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We present previously undescribed spatial group patterns that
emerge in a one-dimensional hyperbolic model for animal group
formation and movement. The patterns result from the assumption
that the interactions governing movement depend not only on
distance between conspecifics, but also on how individuals receive
information about their neighbors and the amount of information
received. Some of these patterns are classical, such as stationary
pulses, traveling waves, ripples, or traveling trains. However, most
of the patterns have not been reported previously. We call these
patterns zigzag pulses, semizigzag pulses, breathers, traveling
breathers, and feathers.

nonlocal hyperbolic system | signal reception | spatial pattern | zigzag

Pattern formation is one of the most studied aspects of animal
communities. Here we present 10 complex spatial patterns
that emerge in a one-dimensional mathematical model used to
describe the formation and movement of animal groups.

Some of the most remarkable examples of patterns observed
in animal groups are related to the behavior displayed by these
groups (1). Stationary aggregations formed by resting animals,
migrating herds of ungulates, zigzagging flocks of birds, and
milling schools of fish are only a few of the patterns. To
understand the underlying mechanisms, scientists use mathe-
matical models to simulate these observed biological patterns.
The most spectacular examples of group patterns shown by
numerical simulations are obtained with individual-based
models: swarms, tori, and polarized groups (2, 3). A second
mathematical modeling approach is based on continuum models,
which are usually described by partial differential equations. In
many areas, the continuum models have been successful at
deducing conditions that give rise to biological patterns [e.g.,
morphogenesis (4)], even in one spatial dimension (5). However,
this has not been the case for animal grouping models. The
one-dimensional continuum models that investigate animal ag-
gregations fail to account for the multitude of complex patterns
that one can observe in nature. Generally, the patterns exhibited
by these models are simple: local parabolic models do not
support traveling waves (6), and nonlocal parabolic models can
give rise to stationary pulses (7) or to traveling waves, provided
that diffusion is density-dependent (8). Hyperbolic models give
rise to ripples (9) and aggregations (9, 10). Considering that
one-dimensional models have not explained the complexity of
the patterns observed in biological systems, scientists have
directed their attention toward two-dimensional models. The
results are more complex [e.g., ripples (11), stationary aggrega-
tions (7), vortex-like groups (12), patches of aligned individuals
(13, 14)], but they still cannot account for the multitude of
observed patterns.

One possible reason for this failure is that the assumptions
considered by these models do not fully describe the social
interactions between individuals governing group formation.
More precisely, these models consider that the social interac-
tions depend only on the distances between individuals. How-
ever, this assumption might not be sufficient. In support of this
statement, we examine a nonlocal mathematical model that
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focuses on distance-dependent and direction-dependent social
interactions, facilitated by animal communication.

The process of formation and movement of animal groups is
the result of the interplay between two elements. The first
element is represented by the movement-facilitated social inter-
actions, namely movement toward conspecifics or away from
them and movement to align with them. Previous models [both
individual-based models (2, 3, 15) and continuum models (7, 8)]
assume that these interactions are mainly distance-dependent. A
few individual-based models (e.g., refs. 2 and 3) take into
account that individuals may not receive information from
behind because of a so-called “blind spot”. Generally, attraction
is considered to act on long ranges, alignment on intermediate
ranges, whereas repulsion acts on short ranges. In this paper, we
assume that superimposed on these movement-facilitated social
interactions, there is a second element: how individuals receive
information about conspecifics and the amount of information
received. This second element is typically not included in models.
However, this approach is reasonable, because there is evidence
suggesting that not all animals receive and respond in a similar
manner to the signals coming from their neighbors. For example,
some species of birds use directional sound signals (which
require the emitter to face the receiver) to coordinate the flock
movements and omnidirectional signals (with emitters moving in
any direction) to attract mates or repel intruders (16). For
Mormon crickets, the movement seems to be influenced by the
signals received from conspecifics approaching from behind and
from those positioned ahead and moving away (17). The move-
ment direction of some fish is more frequently influenced by the
movement direction of the neighbors positioned ahead of them
than by those at their side (18). We focus here only on the reception
of signals, because this plays a central role in the formation and
movement of animal groups, by allowing the receiver to make
movement decisions (19). Moreover, the reception of signals is
affected by environmental conditions and the receiver’s physi-
ological limitations, and therefore different species make use of
different signals and reception mechanisms (20, 21).

