the buildup of free- 72

living parasites along the migration route eroding some benefit of 73

migratory escape. 74
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Fig. 4. The host abundance (light blue; left axis) and parasite burden (dark red; right axis) over a 100-year simulation including breeding, migration, and overwintering
seasons. Over long time-scales, the dynamics are cyclic with a period of∼ 8 years (a). Zooming in on the first decade (b), we also observe fluctuations within a year, with host
abundance peaking after the breeding season and parasite burden rising during breeding and overwintering, and declining during migrations. Parameters were at baseline
values (Table 2) except host birth and natural host death which changed with season (see main text for details) (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.).

Fig. 5. The host abundance over the last 80 years of a 100-year simulation using amodel for amigratory population that experienced breeding, migration, and overwintering
seasons (light blue lines) and a non-spatialmodelwhere all parameterswere the same but hosts did notmigrate (dark red lines). The period of cycles in the non-spatialmodel
was similar when the mortality of free-living parasites was high (µL = 5, b), but differed when mortality of free-living parasites was low (µL = 5, d). (For interpretation of
the references to colour in this figure legend, the reader is referred to the web version of this article.)

To understand the effect of migration on multi-year host–1

parasite dynamics, we compared the dynamics of our spatially2

explicit migrationmodel to the dynamics of the non-spatial model3

developed by Kretzschmar and Adler (1993) that was otherwise4

the same (i.e., included dynamic VMR). For the non-spatial sim-5

ulations, we still assumed four seasons within the year but the6

‘‘migratory’’ seasons did not include the movement of hosts. This7

altered the dynamics in that the density of free-living parasites that8

hosts encountered only changed due to host and parasite dynamics9

but not due to host movement away from larval patches as for the10

spatial model. We used the same parameterization as for spatial11

model in order to isolate the effect of adding a spatial component12

on host–parasite dynamics.13

Predictions from the non-spatial model showed similar qual-14

itative behaviour as our spatial model when the mortality of15

free-living parasites was high; populations underwent cycles with 16

approximately the same amplitude and periodwhether or not spa- 17

tially explicit migration was included (Fig. 5a). When themortality 18

of free-living parasites was low, both models predicted lower host 19

abundances (Fig. 5b), likely due to a higher abundance of free- 20

living parasites in the environment regulating host populations. 21

However, our spatial model predicted lower and more frequent 22

peaks in host abundance than the non-spatial model (Fig. 5b). The 23

frequency of cycles was more similar to the high µL scenario than 24

for the non-spatial model, likely because the migration away from 25

infection hotspots mitigated the effect of low free-living parasite 26

mortality. Conversely, in the non-spatial model, hosts could not 27

move away from high densities of free-living parasites that accu- 28

mulatewhen themortality of free-living parasites is low, and so the 29

dynamics were quite different under low µL than under high µL. 30



YTPBI: 2620

Please cite this article in press as: Peacock S.J., et al., Macroparasite dynamics of migratory host populations. Theoretical Population Biology (2018),
https://doi.org/10.1016/j.tpb.2017.12.005.

S.J. Peacock et al. / Theoretical Population Biology xx (xxxx) xxx–xxx 9

4. Discussion1

Animalmigrationsmay have profound implications for parasite2

dynamics in wildlife by spreading parasites to new areas, allowing3

hosts to escape infection hotspots, or culling infected individuals4

fromhost populations (Altizer et al., 2011). Thesemechanismsmay5

influence parasite burdens of migratory hosts in opposing ways,6

making it difficult to understand the net effect of migration on7

animal health. We recognized a need for a modelling framework8

that could incorporate hostmigration andmacroparasite dynamics9

to predict the conditions under which we might expect, for exam-10

ple, migratory escape from parasites. In this paper, we developed11

such a framework and showed how it builds upon previousmodels12

of host–parasite dynamics by explicitly accounting for parasite13

burden and aggregation, including spatial dynamics, and allowing14

the distribution of parasites among hosts to change dynamically in15

space and time.16

Migration can be energetically taxing, and the extra cost of17

infection may compromise a host’s ability to keep up with the18

herd (Risely et al., 2017). Our analysis revealed a phenomenon19

we have termed parasite-induced migratory stalling, whereby20

parasite-impacts on migratory ability can lead to positive feed-21

backs in parasite transmission that may result in the host pop-22

ulation halting their migration. Our model is the first to exhibit23

this behaviour because it includes two key features that previous24

models (e.g., Hall et al., 2014; Johns and Shaw, 2015) were lack-25

ing: transmission dynamics during migration and spatiotemporal26

dynamics of the parasite burden of hosts. These features allowedus27

to explore how parasite-mediated increases in the rate that hosts28

stop moving affect migratory ability and parasite burdens. When29

the rate of stopping increased with parasite burden, we found that30

hosts tended to accumulate in the stationary category. In the case31

of parasites that are environmentally transmitted, moving hosts32

can escape infection hotspots while stationary hosts experience33

higher infection pressure.We also observed spatial structure in the34

parasite burden even within the moving host population; hosts at35

the leading edge of the migration tended to have lower parasite36

burdens than hosts at the tailing edge, while stationary hosts had37

even higher parasite burdens. Our model simulations were not38

specific to any biological system, but specific parameterizations39

could be adopted to understand, for example, the potential for40

migratory stalling of birds at stopover sites, which tend to be41

infection hotspots, or the risk of migratory stalling for wildlife in42

contact with domesticated animals that can act as reservoir hosts.43

Our model predictions are consistent with several empirical44

studies of parasite burdens in migratory wildlife. In species that45

show partial migration, where only certain populations display46

migratory behaviour, sedentary populations often have higher47

parasite burdens across taxa. For example, in Canada, migratory48

elk are less likely to be infected with the trematode Fascioloides49

magna than resident populations (Pruvot et al., 2016). Similarly,50

the migration of red deer in Norway is associated with lower tick51

abundance (Qviller et al., 2013). The loss of migratory behaviour52

in certain populations of monarch butterflies in the USA has led53

to higher prevalence of protozoan parasites than in migratory54

conspecifics (Satterfield et al., 2015). Further studies have shown a55

negative relationship between the distance migrated and parasite56

prevalence (e.g., Bartel et al., 2011). Globally, animal migrations57

are under increasing pressure from anthropogenic environmental58

change with observed declines in migratory behaviour (Wilcove59

and Wikelski, 2008). Quantitative models such as ours allow sci-60

entists to predict the potential consequences for animal health.61

Although limited in scope, the annual simulations illustrated62

how ourmodel could be used to understand seasonal effects of mi-63

gration and host breeding on parasite dynamics, and the long-term64

implications of seasonal or climatic changes in parameters such65

as the mortality of free-living parasites. We found that host and 66

parasite populations tended to cycle on long timescales, but the ex- 67