We take these two elements and incorporate them into a
mathematical model that describes the formation and movement
of animal groups. We focus on five hypothetical submodels for
signal reception and use them to define the social interactions.
These submodels are examples that illustrate how environmental
and physiological constraints can be represented with our mod-
eling paradigm.

The numerical simulations show the emergence of 10 types of
spatial patterns. Some of these patterns are classic: stationary
pulses, ripples, traveling trains, or traveling waves. However,
most of the patterns have not been described previously. We call
these solutions zigzag pulses, semizigzag pulses, breathers, trav-
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Fig. 1. Five submodels for signal reception. A reference right-moving individual is positioned at x. Its right-moving (u*) and left-moving (u~) neighbors are
positioned at x + sand x — s. M1, for attraction and repulsion, the information is received from all neighbors, whereas for alignment the information is received
only from those moving toward the reference individual; M2, information is received from all neighbors (for attraction, repulsion, and alignment); M3,
information received only from ahead (with respect to the moving direction of the reference individual); M4, information received from ahead and behind, but
only from those neighbors moving toward the reference individual; M5, information received only from ahead, and only from those neighbors moving toward

the reference individual.

eling breathers, and feathers. We investigate our five submodels
of signal reception in three cases [of which the first two are very
common in existing models (7-9)]: (a) only attraction and
repulsion, (b) only alignment, and (c) attraction, repulsion, and
alignment. At the end, we focus on case (c) to investigate the
conditions for full alignment within a population of individuals
that is spread evenly over the domain. For this, we answer the
question: how does the strength of the alignment force required
in each of the five submodels depend on the amount of infor-
mation an individual receives from its neighbors?

Model Description

In ref. 22, the authors introduced the following model of
hyperbolic partial differential equations that describes the evo-
lution of densities of right-moving (u*) and left-moving (u™)
individuals:

out, )+ oy, )= —ATut(x, 1)+ A u (x, 1),
Au (e, 1) — o (yu (6, 1) =ATut (e, f) = A u(x, 1),
u=(x, 0) = uy=(x). [1]

It is assumed that individuals move at a constant speed <. The
two remaining symbols, A* (A7), denote the turning rates for the
individuals that were initially moving to the right (left) and then
turn to the left (right). These rates describe the response of an
individual, through attraction, repulsion, and alignment, to the
signals received from its neighbors:

Eftimie et al.

A5 =N+ Mfyy = ve +ya)- [2]

We consider f to be a positive, increasing, and bounded function
that depends on three nonlocal social interactions: attraction
(), repulsion (y,’), and alignment (y,;). Because the attraction
and repulsion have opposite effects, note that they enter the
equation with different signs. We will flesh out these terms
shortly, when we discuss Table 1. The other two constants, A; and
A2, approximate the random turning rate and the bias turning
rate, respectively.

As mentioned previously, the social interactions depend on
signal reception. We investigate five hypothetical submodels
describing how an individual can receive signals from its neigh-
bors. Fig. 1 shows a reference right-moving individual that is
positioned at x, whereas its neighbors are potentially positioned
atx + s (ahead) and at x — s (behind). The submodels are as
follows: M1, the attractive and repulsive interactions depend on
the stimuli received from all neighbors, whereas the alignment
depends only on the stimuli received from those neighbors
moving toward the reference individual (this case was studied in
ref. 22); M2, all three social interactions depend on the stimuli
received from all neighbors; M3, the social interactions depend
only on the information received from ahead (with respect to the
moving direction); M4, the social interactions depend on the
stimuli received from ahead and behind, only from those neigh-
bors moving toward the reference individual; and M5, the social
interactions depend on stimuli received only from ahead and
only from neighbors moving toward the reference individual. To
understand Fig. 1, let us focus, for example, on M1 and, in
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Table 1. The nonlocal terms used to describe the social interactions