act period of oscillations depended on the mortality of free-living 68

parasites. Red grouse have classically illustrated such population 69

cycles and experimental studies have suggested that parasites 70

may be the cause of these cycles (Hudson and Greenman, 1998), 71

although other factors are likely also at play (Redpath et al., 2006). 72

Manywildlife populations display such cycles, includingmigratory 73

species such as caribou (Ferguson et al., 1998), leaving it open for 74

future work to examine possible links with parasitism. If parasites 75

are contributing to population cycles, then our model simulations 76

suggest that changes to the mortality of free-living parasites due 77

to, for example, climate change (Dobson et al., 2015), may have 78

important consequences for the period of host population cycles. 79

The presence of migratory behaviour tended to mitigate changes 80

to population cycles that resulted from reduced parasite mortal- 81

ity, suggesting that migratory species might be more resilient to 82

changes in parasite survival. Alternatively, higher survival of free- 83

living parasites combined with the loss of migratory behaviour as- 84

sociatedwith global anthropogenic change (Wilcove andWikelski, 85

2008) could lead to dramatic changes in host population cycles. 86

One important aspect of migration that is missing from our 87

model is the collective behaviour ofmigratory animals.We assume 88

that an individual’s movement depends on parasite burden but is 89

independent of what other animals in the herd, school, or flock 90

are doing. In reality, many animal groups move as a cohesive unit 91

to avoid predation and increase foraging efficiency (Alexander, 92

1974). Thus, a single individual with a high parasite burden may 93

be left behind, but perhaps healthy individuals would hang back 94

if the prevalence of parasitism in the herd was high. This kind 95

of collective behaviour may exacerbate the effect of migratory 96

stalling that we have described. Models with simple rules for 97

attraction, repulsion, and orientation among neighbours in a herd 98

can reproduce the seemingly complex group dynamics observed in 99

nature (e.g., Couzin et al., 2002; Eftimie et al., 2007). Incorporating 100

the effects of parasites into these simple rules may provide insight 101

into how collective dynamics would affect the inferences we have 102

made, and is an area for future research. 103

The model we have presented is a general framework for host– 104

macroparasite dynamics along a spatial domain, such as a migra- 105

tion corridor. Because of its generality, it can be adapted to answer 106

a number of important questions facing wildlife disease ecology. 107

What are the conditions under which we might expect migratory 108

escape, migratory culling, or migratory stalling? How might the 109

effect of rising temperatures on developmental rates of parasites 110

and/or migration timing of hosts affect the health of migrating 111

animals? More than just changing parameters, the structure of the 112

model can be adapted in various ways; for example, to examine 113

how reservoir hosts, such as domestic animals, influence parasite 114

dynamics of sympatric migratory wildlife. We have provided the 115

basic framework for these and other future studies that will shed 116

light on howparasitesmight affect wildlife populations in a chang- 117

ing world. 118
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Appendix A. Well posedness and positivity 126

In this appendix, we prove the well posedness and positivity 127

of the solution to Eqs. (1)–(5) and show the existence of N , m, 128

and A and their moving counterparts. We start by considering the
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problem posed by Eqs. (1)–(5), but instead of considering i up to1

an infinite number of parasites, we assume that the number of2

parasites per host is bounded by some large number I (e.g., the3

carrying capacity for macroparasites on hosts). Eqs. (1)–(5) then4

become:5 ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂p0
∂t

= β

I∑
i=0

(pi + p̂i) − (µ + λL + ω)p0

+ σp1 + γ p̂0
∂pi
∂t

= (λL + ρ(i − 1))pi−1 − (µ + λL
+ i(α + σ + ρ) + ω)pi + σ (i + 1)pi+1
+ (γ + iθ )p̂i

∂pI
∂t

= (λL + ρ(I − 1))pI−1 − (µ + λL
+ I(α + σ + ρ) + ω)pI + (γ + Iθ )p̂I

∂ p̂0
∂t

+ c
∂ p̂0
∂x

= ωp0 − (µ + λL + γ )p̂0 + σ p̂1

∂ p̂i
∂t

+ c
∂ p̂i
∂x

= (λL + ρ(i − 1))p̂i−1 − (µ + λL
+ i(α + σ + ρ) + γ + iθ )p̂i
+ ωpi + σ (i + 1)p̂i+1