Model Attraction and repulsion Alignment

M1 Via® = o S Koo $) @ £ 5) = ulx ¥ 5))ds Yar© = Gar S Kat)@ (v * 5) —u* (x % 5))ds

M2 Vea© = Gra fow K, (s)(u(x = s) — u(x = 5))ds Yai© = qa J: K ()™ (x = 5) +u™(x ¥ 5))ds — u™(x £ 5) — u™(x ¥ 5))ds
M3 Yra™ = dra S " Kea() (e  5))ds Yar© = qar S Kals)@ (6 = 5) —u”(x = ))ds

M4 Yra™ = o S K0 = ) F s)ds Var® = G )" Ku$)" e = 5) — u*(x 7 ))ds

M5 Vo™ = G S K $)” (&  5)ds Y = qur " Kals)(u™ (@  5)ds

The terms y,,* and y,/" are the translation of the diagrams from Fig. 1 into mathematical equations, when we sum up the information received from all
neighbors (s € (0, «)). The terms y,,~ and y,;~ are obtained through a similar process, when we consider a left-moving reference individual. We define q., g,
and g, to be the strength of the attraction, repulsion, and alignment forces. Also, we define u to be the total density u = u™ + u™.

particular, on the diagram for attraction and repulsion. We
assume here that an individual is attracted (repulsed) by neigh-
bors within the attraction (repulsion) zone, regardless of their
orientation. Suppose that the reference individual receives a
stronger signal from ahead than from behind, that is (u* +
u )(x +s) > (ut +u)(x — s). If the signal comes from within
the repulsion zone, the individual will turn to avoid those
neighbors in front of it. If the signal comes from within the

information from all neighbors (s € (0, «)), as depicted in the
diagrams of Fig. 1. We define here the total density at (x, ¢) to
beu(x,t) = u*(x,t) + u(x, t). The parameters q,, q,, and g, that
appear in Table 1 represent the strength of the attraction,
repulsion, and alignment forces. The interaction kernels are
described by the following equations:

1
Kis) = 5——exp(—(s = 5)°/(2m])),

attraction zone, it will continue moving in the same direction. 2mm

The analysis for left-moving individuals is similar (22). Table 1

describes the nonlocal terms obtained by summing up the i=r,al,a;s €[0, x), [3]
1 stationary pulses 2 stationary pulses 3 ripples

(high density subgroups) (constant internal density)

»
15
)

6
7
6
5
N
3
2
1
0

0
) 10 150 0

C 0 g
£ S
0 2 L 0 80 ‘Dﬂn - 0 2
space space
feathers 5 traveling pulse 6
- , .
s H i z
- B : -
:
-t : :
. = o o
Q
- = E
A E -2 =
0 2 “ 80 8 H}ﬂD -
space space space
7 zigzag pulses 8  breathers
n Kl 9
« g% ;
» :
o B ;
o B° :
0 :
2 Q
5
=
b