∂ p̂I
∂t

+ c
∂ p̂I
∂x

= (λL + ρ(I − 1))p̂I−1 − (µ + λL
+ I(α + σ + ρ) + γ + Iθ )p̂I + ωpI

∂L
∂t

= κ

I∑
i=1

i(pi + p̂i) − µLL

− λL
∑
i=0

Ipi + p̂i

(A.1)6

for all x ∈ Ω = R, t > 0, i ∈ {1, . . . , I − 1}, for some I ∈ N large7

enough,with the initial conditions pi(0, x) = p0i (x), p̂i(0, x) = p̂0i (x),8

and L(0, x) = L0(x) given for all i ∈ {0, . . . , I} such that p0i , p̂0i and9

L0 are non-negative, continuously differentiable, and integral in R.10

More assumptions on the positivity of the initial conditions follow.11

First, we prove the local existence of problem (A.1) and the12

uniqueness of a maximal solution, satisfying the initial condition13

(and boundary condition, when needed) using classical arguments14

as in Salsa (2015, Section 11.2.2) and Lutscher (2002). Then15

we prove that when they exist, the solutions are non-negative16

(assuming the initial conditions are non-negative) and cannot blow17

up in time. This will prove the existence and uniqueness of a18

global solution. Using the Gronwall lemma, we prove that each pi19

is bounded from below by an exponential function in time, which20

proves that as soon as the initial condition is positive, the solution21

is positive for all time. We then deduce that N > 0, N̂ > 0, P > 022

P̂ > 0 andm, m̂, A, and Â are well defined for all time.23

A.1. Existence and uniqueness of the solutions for small time24

Using the methods of characteristics and the Banach fixed25

point theorem (see Section 11.2.2 of Salsa, 2015; Lutscher, 2002),26

we prove that there exists a smooth solution (p0, p1, . . . , pI ,27

p̂0, . . . , p̂I , L) defined on some interval [0, T1] for T1 small enough.28

One starts by considering the problem along with the charac-29

teristics. To make things clear we will denote by u = (u0, . . . , uI ,30

uI+1, . . . , u2I+1, u2I+2) = (p0, . . . , pI , p̂0, . . . , p̂I , L) and define c =31

(c0, . . . , c2I+2) = (0, . . . , 0, c, . . . , c, 0) as the migration speed32

associated with each ui. Now for each i ∈ {0, . . . , 2I + 2}, let33

xi(t) = c it + constant. Then, denoting vi(t) := ui(t, xi(t)), vi solves34

the following ODE:35

v̇i = fi(u(t, xi(t))) (A.2)36

with fi being the reaction term of ui in problem (A.1). The · on vi37

stands for the derivative with respect to time. Integrating Eq. (A.2)38

with respect to time, we obtain for each i39

ui(t, xi(t)) = ui(0, xi(0)) +

∫ t

0
f (u(s, xi(s)))ds. (A.3) 40

Notice that this argument can be adapted if x ∈ Ω ⊊ R and 41

instead of going from 0 to t on the right hand side above, we will 42

go from t0 to t with xi(t0) on the left boundary of the domain (as 43

the population migrate from left to right). 44

Let C0((0, T1), B(u0, β)) be the set of continuous function de- 45

fined for all t ∈ [0, T1], taking its values in the ball centred at 46

u0, a continuous function, with radius β > 0. Then the second 47

step is to prove that there exist some β , T1 > 0 such that if 48

u ∈
(
C0(0, T1), B(u0, β)

)m, with m = 2I + 2, then the right hand 49

side of (A.3) also belongs to
(
C0(0, T1), B(u0, β)

)m. We know that f 50

is locally Lipschitz, thus for all u0 ∈ (B(0, β))m and u ∈
(
B(u0, β)