space

space

Fig.2. Examples of spatial patterns (shown is total density u = u* + u~). Pattern 1, stationary pulses formed of small, high-density subgroups (shown M1: g, =
0,9, = 2,qr= 2.4, A1 = 0.2, X\, = 0.9); pattern 2, stationary pulses (density even distributed over the group) (shown M2: g, =0, ga = 4, g, = 0.5, A1 = 0.2, A, =
0.9); pattern 3, ripples (shown M5: qa; = 2, g2 = 1.5, gr = 1.1, Ay = 0.2, Az = 0.9); pattern 4, feathers (shown M3: ga; = 0, g2 = 6,9, = 6.4, A1 = 0.2, \; = 0.9); pattern
5, traveling pulse (shown M1: g, = 2, g2 = 1.6, g, = 0.5, Ay = 0.2, A\, = 0.9); pattern 6, traveling trains (shown M3: g, = 2,92 =0, g, = 0, Ay = 6.67, A, = 30.0);
pattern 7, zigzag pulses (shown M2: qa; = 2, g2 = 6, g, = 1, A1 = 0.2, \; = 0.9); pattern 8, breathers (shown M4: q,; =0, g2 = 2, - = 1, A1 = 0.2, A, = 0.9); pattern
9, traveling breathers (shown M4: q,; = 2, q, = 4, Qa1 = 4, .1 = 0.2, A2 = 0.9). The rest of the parameters are y = 0.1, s, = 0.25, 55y = 0.5, 5, = 1.0, m; = 5,/8, m,; =
sall8, m, = s,/8. For these simulations, we choose the function fin Eq. 2 to be described by f(x) = 0.5 + 0.5tanh(x — 2). The initial conditions are random
perturbations of amplitude 0.01 of the spatially homogeneous steady states (u*, A — u*). For patterns 1, 2, and 4-9, simulations were run for 200,000 time steps,
and we plot here the last 20-80 time steps. For pattern 3, simulations were run for 10,000 time steps.

6976 | www.pnas.org/cgi/doi/10.1073/pnas.0611483104 Eftimie et al.
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with m; = s/8 (i = r, al, a) representing the width of the
interaction kernels, and s; (i = r, al, a) representing half the
length of the interaction ranges, for the repulsion, alignment, and
attraction terms, respectively. For a biologically realistic case, we
consider s, < sy < Sq.

These five submodels are not the only possible ones. The aim
here is not to describe all of the possible ways of receiving
information from neighbors. Rather, it is to give the readers a
flavor of the possibilities offered by such a modeling procedure.
In the following, we will show that these submodels exhibit a
wide variety of previously undescribed spatial patterns.

Pattern Formation

We investigate the types of spatial patterns that arise in the
following three cases: (a) only attraction and repulsion; (b) only
alignment; and (c) full model with attraction, alignment, and
repulsion. The numerical scheme we use is a first-order upwind
scheme, with periodic boundary conditions. We use this type of
boundary conditions to compare our results with those obtained
by other models [either continuum (8, 11) or individual-based
models (23)]. Moreover, certain experimental setups also called
for periodic boundary conditions (23). The infinite integrals
(Table 1) are approximated by finite integrals on [0, 2s;] (i = r,
al, a). For the initial conditions, we focus on the spatially
homogeneous steady states (u*, u~) = (u*, u**) (i.e., solutions
of Eq. 1 that satisty du™ = du™ = 0). We can write u** = 4 —
u*, where A is the total population density. We choose the initial
conditions for the numerical simulations to be small perturba-
tions of these steady states.

We verified the numerical results by comparing them with
analytical predictions obtained by linearizing the equations
about the homogeneous solution, including a linear stability
analysis, which predicts the wavenumbers of perturbations that
are unstable (see also ref. 22). For predicted unstable wavenum-
bers, the numerical simulations show pattern formation, whereas
for stable wavenumbers, there is no pattern. Moreover, the
number of groups that arise depends on the wavenumber that
becomes unstable: k; = 2imw/L, i € N, where L is the domain
length (L >> s,). To exclude the effect of the boundaries, we
doubled the domain size, and to exclude possible artifacts of the
numerical scheme, we refined the grid mesh. In all cases the
results showed no significant differences.