)m, 51

there exists kβ > 0 such that 52

∥f (u)∥ ≤ kβ∥u∥ ≤ kβ · 2β := M. (A.4) 53

Choose T1 = β/M(= 1/(2 · kβ )), then for all t ∈ (0, T1), 54

ui(0, xi(0)) +

∫ t

0
f (u(s, xi(s)))ds ∈ B(u0, β). (A.5) 55

Moreover, with the same choice of T1 above, one can prove that 56

u ↦→ u(0, xi(0))+
∫ t
0 f (u(s, x(s))) is a contraction. Using the Banach 57

fixed point theorem, we obtain the existence and uniqueness of 58

the maximal solution of problem (A.1) defined for all t ∈ (0, T ), for 59

some T > 0 and x ∈ R (or Ω ⊊ R). 60

One has thus proved the existence and uniqueness of amaximal 61

mild solution of our problem defined for all t ∈ (0, T ), for some 62

T > 0, and for all x ∈ R. To prove the existence of a classical 63

solution (that is, a solution in C1), one can use the same argument 64

with the initial condition (and boundary condition if Ω ⊊ R) in C1
65

and f ∈ C1,1
loc and prove that the solution is integrable on R for all 66

t ∈ (0, T ), for some T > 0 (aswe assumed that the initial condition 67

is integrable). Now one needs to prove that the solution of problem 68

(A.1) exists for all time t ∈ R+, that is the solution cannot blow up 69

in finite time. 70

A.2. Existence, uniqueness, and non-negativity of the solutions for all 71

time 72

First notice that all the components of the problem ui, i ∈ 73

{0, . . . , 2I + 2} stay non-negative if the initial condition is non- 74

negative. Indeed, if ui touches 0 and all the other functions uj, j ̸= i 75

stay non-negative, then d
dt ui(t, xi(t)) ≥ 0 and thus ui stays non- 76

negative. This argument can be applied to all ui, i ∈ {0, . . . , 2I +2} 77

to prove the non-negativity of our system. 78

Now one can study the behaviour of the total abundance of 79

hosts at (x, t), considering 80

N̄ =

I∑
i=0

pi + p̂i (A.6) 81

and then 82

¯̄N(t) =

∫
Ω

N̄(t, x)dx < ∞. (A.7) 83

Summing and integrating the PDEs from (A.1) we obtain that

d ¯̄N
dt

= −

∫
Ω

c ·

I∑
i=0

∂xp̂i(t, x)dx

−

∫
Ω

(µ − β)
I∑

i=0

(pi(t, x) + p̂i(t, x))dx

−

∫
Ω

[
(λL + Iρ)(pI (t, x) + p̂I (t, x))
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+ α

I∑
i=1

i(pi(t, x) + p̂i(t, x))

]
dx. (A.8)

Using the regularity of the solution, we know that for all t ∈ R+,1

−
∫

Ω
c ·
∑I

i=0∂xp̂i(t, x)dx = 0, whenΩ = R. In the case of bounded2

domain, for Dirichlet boundary conditions or periodic boundary3

conditions, the first term on the right-hand side is equal to or less4

than zero and because of the non-negativity of the solution we get5

d ¯̄N
dt

≤ −(µ − β) ¯̄N(t). (A.9)6

Using Gronwall lemma we obtain that7

¯̄N(t) ≤
¯̄N(0)e−(µ−β)t (A.10)8

which yields, for each i ∈ {0, . . . , 2I + 1}, ui(t, x) ≤
¯̄N(0)e−(µ−β)t

9

for all t ≥ 0, x ∈ Ω . This proves that the solution of problem (A.1)10

cannot blow up in time and it is thus global in time, in the sense11

that there exists a unique maximal solution of problem (A.1) that12

exists for all t > 0, x ∈ Ω .13

Moreover, notice that as soon as β < µ we obtain that ¯̄N is14

decreasing in time and thus for all i ∈ {0, . . . , 2I + 1}15

ui(t, x) ≤
¯̄N(0). (A.11)16

That is for all i ∈ {0, . . . , I}, pi and p̂i are bounded for all t ≥ 0,17

x ∈ Ω .18

A.3. Positivity of the solutions19

Using the same argument as in previous subsection, we can20

prove that for all t > 0, x ∈ Ω21

L(t, x) ≤ f (t) (A.12)22

with f being a positive function defined for all t > 0. Then using23

Eqs. (A.1) we obtain for each i ∈ {0, . . . , I},24

∂pi
∂t

≥ −(µ + f (t) + i(α + σ + ρ) + ω)pi (A.13)25

and26

dp̂i
dt

(t, ct + x0) ≥ −(µ + f (t) + i(α + σ + ρ) + γ + iθ )27

× p̂i(t, ct + x0). (A.14)28

Using the Gronwall lemma once again, we obtain that for all i ∈29

{0, . . . , I},30

pi(t, x) ≥ e−
∫ t
0 µ+f (s)+i(... )+(ω)dspi(0, x) > 0 (A.15)31

and32

p̂i(t, ct + x0) ≥ e−
∫ t
0 µ+f (s)+i(... )+γ+i(θ )dsp̂i(0, x0) > 0 (A.16)33

for all t > 0, x ∈ Ω . This proves that as soon as the initial34

condition is positive, the solution is positive for all t > 0. Then35

the total population of stationary hosts NI (t, x) :=
∑I

i=0pi is36

positive, the total population of moving hosts N̂I (t, x) :=
∑I

i=0p̂i37

is positive, the total population of parasites in/on stationary hosts38

PI (t, x) :=
∑I

i=0ipi is positive, and the total population of parasites39

in/on moving hosts is P̂I (t, x) :=
∑I

i=0ip̂i(t, x) is positive.40

A.4. System with N, m and A and their migratory counterpart41

Considering NI :=
∑I

i=0pi, PI :=
∑I

i=0ipi and QI =
∑I

i=0i
2pi42

(see Appendix B for the definition of Q ), we obtain the following43

system of partial differential equations for NI , PI , QI and their44

moving counterparts (we omit the subscript I for N , P and Q and45

their moving counterparts for simplicity of notation):46

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂N
∂t

= β(N + N̂) − (µ + ω)N − αP + γ N̂ + θ P̂
− pI(λL + p)

∂P
∂t

= λLN − (µ + ω + σ − ρ)P − αQ + γ P̂ + θ Q̂
− pI(λL(1 + I) + ρ(I2 + I))

∂Q
∂t

= (λL − αg ′′′(1))N + (σ + 2λL + 2α + ρ)P

− (µ + 2σ + ω + 3α − 2ρ) + θ ĝ ′′′(1)N̂
− 2θ P̂ + (γ + 3θ )Q̂

− pI(λL(I2 + 2I + 1) + ρ(I3 + 2I + I))
∂N̂
∂t

+ c
∂N̂
∂x

= ωN − (µ + γ ) N̂ − (α + θ )P̂
− pI(. . . )

∂ P̂
∂t

+ c
∂ P̂
∂x

= ωP + (λL − (α + θ )ĝ ′′′(1))N̂ − (µ + σ

+γ − 2(α + θ ) − ρ)P̂ − 3(α + θ )Q̂
− pI(. . . )

∂Q̂
∂t

+ c
∂Q̂
∂x

= ωQ + (λL − (α + θ )ĝ ′′′(1))N̂

+ (σ + 2λL + 2(α + θ ) + ρ)P̂
− (µ + 2σ + γ + 3(α + θ ) − 2ρ)Q̂

− pI(. . . )
∂L
∂t

= κ(P + P̂) − µLL − λL(N + N̂).

(A.17) 47

Because the sums are finite, we end up with some extra terms 48

depending on I and pI , highlighted in bold, which do not appear in 49

themain problem (14)–(19). However, assuming that for all n ∈ N, 50

lim
I→+∞

I∑
i=0

inpi and lim
I→+∞

I∑
i=0

inp̂i (A.18) 51

exist for all t > 0, x ∈ Ω , we can define N∞ := limI→+∞NI , P∞ := 52

limI→+∞PI , Q∞ := limI→+∞QI , and their moving counterparts. 53

This assumption roughly means that the distribution of parasites 54

among hosts has finite moment, which is true, for instance, for the 55

Poisson or negative binomial distributions. This assumption was 56

implicitly made (at least up to n = 3) in Kretzschmar and Adler 57

(1993). From this assumptionwe also obtain that for I large enough 58

and for all n ∈ N, 59

pI < I−n
≪ 1 (A.19) 60

and thus when I is large enough, system (A.17) can be approxi- 61

mated by 62⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂N
∂t

= β(N + N̂) − (µ + ω)N − αP + γ N̂ + θ P̂

∂P
∂t

= λLN − (µ + ω + σ − ρ)P − αQ + γ P̂ + θ Q̂
∂Q
∂t

= (λL − αg ′′′(1))N + (σ + 2λL + 2α + ρ)P

− (µ + 2σ + ω + 3α − 2ρ) + θ ĝ ′′′(1)N̂
− 2θ P̂ + (γ + 3θ )Q̂

∂N̂
∂t

+ c
∂N̂
∂x

= ωN − (µ + γ ) N̂ − (α + θ )P̂

∂ P̂
∂t

+ c
∂ P̂
∂x

= ωP + (λL − (α + θ )ĝ ′′′(1))N̂

− (µ + σ + γ − 2(α + θ ) − ρ)P̂
− 3(α + θ )Q̂

∂Q̂
∂t

+ c
∂Q̂
∂x

= ωQ + (λL − (α + θ )ĝ ′′′(1))N̂

+ (σ + 2λL + 2(α + θ ) + ρ)P̂
− (µ + 2σ + γ + 3(α + θ ) − 2ρ)Q̂

∂L
∂t

= κ(P + P̂) − µLL − λL(N + N̂)