The numerical simulations reveal 10 types of spatial patterns,
shown in Figs. 2 and 3: pattern 1, stationary pulses formed of
small, high-density subgroups; pattern 2, stationary pulses that
have a relatively constant internal density; pattern 3, ripples;
pattern 4, feathers; pattern 5, traveling pulse; pattern 6, traveling
train; pattern 7, zigzag pulses; pattern 8, breathers; pattern 9,
traveling breathers; and pattern 10, semizigzag pulses. Patterns
1-3, 5, and 6 are classic patterns (see refs. 11 and 24). Zigzag
pulses are traveling solutions that periodically change direction
(22). We call feathers those stationary pulses that, at the edge,
lose and gain subgroups of individuals. Breathers are stationary
pulses that periodically expand and contract. Traveling breathers
are breather-like groups that travel through the domain. The
semizigzag pulses are pulses characterized by movement in one
direction, alternated by rest. These pulses are a temporal tran-
sition between traveling trains (at the start of the simulations)
and the stationary pulses (after the simulations run for a long
time).

An interesting aspect of breathers and zigzag pulses is the
frequency of the turning maneuver. In ref. 22, the authors have
shown that in case of zigzag pulses this frequency is influenced
by the magnitude of the turning rates: the smaller the turning
rates, the larger the frequency. A similar result holds also for
breathers. However, because of the large number of model
parameters, it is possible that other parameters may also influ-
ence the turning frequency.

Eftimie et al.
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Fig. 3. Semizigzag pattern (pattern 10). (a) Initially, all subgroups move to
the left. After ~20 time steps, some groups of individuals (shown here to be
positioned in space around the mark 50) become stationary for a very short
time (~10-20 time steps). This leads to other neighboring groups, which are
positioned at their left, to become stationary for a short period. This stationary
behavior propagates to the left, in a wavelike manner. Moreover, the behav-
jor is superimposed on the movement to the left displayed by these groups. (b)
As time progresses, the groups remain stationary longer, and so the temporal
length of this wave increases. For example, the groups positioned at the right
end of the domain are stationary for ~120 time steps. Eventually, the spatially
nonhomogeneous solution will be formed only of high-density stationary
groups. The parameters are as follows: g, = g, = 0, qas = 2.2, Ay = 0.667, A\ =
3.0, y = 0.1, s, = 0.25, s,y = 0.5, s, = 1.0, m, = 5,/8, M, = 5,/8, m, = s,/8. The
simulations were run for 200,000 time steps (up to time t = 3,900). Here we
plot some 300 time steps at the beginning of the simulations (a), and the last
180 time steps (b).

By fixing all of the parameters, we can investigate the role of
different model assumptions (M1 vs. M2, etc.) in determining
the resulting spatial pattern. We do this in the context of all three
social interactions: attraction, repulsion, and alignment [i.e., case
(0)]- We set g = g, = 4, gu = 2 (that is, attraction and repulsion
greater than alignment), and Ay = 0.2, A, = 0.9. The rest of the
parameters are given in the Fig. 2 legend. Models M1 and M2
show stationary pulses, as in Fig. 2, pattern 1. This suggests that
for this particular case (i.e., ¢,, g« > qa), it does not matter
whether the signals received from within the alignment range
come only from neighbors moving toward the reference indi-
vidual (M1) or from neighbors moving in both directions (M2).
Model M3 shows feathers, as in Fig. 2, pattern 4. In this case, the
group as a whole is stationary. However, those individuals
positioned at the edge, facing away from the group, leave and do
not turn around. This happens because the individuals do not
receive information from behind. Model M4 shows traveling
breathers, as in Fig. 2, pattern 9. This behavior is the result of two
factors. First, because repulsion has the same magnitude as
attraction, individuals can escape the group. These individuals
move faster than the rest of the group. The rest of the group
executes a sort of zigzag (those very-high-density patches dis-
played by pattern 9). Second, the boundary conditions are
periodic. That is, individuals that have left the group now are
joining it again. This leads to expanding and contracting moving
groups (i.e., traveling breathers). Model M5 shows ripples, as in
Fig. 2, pattern 3. In this case, the individuals react only to signals
coming from ahead. This way, when two left-moving and right-
moving waves approach each other, the majority of individuals
within each group turn around, to avoid collision. However,
there are some individuals that continue moving in the same
direction. This behavior leads to the appearance that the waves
pass through one another.