(A.20) 63

which yields problem (14)–(19). 64
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Appendix B. Derivation of dynamic equations for the VMR1

Following the derivation of the non-spatial model of Kret-
zschmar and Adler (1993), we introduce a third aggregate variable,
Q =

∑
i2pi (and itsmigratory counterpart, Q̂ ). The following equa-

tions describing the change in Q and Q̂ were found by multiplying
Eqs. (1)–(4) by i2 and summing (as for P and P̂):

∂Q
∂t

= −(µ + 2σ + ω)Q + (σ + 2φ)P + φN

+ γ Q̂ − αN
∞∑
i=0

i3ri + θ N̂
∞∑
i=0

i3 r̂i (B.1)

∂Q̂
∂t

− c
∂Q̂
∂x

= −(µ + 2σ + γ )Q̂ + (σ + 2φ)P̂ + φN̂

+ ωQ − (α + θ )N̂
∞∑
i=0

i3 r̂i. (B.2)

Applying the chain rule as above,we can get equations foru = Q/N2

and û = Q̂/N̂ . We can use a trick with probability generating3

functions to deal with the sums in Eqs. (B.1)–(B.2). The sums can4

be expressed as:5

∞∑
i=0

i3ri = g ′′′(1) + 3u − 2m, (B.3)6

where g(z) is the probability generating function of the distribution
of ri (e.g., the negative binomial distribution), and g ′′′(1) is the third
derivative evaluated at z = 1 (see Appendix II of Kretzschmar and
Adler (1993)). Inserting Eq. (B.3) into Eqs. (B.1)–(B.2) and solving
for ∂u/∂t and ∂ û/∂t − c ∂ û/∂x, we get

∂u
∂t

= − u

(
2σ + β

(
N + N̂

N

))
+ m(σ + 2φ)

+ φ − α(g ′′′(1) + 3u − 2m − um) (B.4)

+
N̂
N

[
θ
(
ĝ ′′′(1) + 3û − 2m̂ − m̂u

)
+ γ (û − u)

]
∂ û
∂t

− c
∂ û
∂x

= û
(
m̂(α + θ ) − 2σ

)
+ m̂(σ + 2φ) + φ + ω

N

N̂
(u − û)

− (α + θ )(ĝ ′′′(1) + 3û − 2m̂). (B.5)

The VMR, A, can be expressed in terms of u and m:7

A =
variance

m
=

∑
∞

i=0 i
2ri − m2

m
=

u − m2

m
. (B.6)8

We can use Eq. (B.6) to obtain a differential equation for A of the9

form:10

∂A
∂t

=
1
m

∂u
∂t

−
u
m2

∂m
∂t

−
∂m
∂t

. (B.7)11

Using Eqs. (B.1)–(B.2), (15), and (17), and substituting u = m(A+m)12

and û = m̂(Â + m̂), we can write the equations for the change in13

the VMR:14

∂A
∂t

= βm

(
N + N̂

N

)
− (A − 1)

(
σ +

φ

m

)
− α

(
g ′′′(1)
m

+ 3(A + m)

− (2 + m(A + m)) − A(A + 2m)
)

+
N̂
Nm

[
θ

(
ĝ ′′′(1) + 3m̂(Â + m̂)

− m̂(2 + m(A + m)) − m̂(Â + m̂ − m) (A + 2m)

)
+ γ

(
m̂(Â + m̂) − m(A + m)

− (A + 2m)(m̂ − m)
)]

(B.8)

∂Â
∂t

− c
∂Â
∂x

=(α + θ )
[
Â(3m̂ − 3 + Â) + m̂(m̂ − 3) + 2 −

ĝ ′′′(1)
m̂

]
− (Â − 1)

(
σ +

φ

m̂

)
+ ω

Nm

N̂m̂

(
A + m +

m̂2

m
− Â − 2m̂

)
. (B.9)

To apply the model in Eqs. (14)–(17) and (B.8)–(B.9), we need 15

to define g ′′′(1) and ĝ ′′′(1) by assuming a distribution of parasites 16

among hosts. Defining the distribution still allows for the mean 17

and VMR in the parasite burden to change in space and time, thus 18

accounting for changes in the overdispersion. 19

If we assume that parasites are distributed among hosts accord-
ing to the negative binomial, then we can make the substitutions:

g ′′′(1) = m(m + A − 1)(m + 2(A − 1))

ĝ ′′′(1) = m̂(m̂ + Â − 1)(m̂ + 2(Â − 1)). (B.10)

These substitutions simplify Eqs. (B.8)–(B.9), yielding Eqs. (18)– 20

(19). 21

Appendix C. Numerical methods 22

Wenumerically simulatedmodel solutions on a discrete space–
time grid where:

x → xi ∈ {x0, x1, . . . , xnx}
t → tk ∈ {t0, t1, . . . , tnt }.

We set the grid spacing in the spatial domain, ∆x, based on the 23

length of the migration route being considered such that nx was 24

reasonably large but still computationally feasible. We then chose 25

a sufficiently small time step that densities did not move more 26

than one grid space to avoid numerical errors (i.e., the Courant– 27

Friedrichs–Lewy condition; Courant et al., 1967). In general, the 28

time step should be set to ∆t ≈ ν∆x/c , where 0 ≤ ν ≤ 1 29

is the Courant number and c is the migration speed. Note that 30

if ∆t is exactly ∆x/c , then the numerical approximation to the 31

advection equation (step 1 below) is exact. This was the case for 32

our general simulations where we chose a migration speed of 33

c = 10 000 km yr−1 (Table 2), ∆x = 1 km, ∆t = 0.0001 yr, 34

and ν = 1. By using the exact solution, we avoided the effect of 35

‘‘numerical diffusion’’, whereby the numerical approximation of 36

advection results in a spreading out of the population densities. 37

We denote the numerical approximation of N̂(xi, tk) at point (i, k) 38

on the grid as N̂i,k. 39

At each time step in the numerical simulation of the model, we 40

split the model equations into an advection processes, consisting 41

of movement of migratory populations, and a reaction process, 42

consisting of temporal change in population densities, consisting of 43

host birth/death, parasite attachment/death, and switching status 44

between migratory and stationary. As an example, Eq. (16) can be 45

written as: 46

∂N̂
∂t

= c
∂N̂
∂x
A

−

(
µ + γ + (α + θ )m̂

)
N̂ + ωN  

R

47

where A is the advection process and R is the reaction process. 48
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We assumed Neumann boundary conditions where the deriva-1

tive across the boundary is zero. This was simulated by adding a2

ghost node onto either end of our spatial grid, at i = −1 and3

i = nx +1. The numerical algorithm proceeded as follows. For each4

time step k in 1 to nt :5

1. Force boundary conditions by setting N̂−1,k = N̂1,k and6

N̂nx+1,k = N̂nx−1,k.7

2. Solve ∂ ˆNA
∂t = Awith N̂A(xi, 0) = N̂i,k on [0, ∆t]using a finite8

upstream differencing method (Hundsdorfer and Verwer,9

2013).10

3. Solve ∂ ˆNR
∂t = R with N̂R(xi, 0) = N̂A(xi, ∆t) on [0, ∆t]11

using a fourth-order Runge–Kutta method.12

4. Set N̂i,k+1 = N̂R(xi, ∆t).13

The above scheme is written for N̂ , but at each step, the algorithm14

was applied to the other variables as well. Note, however, that15

for the non-migratory variables N , m, A, and L, A = 0 and thus16

NA(xi, ∆t) = Ni,k.17
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