Table 2 shows a summary of the patterns observed in the three
cases: (a) only attraction and repulsion, (b) only alignment, and
(c) attraction, repulsion, and alignment. The dashes denote that
the pattern was not observed. Because we do not sample the
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Table 2. A summary of the different types of possible solutions exhibited by the five models, M1-M5

Model  Travel. train  Travel. pulse  Stat. pulse  Zigzag pulse  Semi-zigzag pulse ~ Breather  Travel. breather  Feather  Ripples
M1 (b) (9] (a),(b).(c) — (b) — — — —
M2 (b).(c) (b).(c) (a),(c) (9] — — — — —
M3 (b) (9 — — — — — (a).(c) —
M4 (b) (9] (a),(b).(c) (a),(9 (b) (a) (a),(9) — —
M5 — — (b) — — — — — (a).(c)

Here (a), (b), and (c) represent the three discussed cases: (a) only attraction and repulsion, (b) only alignment, (c) attraction, repulsion, and alignment. The
dashes mean that the pattern has not been observed. We focused on the parameter space where the wavenumbers of the perturbations are unstable, as predicted
by the linear stability analysis. However, since this parameter space is very large, we have sampled only some parameter subspaces. Case (a): fixga = 0, y = 0.1,
A1 =0.2, A2 = 0.9, and A = 2. The sampled parameter subspace is (ga, gr), with g,, g- € [0.5, 9]. For the initial conditions we consider u* = u**. Case (b): fix g =
gr=0,y=0.1,A = 2, and investigate the influence of the turning rates on the group structure. For this, we define Ay = 0.2/7, A, = 0.9/7, and vary 7. The sampled
parameter subspace is (qa;, 7), with g, € [0.5, 10], and 7 € [0.006, 1]. For the initial conditions we take u* # u**. Case (c): fix y = 0.1, Ay = 0.2, A, = 0.9, A = 2.
The sampled parameter subspace is (qa, gr), with ga, - € [0.5, 10]. For the initial conditions we consider u* = u**. The obtained patterns are robust to parameter
changes, in the sense that each pattern is observed for a range of parameters.

entire parameter space, we note that Table 2 might not be
complete. Moreover, we believe it is likely to find other new and
interesting patterns in different parameter subspaces. Our aim
here is not to find all patterns, but to open the door toward the
numerous possibilities offered by our modeling procedure.

Relation Between Information Received and Alignment

In addition to the discussed patterns, we investigate conditions
under which a population of individuals evenly spread over the
domain has most of its members aligned in the same direction.
That is, we look for spatially homogeneous steady states of the
form (u*, A — u*), with u* # A/2. For this, we focus on the
relation between the strength of the alignment force required in
each of the five submodels M1-M5 and the amount of informa-
tion an individual receives about its neighbors. Fig. 4 shows
the relationship between the strength of this force (g,) and the
spatially homogeneous steady states that arise in each of the
submodels. Depending on how much information it receives
about its neighbors, an individual requires different levels of
alignment. For example, we see that for M2, small g, already

u* "l
161 = =Ml
1.4 i M3
=== M4
12 ‘1
' /,I"l/ — — M5
- /I/,,,”
LN
A2=1 AT
\“\\\
\
0.8
0.6
0.4
-l
T T T T T T
2 4 6 8 10 12 q
al

Fig. 4. Bifurcation diagram comparing the spatially homogeneous steady
states (u*, A — u*) displayed by the five models M1-M5 as alignment increases
(total density A =2, g, = 1.5, g, = 1.1, Ay = 0.2, A, = 0.9). We see that for M2,
a small gz value already leads to polarization [i.e., the steady state is (u*, A —
u*), with u* # A/2]. M3, on the other hand, requires a larger value for g,. For
M5, only intermediate values of g, lead to some polarization.
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leads to polarization. In this case, the individuals receive all
possible information about neighbors positioned ahead and
behind them (see Fig. 1). For M3, on the other hand, only a large
qa value leads to polarization. In this case, the individuals receive
information only from ahead. By comparing M3 and M4, we see
that group polarization occurs for smaller values of alignment
(qa)) When receiving partial information from both ahead and
behind (M4), as compared with receiving full information only
from ahead (M3). However, receiving information only from
ahead, and only from neighbors moving in one direction (M5),
leads to a lower level of polarization. Moreover, this polarization
happens only for some intermediate values of gq.

We conclude that there is an inverse relation between the
amount of information received and the strength of alignment
force required to fully align with neighbors. A similar result (not
shown here) holds also for the turning rates.

Discussion

In this paper, we have presented a one-dimensional mathemat-
ical model for animal group formation that exhibits 10 complex
patterns. A one-dimensional continuum model for group for-
mation exhibiting such a variety of emergent patterns has not
been reported previously. We should note that the described
patterns hold scientific interest. To our knowledge, some of these
patterns (e.g., feathers) have never been previously observed.
The results also show that the way organisms receive information
may play a central role in the emergence of complex patterns
observed in biological aggregations. Some of the patterns can be
connected to observed group behaviors: zigzagging flocks (25,
26), rippling behavior shown by populations of Myxobacteria
(11), traveling pulses and stationary pulses corresponding to
moving (e.g., traveling schools of fish) and resting groups of
animals, and traveling trains corresponding to waves of activity
that propagate through the groups (27). Breathers might be
associated with the antipredatory behavior observed in some
schools of fish (28) or flocks of birds (29), when the groups
expand and then contract.

Because of the complexity of the animal aggregations, it has
been difficult to quantify the different types of groups and
animal movements. One step forward was made in ref. 23, where
the results of an individual based model were compared with
laboratory experiments. The results we present here invite
further observations and experimental investigations involving
the manipulation of communication in animal groups.

In the formulation of the model, we have restricted ourselves
to one spatial dimension. In nature, the majority of biological
aggregations are in two or three dimensions. However, the
simulations show that this model captures the essential features
of some of the observed patterns [e.g., higher population density
at the front of the moving groups (30) and the structure of the
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turning maneuver (31, 32)]. The one-dimensional model can
approximate the behavior of animal groups in two dimensions if
they move in a domain that is much longer than wide. However,
for a more realistic and general case, the model should be
extended to two spatial dimensions (see, for example, ref. 33).

Some of the patterns we obtained in this paper can be related
to the patterns displayed by the other continuum models existent
in the literature. In particular, the results in Table 2 show that
case (a) (i.e., only attraction and repulsion) almost always
generates stationary pulses. This pattern was previously ob-
tained by parabolic models with attractive and repulsive inter-
actions (7). The traveling pulses seem to be the result of the
interplay between all social interactions [case (c)]. Compared
with previous models (8), the pulses obtained here have well
defined boundaries and persist for a very long time. The ripples
(similar to the ones described in refs. 9 and 11) are obtained here
for cases (a) and (c). We therefore conclude that our model not
only exhibits the patterns obtained by other one-dimensional
continuum models (i.e., stationary pulses, traveling pulses, and
ripples), but also shows new types of solutions.
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Furthermore, the results suggest that there is an inverse
relation between the amount of information received by an
organism (due to environmental or physiological limitations)
and the strength of the alignment that leads to a polarized
population.

Future areas of research include investigating whether ob-
served patterns change if we change the nonlinear turning
function (Eq. 2) or the interaction kernels. For example, we
observed that in model M1 all but the semizigzag pulse patterns
persisted when we used odd kernels for attractive and repulsive
interactions (22).

We stress that this model approach provides a structure for
further modifications. The mathematical model can easily be
adapted to a particular species by changing the way we model
how organisms receive information from their neighbors.
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